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Abstract: An approach, based on the refined method of matched asymptotic expansions, is proposed for the construction

of asymptotic models for the topological sensitivity of the energy functional with respect to the creation of a small hole in

the geometrical domain. It is shown that the asymptotic model provides more information for calculations than the topo-

logical derivative.

INTRODUCTION

The shape optimization theory [1] provides well estab-
lished techniques for the investigation of shape optimization
problems when the topology class of the geometrical domain
under consideration is supposed to be fixed. At the same
time, the shape optimization methods cannot produce useful
criteria whether a topological change (for instance, the crea-
tion of a hole in the interior of the geometrical domain) will
lead to a decreasing value of the shape functional or not. One
such criterion [2] is based on the notion of the topological
derivative whose importance in the topology optimization is
now widely recognized.

The present paper is devoted to analyzing the application
of the topological derivative in shape and topology optimiza-
tion problems which take into consideration the question of
changing the topology class of the geometrical domain.
More precisely, the so-called asymptotic model based on the
refined asymptotic expansion is presented for the topological
sensitivity of the Dirichlet integral in a special case of nu-
cleation of a hole with the homogeneous Neumann boundary
condition imposed on its boundary.

It is known that the aim of the topological sensitivity

analysis (see, for example, [3,4]) is to obtain the so-called

topological asymptotic expansion of a given shape functional

),( vJ � with respect to the creation of a small opening

)( 0x
�

� of diameter )(�O with the center at a given point

0x in the geometrical domain � ( �<0 is a small parame-

ter).

Let )( 0xT �

�
be the ratio between the difference

),(),( 0vJuJ ���
�

�
, where

�u is the solution of the

boundary value problem defined on the singularly perturbed

domain )(\ 0x
��

��=� , and the area )( 0x
�

� of the small

opening )( 0x
�

� .
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We shall say that )( 0xT �

�
is the topological sensitivity of

the shape functional ),( vJ � with respect to the internal

topological variation (i.e., creation of the small hole )( 0x
�

�

in the domain � ). The idea of topological sensitivity (the

term has been used in a number of publications [3], etc.) was

introduced in [2] (the so-called characteristic function) in the

framework of the bubble method for topology and shape

optimization in two-dimensional elastostatic problems.

In the case of the homogeneous Neumann boundary con-

dition imposed on the boundary )( 0x
�

�� of the hole

)( 0x
�

� , the topological asymptotics for the energy func-

tional can be obtained in the form [5,3]

))(()()(),(),( 00000 xoxxTvJuJ
���

�

�
�� ++�=� .

Here, )( 00 xT
�

is the topological derivative which deter-

mines whether a change of topology by nucleation of a small

hole )( 0x
�

� at the point
0x in the interior of the domain �

would result in improving the value of the shape functional

),( vJ � or not.

The aim of the asymptotic modelling is to obtain a re-

fined asymptotic representation for the topological sensitiv-

ity, i.e., for the increment of a given shape functional result-

ing from the emerging of a small opening in the interior of

the domain. As a result of application of the refined method

of matched asymptotic expansions [6,7], we obtain the fol-

lowing asymptotic formula:

0,))(()()( 000
�+= ��

�

�

�

�

�
xoxSxT ,

where )( 0xS �

�
is an asymptotic model for the topological

sensitivity.

We stress that the so-called asymptotic model for the

topological sensitivity )( 0xS �

�
, which may be regarded as a

Padé approximant [8], provides more information for calcu-

lations and they have more accuracy (see, e.g., [9,7,10]).
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TOPOLOGICAL DERIVATIVE

Let � and � be two domains on
2R with compact clo-

sures � and � and smooth boundaries �� and �� . We

assume that � contains the origin O . By � we denote a

small positive parameter. For small � it is possible for any

fixed point ��
0x to remove the set

{ }���
�

��==
� )(|),()( 01

21

0 xxxxxx from � , obtaining

the singularly perturbed domain
�

� with the boundary

)( 0x
��

�����=�� . In such a domain we consider the

following mixed boundary value problem for the Poisson

equation:

;,0)(;),()( ���=��=�� xxuxxfxu �

�

�
(1)

.)(,0)( 0xxxun �

�
���=� (2)

Here, n� stands for the derivative in the direction of the

outward (with respect to
�

� ) normal vector n .

