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Abstract

Computational models made up of linear combinations of ridge basis functions, widely used in

machine learning and artificial intelligence, are considered. For such models, the literature on the

so-called “universal approximation property” is surveyed. Different approaches, proof techniques,

and tools are examined.
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1 Introduction

A basic goal of computational learning is to approximate within a desired accuracy a functional rela-

tionship between inputs and outputs by using a simple model. Among the models most widely used in

applications, there are those made up of linear combinations of computational units represented by ridge

functions, i.e., functions that are constant along hyperplanes; these models include many widespread

neural networks [1].

Ridge models have been successfully applied in a variety of areas, such as time-series forecasting, sys-

tem identification, data mining, approximation of decision strategies, financial and business applications,
∗This work was supported in part by a PRIN grant from the Italian Ministry for University and Research, Project

“Models and Algorithms for Robust Network Optimization.”
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Universal Ridge Approximation 2

pattern recognition, optimal traffic control, routing in telecommunications, etc. (see, e.g., [2, 3, 4, 5, 6, 7],

the references therein, and the bibliographies in [8, 9]). All these problems share a common aspect: a

multivariable input/output mapping has to be approximated. Experimental results and theoretical inves-

tigations have shown that computational models having the form of linear combinations of simple ridge

functions with adjustable parameters (so-called “computational units”) can achieve surprisingly good

performances (see [2, 5, 6, 7, 10, 11] and the references therein).

A basic question is the following: for what kind of ridge computational units is it possible to guarantee

that there exists an arbitrarily close approximation for every function belonging to the family of interest

in the application at hand (e.g., continuous or square-integrable functions)? Such a property is often

called the “universal approximation property.” In mathematical terms, it corresponds to “density” in

suitable function spaces. Although the density of a computational model does not imply efficiency, its

lack with respect to spaces of functions commonly used in applications is a sign of limited capabilities.

There exists a vast literature on theoretical investigations of the universal approximation property for

ridge computational models. This paper is a survey of this topic.

The paper is organized as follows. In Section 2, some basic differences between the structure of

classical linear computational models and the structure of ridge computational models are discussed.

Section 3 is devoted to the perceptron model, its fall, and its renaissance. Section 4 describes in detail

five main phases of investigations of the universal approximation property for ridge computational models.

Different proof techniques are examined in Section 5. Section 6 provides a final discussion of the price of

universality and warns about the “curse of dimensionality.”

2 Computational models and approximation

2.1 The “universal approximation property”

The first question concerning a computational model is whether a sufficiently large number of computa-

tional units allow one to approximate up to every desired degree of accuracy all “reasonable” functions

encountered in applications.

To compute or estimate the accuracy of approximation, it is natural to choose an “ambient” function

space H endowed with a norm ‖ · ‖ and to measure the distance between two functions f, g ∈ H by the

quantity ‖f−g‖. Mathematically, the capability of approximating up to every desired degree of accuracy

all functions in a space H with a norm ‖ · ‖ is called density. So, a set Y in a normed linear space H is

dense in H if, for every f ∈ H and every ε > 0, there exists y ∈ Y such that ‖f − y‖ ≤ ε . An equivalent

way to state density is in terms of closure. Given a subset Y of a normed linear space H , the closure of

H in the norm of H is defined as clH Y =
{
f ∈ H | ∀ε > 0 ∃ g ∈ Y such that ‖f − g‖ < ε

}
. Then,

the set Y is dense in H with the norm ‖ · ‖ if clH Y = H , i.e., if the closure of Y w.r.t. the norm ‖ · ‖
on H is the whole space H .
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The choices of the space H, its norm, and the type of computational model with the corresponding

density property depend on the application at hand. In most cases, one is interested in the C -density

property and the L2 -density property. In this paper, we consider the density property in the spaces

Lp(K,Rm) and C(K,Rm) , where K is a compact subset of Rd . A set Y of functions has the C(K) -

or Lp(K) - density property if and only if clC(K) Y = C(K) and clLp(K) Y = Lp(K) , respectively. When

the normed linear space is the space of continuous functions with the supremum norm, in neural network

terminology the density property is also called the universal approximation property. The closure in

C(K) (i.e., with respect to the supremum norm) is also called uniform closure [12, p. 149].

