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Abstract: From the available literature, the allometric scaling laws generally exist in biology, ecology, etc. These scaling

laws obey power law distributions. A possibly better approach to characterize the power law is to utilize fractional deriva-

tives. In this paper, we establish a fractional differential equation model for this allometry by using the Caputo fractional

derivatives.
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INTRODUCTION

From the literature available, the scaling laws of allome-

try typically appear in biology, ecology, etc [1-14]. For de-

tails, the dependance of a biological variable Y upon body

mass M is emblematically characterized by an allometric

scaling law (namely, power law) of the form

�MYY 0= (1)

here � is a scaling exponent and
0Y is a constant that is

determined by the kind of organism.

In [1], West et al. proposed that a common mechanism

underlies following laws: Living things are sustained by the

transport of materials through linear networks that branch to

supply all parts of the organism. Under this mechanism

axiom, they established a quantitative model that explains

the origin and ubiquity of quarter-power scaling and also

predicts the essential feature of transport systems, such as

mammalian blood vessels, bronchial trees, plant vascular

systems and insect tracheal tubes. Their model was derived

on the basis of three postulates: (i) a space-filling network

that branches hierarchically to supply all parts of the three-

dimensional body; (ii) body-size invariant terminal units,

such as capillaries or leaf petioles; and (iii) minimization of

the energy and time required to distribute resources.

The ubiquitous scaling law (1) commonly exists in na-

ture, but for living things, the scaling factors � behave mul-

tiplicity of quarter. For example, metabolic rates B of entire

organisms scales as
43M , that is,

43MB � ; rates of cellu-

lar metabolism, heartbeat and maximal population growth

scale as
41�M ; and times of blood circulation, embryonic

growth and development, and life-span scale as
41M [1-14].

The “ 43 scaling property" was specifically and detailed

reported for mature seed plants [9]. In those papers, a very
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interesting fact is shown: the mass of dry leaves
LM scales

to the 43 power of the mass of dry root
RM , the mass of

dry leaves
LM scales to the 43 power of the mass of dry

stem
SM , which follows that

RS MM � . The perfect quar-

ter-power scaling law well reflects life phenomena to some

extent [15]. Besides, for early plant ontogeny, a different

allometric scaling law was presented by [16]. Allometric

scaling law is characterized by fractional power, which lies

in the fractal world [17]. One of useful tools which are used

to disclose fractal is the fractional calculus [18-21]. In this

paper, we derive a fractional differential equation model for

the allometry of scaling laws by using the Caputo fractional

derivative [19, 21-30].

FRACTIONAL EQUATION MODEL

Before deriving a fractional equation model for allometry

of scaling laws, we first introduce several fundamental defi-

nitions of fractional calculus.

In general, four fractional derivative definitions, i.e.,

Gr nwald-Letnikov fractional derivative, Riemann-Liouville

fractional derivative, generalized fractional derivative in the

sense of generalized functions, and Caputo's fractional de-

rivative, are mostly used [19, 21-24, 31-34]. The former

three definitions are often used by pure mathematicians

while the last one is adopted by applied scientists since it is

more convenient in engineering applications. Here we only

discuss Caputo derivative:

)()( )(
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Where m= � �q , i.e., m is the first integer which is not

less than q ,
)(mx is a conventional m-th order derivative,

�J is the � -th order Riemann-Liouville integral operator

which is expressed as follows:
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in which )(�� is the usual Euler function, i.e.,
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Although these three fractional derivatives with the same

order q > 0 are not equivalent, the Gr nwald-Letnikov frac-

tional integral q

tGL D
�

,0
, the Riemann-Liouville fractional in-

tegral q

tRL D
�

,0
, and the Caputo's fractional integral q

tC D
�

,0
,

with order q > 0 have the same expression. Obviously,
�J and ��

tRL D ,0
are the same. In order to coincide with (2),

here and throughout, denote
�J by ��

tC D ,0
, .0>�

Caputo derivative (integral) has following properties:

(i) ����

��

� �
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holds for 1,0 �>< �� or ;,10 +
�>+<�� Zmmm ��

(ii) 0,0 =dD tC

�

for any constant d and 0>� .

(iii) The Caputo differential operator is a linear operator, i.e.
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for arbitrary constants a and b ;

(iv) ������ +
=�=� tCtCtCtCtC DDDDD ,0,0,0,0,0

holds for 0>� �� and 10 �+< �� [31], or 0<� and 0<� .

On the other hand, the fractional differential equation
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with initial value condition
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is equivalent to a Volterra integral equation
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Next, we establish a fractional model. Here data come

from the Appendix of one paper [12, 35] (the web page can

be found from the reference of this paper).