In this paper the asymptotic behavior of the solution

)(xu� is considered and the leading terms of asymptotic

expansions are constructed. The inclusion )(1 ��Cf is

sufficient for our purposes.

As 0�� , the hole )( 0x
�

� is collapsed to the point
0x ,

the boundary condition (2) disappears, and relations (1) form

the limit problem

;,0)(;),()( 00
���=��=�� xxvxxfxv (3)

We consider the case of the energy functional

�
�

�=� .)(
2

1
),(

2
00 dxxvvJ x (4)

The topological derivative )( 00 xT
�

of the functional

),( 0vJ � at the point ��
0x is defined by [5,4]

.
)(

),(),(
lim)(

0

0

0

00

x

vJuJ
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�

�

�

�
�

�

���
=

+�

(5)

By definition, we put

,
)(

),(),(
)(

0

0

0

x

vJuJ
xT

�

�

��

�

�

���
= (6)

where )( 0xT �

�
is the topological sensitivity.

The topological derivative (5) in the case (2) under the

condition of a hole )( 0x
�

� being a ball in
2R was intro-

duced in [5] with a reference to the original idea by Schu-

macher (1995), suggested for the special case of the energy

functional in linear elasticity in the framework of the bubble

method [2]. The topological derivative concept was latter

generalized for nucleation of cavities of arbitrary shape

[3,11] as well, as for the cases of different types of boundary

conditions imposed on )( 0x
�

�� and different state differen-

tial equations defined on
nR��

�
( 2,1=n ) [4,12]. Also,

different approaches were suggested for calculation of the

topological derivative [3,13,4]. Let us emphasize [14] that

the topological derivatives can be obtained in a different

way, but the forms of such derivatives are equivalent.

The methods of topology optimization based on the bub-

ble method are used for the topology optimization in struc-

tural mechanics [2,15]. Numerical results obtained by help of

the topological derivative can be found in [3,12]. We refer to

[16,17] for applications in inverse problems. The topological

derivative was incorporated [18] into the level set method

[19]. Note that asymptotic models can be connected, in par-

ticular, with the primal-dual active set method for crack

problems with non-penetration [20] as a criteria for the kink-

ing of a crack. Note also that asymptotic models for dilute

and densely packed composites [21] and asymptotic solu-

tions for periodic problems obtained in [22] could be used in

the homogenization method for shape and topology optimi-

zation [23].

In [14] the case of a finite number of circular holes was

treated by means of the so-called topological gradient which

contains the topological derivatives evaluated at the centers

of holes. In [24] two new approaches were proposed for the

modelling of so-called internal multiple topological varia-

tions. The first approach is developed in the framework of

the self adjoint extensions of differential operators, the sec-

ond is based on the variational formulation with point as-

ymptotic conditions in a functional space with separated as-

ymptotics. In the present paper the third approach is pro-

posed for the asymptotic modeling of the internal topological

variations. This approach is based on the refined method of

matched asymptotic expansions [6,7]. Namely, the refined

method of matched expansions in the form [7] is applied to

construction of asymptotic models for the topological sensi-

tivity of the energy functional.

To this end, Sections 1 and 2 briefly recall the notion of

topological derivative, evaluation of the topological deriva-

tive by help of the method of matched asymptotic expan-

sions and its refined modification [7]. The performed asymp-

totic analysis is formal. Estimates for the proposed approxi-

mations in weighted Hölder spaces [4] and weighted Sobolev

spaces [25] were derived in the context of shape optimiza-

tion.