2.2 Linear and nonlinear computational models

Linear computational models implement linear combinations of a set of n fixed computational units.

So, they correspond to sets {An} that are finite-dimensional subspaces of a linear space H . If the

computational units are linearly independent,1 then n is the dimension of the subspace that they span,

otherwise the subspace generated by the computational units has a dimension less than n. For example, if

algebraic polynomials of order at most n− 1 are considered, an n -dimensional subspace is generated by

the first n elements of the set {xi−1 : i ∈ N+} . Summing up, linear computational models correspond

to linear subspaces An, i.e., linear combinations of elements of a fixed set of functions.

An =
{ n∑

i=1

ciφi(·) : ci ∈ R
}

.

Hence, the number of parameters in linear computational models with linearly independent compu-

tational units is equal to the number n of such functions.

In this survey, we define as nonlinear computational models the linear combinations of functions with

a fixed structure, in which there is a certain number of “free” parameters to be adjusted; sometimes we

shall call such functions “parametrized computational units.” To clarify this point, we give the following

example, which, despite its simplicity, contains all the main features of interest.

The approximation of one-variable real-valued functions by sine trigonometric polynomials of degree at

most n corresponds to the approximation scheme obtained by linear combinations of the first n elements

of the set {sin(2π i x) : i ∈ N} . The linear combinations of such first n elements represent a linear

computational model with n fixed computational units equal to sines with frequencies multiple of 2π .

Instead of considering only frequencies multiple of 2π, suppose to take all possible frequencies into

account, i.e., let us define the set of functions {sin(2π i x) : i ∈ R+} . For each choice of i ∈ R+ ,

1Recall that n elements f1, . . . , fn of a real linear space H are called linearly independent if there exist no numbers

c1, . . . , cn ∈ R such that c1 f1 + . . . + cn fn = 0 with
Pn

j=1 |cj | > 0 . If there exist c1, . . . , cn ∈ R such that the above two

conditions hold, then the elements f1, . . . , fn are called linearly dependent; in such a case, every fj , j = 1, . . . , n , can be

expressed as a linear combination of the other n− 1 elements.
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a sine with a different frequency is generated. Such a sine can be thought of as an element of a set of

computational units, obtained by varying the free parameter i ∈ R to which a frequency 2π i corresponds.

In other words, approximating functions are constructed as linear combinations of all possible n -tuples of

the set of sines with arbitrary frequencies, each corresponding to a choice of the free parameter i ∈ R+ .

The total number of parameters is not equal to the number n of computational units any more, as in the

case of linear approximation by sines, but is given by 2n (n coefficients of the linear combination, plus

n frequencies). In the case of functions of d variables, there are n(d+1) parameters, d being the number

of free parameters in the inner product i>x , where i ∈ Nd
+, x ∈ Rd , for each sine with the frequency

vector 2π i ∈ Rd , and > denotes transposition.

Taking the hint from the above example, one can easily understand the structure of nonlinear com-

putational models with n computational units ϕ(·, ·) : Rd × A → R , a parameter set A ⊆ Rk , and

a single linear output unit: they generate all functions that can be written as
∑n

i=1 ciϕ(·, κi) , where

κi ∈ A ⊆ Rk , i.e., all functions belonging to the set

An =
{ n∑

i=1

ciϕ(·, κi) : ci ∈ R, κi ∈ A ⊆ Rk
}

. (1)

2.3 Relationships between the C - and Lp -density properties

As, for every compact set K ⊂ Rd and every 1 ≤ p < ∞ , C(K) is dense in Lp(K) ([13, pp. 28-31] and

[14, p. 151]), by the following two-step density argument one concludes that the density in C(K) implies

the density in Lp(K) .

Let An be the set of functions that can be computed by a model with a given type of computational

units, and suppose that A∞ is dense in C(K) . Since, for every p ∈ [1,∞) , C(K) is dense in Lp(K) ,

for every f ∈ Lp(K) and ε > 0 there exists ζ ∈ C(K) such that ‖f − ζ‖p ≤ ε/2 . For such a ζ, there

exist n ∈ N+ and a function fn ∈ An with n computational units such that ‖ζ − fn‖∞ ≤ ε/(2µ(K)) ,

where µ(K) denotes the Lebesgue measure of the set K , and so ‖ζ − fn‖p ≤ ‖ζ − fn‖∞ µ(K) ≤ ε/2 .