Let also B denotes metabolic rates, M total plant bio-

mass;
LM the mass of dry leaves,

SM the mass of dry

stems;
LM the mass of dry leaves,

RM the mass of dry

roots. Assume still B andM ,
LM

and
SM ,

LM and
RM satisfy the following relations,

���

RLSL McMMbMMaB 000 ,, ===

By the method of least square, we find that

7486.07595.0 9642.0,0158.0 SL MMMB == ,

,4543.1 7413.0

RL MM = (4)

where the node number are 344, 460 and 171 respectively,

see Appendix in which .01 =a These relations are in line

with prediction, .,, 75.075.075.0

RLSL MMMMMB ���

Their diagrams are in Fig. (1), which is almost the same

with that in Enquist-Niklas's work [9].

Fig. (1). The log-log linear curve denotes the statistical fit of actual

data (original units in kg of dry weight per plant) WBE stands for
West-Brown-Enquist model. (a) )log(B versus )log(M ; (b)

)log( LM versus )log( SM ; (c) )log( LM versus ).log( RM
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We also verify a relation between
SM and

RM by the

same numerical method,

,RS MM �

in which the node number is 171.

It is easy to see that three equations of (4) satisfy the fol-

lowing equations, respectively,

C D0,M
0.7595B(M ) = 0.0158 ��(1.7595),

B(0) = 0;

�

�

�

(5)

C D0,MS

0.7486ML (MS ) = 0.9642 ��(1.7486),

ML (0) = 0;

�

�

�

(6)

C D0,MR

0.7413ML (MR ) = 1.4543 ��(1.7413),

ML (0) = 0.

�

�

�

(7)

The right hand sides of equations (5)-(7) are constants. If

we assume that the relations between B and M ,
LM and

SM ,
LM and

RM obey the following law,

C D0,t
� x(t) = f (t),� �(0,1),

x(0) = 0,

�

�

�

(8)

in which ))(2()( 10 taatf ++�= � , it will be somewhat

appropriate. Furthermore, one can suppose that
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For case with ))(2()( 10 taatf ++�= � , (8) can be ana-

lytically solved, i.e.,
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For the case with
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the solution to (8) is given by
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The existed results coincide with (10) for

021 ==���== maaa in reality. However, (10) is a little

tedious if .2�m In this paper, we only find unknowns

0,a� and
1a in (9) by the method of least square, then the

associate fractional model (8) follows. For details, see the

Appendix.

The comparison among the primitive data, WBE model

(West-Brown-Enquist model) and fractional model are in

Fig. (2). From this figure, our fractional model is more ap-

propriate.

Fig. (2). The comparison between WBE and fractional model which

are drawn from (5')-(7'). (a) B versus M ; (b)
LM versus

SM ; (c)

LM versus
RM .

CONCLUSION

In this paper, we establish a fractional model for the al-

lometric scaling laws in biology, ecology. The derived model

works well. On one hand, if the scaling exponent � is nega-

tive, we can also establish an integral equation model by

using the fractional derivatives. On the other hand, scaling

laws widely exist in the world, which belong a fractal com-
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munity, for example, besides mentioned in biology, ecology,

also in fluid, finance, complex networks, etc. To disclose the

allometric secrets in fractal community, modeling the allo-

metry is a long-term duty.

APPENDIX

To seek parameters
0,a� and

1a of equation (9), we use

the method of least square. Set

Y = [xi � (� +1)a0ti
�
� a1ti

�+1]2

l=0

n

� . (11)

By the method of least square, one gets

�Y

�a0
= 2 (xi � (� +1)a0ti

� +1
� a1ti

� +1)
i=0

n

�

�(� +1)ti
�
= 0,

�Y

�a1
= 2 (xi � (� +1)a0ti

� +1
� a1ti

� +1)
i=0

n

�

�ti
� +1

= 0,

�Y

��
= 2 (xi � (� +1)a0ti

� +1
� a1ti

� +1)
i=0

n

�

�(�a0ti
�
� (� +1)a0ti

� ln ti � a1ti
� +1 ln ti ) = 0.
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(12)

The system of equations (12) is nonlinear. We here use

the Newton method. The results are listed below,

B = 0.0182M 0.7816
� 2.28 �10�8M 1.7816 , (4’a)

ML = 0.3425MS
0.7889

+ 0.00606MS
1.7889 , (4’b)

ML = 2.1269MR
0.7621

� 0.011MR
1.7621, (4’c)

They are just the solutions of following equations, re-

spectively,

C D0,M
0.7816B(M ) = �(2.7816)

�(0.0182 � 2.28 �10�8M ),

B(0) = 0;

�

�
�

�
�

(5’)

C D0,MS

0.7889ML (MS ) = �(2.7889)

�(0.3425 � 0.00606MS ),

ML (0) = 0;

	

�
�

�
�

(6’)

C D0,MR

0.7413ML (MR ) = �(2.27621)

�(2.1269 � 0.011MR ),

ML (0) = 0.
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