The asymptotics of the solution to the singularly per-

turbed problem (1), (2) is known (see, [26]). We use the

method of matched asymptotic expansions [27,28]. This

method implies the following structure for the inner asymp-

totic expansion:

,)()()( 10
…++= ���

� wwxu (7)

which is valid in a small neighborhood of )( 0x
�

� . In (7), we

introduced the so-called stretched variables

.)(),,( 01

21 iii xx �==
�

����� (8)
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Changing to the stretched coordinates (8) in (1) and (2),

after passage to the limit 0=� , we conclude that )(�qw

( 1,0=q ) must satisfy the following relations:

.,0)(;\,0)( 2
������

��
��=��=�

qq wRw (9)

The Dirichlet boundary condition (1) is replaced with an

asymptotic condition restricting the behavior of )(�qw as

��� . That asymptotic condition results from matching

with the solution )(0 xv of the limit problem (3). The match-

ing procedure [27,28] implies that the leading terms in the

asymptotic expansions for )(0 xv and )()( 10
��� ww + for-

mally coincide as 0�x and ��� , respectively.

Consequently, in view of the Taylor formula

,)|(|)()()()( 20000000 xxOxvxxxvxv �+��+= (10)

we add to the second limit problem (9), 1=q , the asymp-

totic condition )|(|)()( 1001 �
+�= ��� Oxvw as ��� .

Hence, )(1 �w can be represented as

.)()()(
2,1

0

0

1
�
= �

�
=

l

l

l

Yx
x

v
w �� (11)

Here, )()( 0 ���
L

L

L YY += ( 2,1=l ) are the special solu-

tions to the exterior Neumann problem (9) that admit the

following asymptotic expansions:

.)|(|)(
||2

1
)( 2

2,1
20

�

=

+= � ���
��

� OmY
k

kkl

l
(12)

The outer asymptotic expansion for the solution )(xu� to

our problem (1), (2) has the form

.)()()( 120
…++= xvxvxu �

�
(13)

In view of (11) and (12), the function )(1 xv must satisfy

the following asymptotic condition (
0xx� ):

.)1(
2
)()()(

2

1,
2

0

0
0

0

1 O
xx

xx
x

x

v
mxv

kl

kk

l

kl +

�

�

�

�
= �

= �

� (14)

We denote by ),( 0)( xxG k
( 2,1=k ) singular solutions to

the homogeneous problem (1) that admit the following rep-

resentation:

.),(
2

),( 0)(

2
0

0
0)( xxg

xx

xx
xxG kkkk

+

�

�
=

�

(15)

In accordance with (14), we obtain

,),()()()(
2

1,

0)(0

0

1
�
= �

�
=

kl

k

l

kl xxGx
x

v
mxv � (16)

where )(�m is the matrix consisting of the coefficients from

the asymptotic formula (12).

Note that the obtained asimptotics (13), (16) can be de-

rived by the method of compound asymptotic expansions

[26] or the asymptotic method [29] based on layer potential

techniques (see, formula (4.16)).

An asymptotic approximation of the functional

),( �

�
uJ � can be derived from formulas (4) and (11), (16).

However, using Green's formula, we obtain

�
�

=�

�

��

�
.)()(

2

1
),( dxxuxfuJ (17)

Here, the homogeneous Dirichlet boundary condition (1)

on �� and the Neumann boundary condition (2) on

)( 0x
�

�� were taken into account.

The following two-term asymptotic expansion of the en-

ergy functional is valid (see, e.g., [26,31,32]):

,)()()()(
2

||)()(
2

),(),(

200T00

2

0000

2

0

�

�

�

��
�

�
�

+
+��+

��=�

oxvmxv

xfxvvJuJ
(18)

where 0>� is small.