Thus, ‖f − fn‖p ≤ ‖f − ζ‖p + ‖ζ − fn‖p ≤ ε/2 + ε/2 = ε . Hence, An is dense in Lp(K) . So, conditions

guaranteeing the C -density property also guarantee the Lp one. However, without resorting to the

two-step density argument outlined above, proof techniques developed “ad hoc” might guarantee the

Lp -density property under weaker assumptions on the computational units.

2.4 Ridge computational models

Ridge computational models correspond to the case in which the d-variable computational unit ϕ is

obtained from a one-variable “mother function” h, composed with the inner product in Rd. So, the ridge

construction “shrinks” the d –dimensional vector x into a one–dimensional variable by the inner product,

i.e.,
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ϕ(x, κi) = h(x>αi + βi) , (2)

where κi
4
= col (αi, βi) ∈ Rd+1 and h : R→ R is fixed. Each function of the form (2) is constant along

the parallel hyperplanes x>αi +βi = ci , where ci ∈ R . Functions constant along hyperplanes are known

as ridge functions; the vectors αi ∈ Rd \ {0} are called directions. Thus, each ridge function results from

the composition of a multivariable function having a particularly simple form, i.e., the inner product

x>α on Rd, with an arbitrary function dependent on a unique variable. Simple examples of widespread

ridge functions are ex>α and (x>α)k .

As noted in [15], the name “ridge function” is quite recent, having being coined by Logan and Shepp

in 1975 [16]. The reason for introducing such functions in [16], which is a seminal paper in computerized

tomography, was the reconstruction of a multivariable function from the values of its integrals along

certain planes or lines. If such planes or lines are parallel to one another, then each of the above-mentioned

integrals can be regarded as a ridge function in a certain direction. However, ridge functions have been

studied for a long time under the name of plane waves ([17], [18]), due to problems from physics. It should

also be noted that ridge functions are studied in statistics, where they are often called projection pursuit.2

Among papers on approximation by ridge functions and consequences on neural-network approximation,

see [21, 15, 14, 22, 23, 24, 25, 26].

I denote by

Pd(h) =
{

f : Rd → R
∣∣∣ f(x) =

n∑

i=1

ci h(x>αi + βi), αi ∈ Rd, ci, βi ∈ R, n ∈ N+

}
(3)

the set of functions computed by linear combinations of computational units based on the ridge construc-

tion with a mother function h .

As regards the mother function h used to construct the ridge functions (2), a typical choice is a sig-

moid, i.e., a bounded measurable function σ on the real line such that lim
z→+∞

σ(z) = 1 , lim
z→−∞

σ(z) = 0 3.

Sigmoidal functions widely used in applications are:

• the Heaviside function (also known as threshold function in the neural-network literature)

h(t) =





0, if t < 0

1, if t ≥ 0;

• the logistic sigmoid h(t) = 1
1+e−t ;

2Recall that projection pursuit algorithms investigate the approximation of a d -variable function by functions of the

form
Pk

i=1 gi(x
>αi) , where αi ∈ Rd and gi : R→ R have to be suitably chosen; see, e.g., [19] and [20]).

3Here we use perhaps the most widespread definition of sigmoidal function. However, in the literature, there is a certain

lack of consistency in the terminology; for example, some authors require also the continuity and/or monotonicity (or even

strict monotonicity) of σ on the whole R.
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• h(t) = tanh(t/2) , obtained from the logistic sigmoid by a shift;

• the piecewise-linear function h(t) =





0, if t ≤ −1
t+1
2 , if −1 ≤ t ≤ 1

1, if t ≥ 1

;

• the Gaussian sigmoid h(t) = 1
(2 π)1/2

∫ t

−∞ e−s2/2 ds ;

• the arctan sigmoid h(t) = 1
π arctan(t) + 1

2 .

2.5 Single-output models

Since for all positive integers d and m, a function f : Rd → Rm can be implemented by m mappings

fj : Rd → R, j = 1, . . . ,m , in this paper we consider only single-output models, i.e., m = 1 . To simplify

the notation, we also write C(K) and Lp(K) instead of C(K,R) and Lp(K,R) , respectively. For brevity,

sometimes we write C - or Lp - “density property on compacta,” meaning that the corresponding density

property holds for real-valued functions defined on any compact subset of Rd .