Hence, since |||)(| 20
���

�
=x , the following value of

the topological derivative is obtained:

.)()()(
||2

1

)()(
2

1
)(

00T00

00000

xvmxv

xfxvxT

��+

�=

�
�

�

(19)

Here, )(�m is a symmetric positive definite 22� matrix

associated with the virtual mass tensor [30]. Following

[4,22], we call )(�m the polarization matrix.

ASYMPTOTIC MODEL

We use the refined method of matched asymptotic ex-

pansions in the form [7]. In view of (13) and (16) we take the

sum

�
=

+=

2

1

0)(20 ),()()(
k

k

k xxGCxvxV �
�

(20)

as the outer asymptotic representation of the solution )(xu�

to the singularly perturbed problem (1), (2).

By formulas (10) and (15) we have

;)(
2

)()(

2

1

2)(

02

2

0

0
2,1

)(

0

200

�

�

=

=

�+

�
	

�



�

�
�

�


�

��+

�

�
+

��++=

k

kk
k

k

k

k

xOgx
x

x
C

vxgCxvxV

�

�

�
�

(21)

),( 00)()(

0 xxgg kk
�=� , )( 000

0 xvv �=� ,
0xxx �=� .
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Substituting the stretched coordinates (8) in (21), we ob-

tain

.)(
2

)()(

2

1

22)(

02

2

0

0
2,1

)(

0

200

�

�

=

=

+

�
	

�



�

�
�

�


�

�++

�++=

k

kk
k

k

k

k

OgC

vgCxvxV

����

���

�
�

���
�

(22)

Following [7], we derive from (22) the refined matching

asymptotic condition

).(

)()(

1
2

1

)(

0

20

0

2,1

)(

0

200

�

=

=

+�

	



�

�

�
�+�+

+=

�

�

����

��
�

OgCv

gCxvW

k

k

k

k

k

k

(23)

Hence, the inner asymptotic representation, which satis-

fies the second limit problem (9), (23), has the form

)()()( 10
����

� wwW += , where

.)()()()(
2

1

2

1

0

)(

20

0

1
� �
= =

�
�

	




�
�

�

�

�

�
+

�

�
=

l

l

k l

k

k

l

Yx
x

g
Cx

x

v
w ��� (24)

Introducing the column of solutions
T21 ),( YYY = , where

T denotes the transpose, and the symmetric 22� matrix
)(

0

•
�g with the elements ),( 00)( xxg k

l
x� ( 2,1, =lk ), we re-

write (24) in the form

w1(�) = �v0
0
+ �

2
�g0

(•)C( )
T
Y (�), (25)

where
T

21 ),( CCC = .

Making use of the relations (12) we obtain

w1(�) � � +
1

2� �
2 �m(� )

�

�
�

	



� �v0

0
+ 

2
�g0

(•)C( ), (26)

On the other hand, from (22) we derive

V � (x)� w0
� �� �v0

0
+ �

2
�g0

(•)C( ) +
�

2� �
2 �C. (27)

Comparing (26) and (27), we obtain the equation

C = m(� ) �v0
0
+ �

2
�g0

(•)C( ) . (28)

From (28) we readily find

C = I �  2m(� )�g0
(•)( )

�1
m(� )�v0

0 , (29)

where diag{1,1}=I .

Note that, first introduced in [6], the specific matrix nota-

tion used in [4] for asymptotic analysis of various shape

functionals also provides asymptotic representations essen-

tially similar to (25) and (20), (29) as it has been comprehen-

sively shown in [33]. The refined method of matched asymp-

totic expansions [6,7] was applied for construction of asymp-

totic models in contact mechanics [33,34], in the theory of

cracks [35], and in the theory of acoustic diffraction [36].

In order to evaluate an asymptotic approximation of the
energy functional (4), we construct the uniformly suitable
asymptotic representation

,
2
)(
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(30)

where the coefficients kC are defined by (29).

Thus, replacing the function )(xu� with its asymptotics

(30) in the integral (17), we obtain

,)()()(),(),( 2000 �

�

�

�

�

�
��

+
++�=� oxxSvJuJ (31)

where 0>� is small.

Taking into account (29) and (31), we find

S
�

� (x0 ) = �
1

2
v0 (x0 ) f (x0 )

+
1

2 �
�v0

0( )
T
I � � 2m(� )�g0

(•)( )
�1
m(� )�v0

0 .

(32)

Note that, since I � � 2m(� )�g0
(•)( )

�1
= I +O(� 2 ) , the

asymptotic expansion (18) follows from (31). The proof uses

the same tools as for the case (18). Note also that

)()()( 2000
�

�

�

�
OxTxS += as 0�� .

We emphasize that the formulas (18) and (31) are known

to possess the same asymptotic accuracy, since both inner

asymptotic representations (7) and (25) do not eliminate the

discrepancy in the boundary condition (2) on )( 0x
�

�� left

by the term )(
2

0xxO � from the expansion (10). However,

the refined asymptotic representation (31) gives in fact better

results because its construction is obtained by summation of

asymptotic terms corresponding to the term )( 0xxO � .

The following asymptotic formula for the energy incre-

ment due to appearing of the cavity )( 0x
�

� in the domain

� is obtained (see, formula (31)):

.0,)(
)(

),(),(
0

0

0

��
���

�

�

�

�

�

�

�
xS

x

vJuJ
(33)

Thus, we have )()( 00 xSxT �

�

�

�
� as 0�� (see, (6)),

where )( 0xT �

�
is the topological sensitivity and )( 0xS �

�
is

its asymptotic model of the first order.

CONCLUSIONS

Let us point out that the difference between the asymp-

totic model (32) for the topological sensitivity )( 0xT �

�
and
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the topological derivative )( 00 xT
�

is substantial. First, the

asymptotic model (33), (32) provides more information,

since it takes into account the influence of a hole )( 0x
�

� on

the solution )(xu� of the perturbed problem (1), (2),

whereas the topological derivative (5), (19) depends only on

the solution )(0 xv of the non-perturbed problem (3). This

additional information is contained in the matrix
)(

0

•
�g

whose components are defined by the geometry of the do-

main � and depend on the location of the point
0x . In other

words, unlike the topological derivative, the asymptotic

model for the topological sensitivity )( 0xS �

�
provides essen-

tial information of the response caused by the creation of a

cavity )( 0x
�

� in the geometrical domain � .

Second, the asymptotic model (32) for the topological

sensitivity )( 0xS �

�
defined by (33) may be regarded as a

Padé approximant (see, e.g., [8]). A relation between the

Padé approximation and the refined method of matched as-

ymptotic expansions was established in [7]. Namely, this

relation explains a surprising increasing of accuracy of as-

ymptotic representations such as (32) for ),0( 0�� � [7,10].

Third, the asymptotic model based topological sensitivity

is more sensitive tool in obtaining the optimal topology in

the problem under consideration. In fact, using the asymp-

totic model (33), (32), it is possible to consider differences

between points with the same value of the topological de-

rivative. On the other hand, the topological derivative is a

less sensitive tool because its value is obtained evaluating

the limit )(lim)( 0

0

00 xSxT �

��� +�
= . We stress that the topo-

logical derivative gives a possibility for insertion of an in-

finitesimally small hole, whereas the bubble method [2,15]

requires insertion of a hole of small but finite size.

Fourth, one of the main advantages of the asymptotic

model for the topological sensitivity is that it provides a

more accurate tool for identification of cracks and cavities in

the inverse problems (see, e.g., [16,17]). At the same time,

the asymptotic model based topological sensitivity )( 0xS �

�

defined by (32) is computed using only information of the

non-damaged domain � .

The main results of the paper were reported for the first
time in November 2004 on the research seminar at the Insti-
tute of Mathematics of the University of Graz (Austria). The
author is grateful to Professor K. Kunisch and Dr. V.A.
Kovtunenko for valuable discussions.
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