Although the extension to the case m > 1 is formally straightforward, as it simply requires using m

computational models in parallel, one for each component of the output, this way of proceeding takes into

account only the point of view of density, i.e., of an arbitrarily good approximation. As each component

of the output is treated as an independent scalar one, in this way one gives up considering how different

computational units can be involved in approximating the same component of a vector function, how a

practical learning algorithm for finding the optimal values of the parameters can take advantage of this,

and how the minimal number of parameters necessary to guarantee the desired approximation accuracy

can be made smaller by taking into account the mutual dependence of the various components of the

output.

2.6 A look at terminology

Let us discuss the connections between the terminology “ridge computational model” and the neural-

network parlance.

Since the representation (1) can be considered as a neural network with d inputs, n computational

units in the so-called “hidden layer”, and one linear output unit, the parametrized-basis computational

models (1) are also called one-hidden-layer networks (OHL networks). So, (3) is a d –variable single–

output ridge OHL network .

The reason why only one hidden layer is considered is pragmatic: we shall see that one hidden layer is

sufficient to achieve C - and Lp -densities. Relatively little is known about the approximation properties

and the advantages of ridge computational models using more hidden layers. We refer the reader to [14,

Section 7].
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The model known in the neural-network community as “multilayer feedforward perceptron” consists

of a finite sequence of layers, each containing a finite number of computational units. In each layer, every

unit is connected to each unit of the subsequent layer. The computational units are also called activation

functions or neurons, and the connections between neurons are known as synapses. The elements of the

parameter vector αi (see (2)) are called weights; the parameters βi are called thresholds or biases. The

term “feedforward” is motivated by the fact that in such a model the information flows from each layer

to the subsequent one. The first layer, called the input layer, consists of the inputs to the network, and

the last layer, providing the output signals, is called the output layer. In between there are the so-called

hidden layers, whose computational units are the hidden neurons. Then, the output x
(l+1)
j of the j -th

unit of the (l + 1) -th layer is given by

x
(l+1)
j = h(x(l)>α

(l)
j + β

(l)
j ) .

Of course, many generalizations of the multilayer feedforward perceptron are possible. For example, the

activation functions might be different in each layer (although the use of the same unit is a common

choice) and the architecture might be changed to allow different links between the various units.

Multilayer feedforward perceptrons are usually classified on the basis of the number of hidden neurons.

Unfortunately, in this respect, the neural network terminology sometimes is not consistent. For example,

the term “multilayer perceptron” was introduced by Rosenblatt [27] to indicate the “no-hidden-layer

model” with the Heaviside activation function, by analogy to biological models. However, sometimes

such a model is confusingly called the “single layer feedforward network.”

From a mathematical perspective, applying an activation function to the output layer, especially if

such an activation function is bounded, might be unnecessarily restrictive. Indeed, a widespread choice

in the neural-network literature and applications is to use no activation function at the output layer but

just to perform a weighted sum of the outputs of the hidden layer. This choice leads one naturally to

ridge OHL networks. Thus, when a ridge construction is used, such networks correspond to multilayer

perceptrons with one hidden layer, with which the reader with a neural-network background is familiar.

Ridge computational models are sometimes called “one-hidden-layer feedforward perceptrons with linear

output units,” as the output is obtained by a linear combination of the outputs of the hidden layer

(i.e., the activation functions of the output layer are linear). Further, some authors call them “three-

layer feedforward networks with linear output units” [28] or “three-layered perceptrons” [29], as in the

terminology they account also for the input and output layers. Also the term “two–layer feedforward

networks with linear output units” can be found, accounting for the hidden layer and the output one.

For other variations of the terminology, see [30, footnote 6, p. 1421].

In the following, we use the terms “OHL network” and “ridge OHL network” to refer to computational

models of the forms (1) and (3), respectively.

Universal Ridge Approximation The Open Applied Mathematics Journal, 2008, Volume 2          37



Universal Ridge Approximation 8

3 The perceptron: fall and renaissance

It was the very lack of density to determine the failure of the so-called “no-hidden-layer perceptron

model” (indeed, such a model is no longer used, except when linear separation problems are dealt with).

Following [14], this can be easily explained as follows. Let us consider the particular case in which a

no-hidden-layer perceptron is used for classification, i.e., when the inputs and outputs take on discrete

values. If one has a mother function h , d inputs x = (x1, . . . , xd), and m outputs y = (y1, . . . , ym) ,

then each output is given by

yj = h(x>αj + βj), j = 1, . . . , m . (4)

The limitations on the approximation capabilities of the no-hidden-layer perceptron derive from the fact

that the functions (4) are constant along certain hyperplanes. For example, let us consider the case in

which d = 2 , m = 1 , and h is an increasing function. Then,

y = h(x1 α1 + x2 α2 + β) .

If four inputs x1, x2, x3, x4 are given, such that no three of them lie on a straight line, then there are

output values that cannot be interpolated or approximated arbitrarily well. To see this, consider two

inputs, x1 and x2 , that lie on the opposite sides of the line joining the inputs x3 and x4 , and let

y1 = y2 = 1 , y3 = y4 = 0 . Then there exist no (α, β) ∈ R2 × R such that

yi = h(xi
1α1 + xi

2α2 + β), i = 1, . . . , 4 .

Moreover, for any choice of α and β there must exist one yi such that the difference in the desired output

value and the associate one is at least 1/2.

The behavior illustrated by the above example represents a major limitation on the no-hidden-layer

model and prevents one from building a network able to classify points on the basis of different criteria

or to approximate arbitrarily well “all reasonable” functions encountered in applications. In general, if

the Heaviside computational unit is used in a no-hidden-layer architecture, two sets of points in Rd can

be separated (i.e., classified) if and only if they are linearly separable 4.

The limitations on the no-hidden-layer perceptron motivated the study of more complex models,

having at least one hidden layer. For example, in [31] it was proved that any p points in Rd can be

arbitrarily separated into two sets by a ridge OHL network with the Heaviside computational unit and
4Two sets of points in Rd are linearly separable if there exists a hyperplane (called the separating hyperplane) such that

all the points of one set are on one side of the hyperplane and all the points of the other set are on the other side.
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one output if at least dp/de functions in the hidden layer are used (for every x ∈ R , dxe denotes the

smallest integer larger than or equal to x ).

In 1969, it was proved (see the well-known book [32] by Minsky and Papert) that the simple perceptron

with no hidden layer can represent or approximate only functions belonging to quite a narrow class.

However, this left open the possibility that network architectures containing one or more hidden layers

might achieve better performances. Only some 20 years later did the first results in this direction appear:

at the end of the 1980s, almost thirty years after the publication in 1960 of the two early rules for training

adaptive elements in network architectures (the Perceptron Learning Rule by Rosenblatt and the Least

Mean Square algorithm [33] by Widrow and Hoff), there began a certain “renaissance” of neural network

theory. Many researchers started to investigate the density property (a review of the developments in

feedforward neural networks in the 1960-1990 period is given in [30]) and, due to the above-discussed

limits of the no-hidden-layer perceptron, investigations focused on networks with at least one hidden

layer. The model with one hidden layer corresponds to OHL networks.

Starting from the late eighties, plenty of works appeared, proving that ridge OHL networks, under

mild conditions on the computational units, are capable of approximating arbitrarily well wide classes of

functions commonly used in applications, such as continuous and square-integrable ones. These works

answered the following question, raised in [34]:

“The apparent ability of sufficiently elaborate feedforward networks to approximate quite

well nearly any function encountered in applications leads one to wonder about the ultimate

capabilities of such networks. Are the successes observed to date reflective of some deep

and fundamental approximation capability, or are they merely flukes, resulting from selective

reporting and a fortuitous choice of problems?”

4 Five phases

The investigation on density properties of ridge OHL networks can be divided into five main phases. As

the literature on neural networks’ density is extremely wide, for each of such phases we shall shortly

review some of the most meaningful papers.

4.1 A bunch of seminal papers

The interest in studying the density properties of ridge OHL networks was stimulated by the work [35],

which appeared in 1987 and was based on the so-called “Kolmogorov Superposition Theorem” [36].

This theorem (later improved by [37] and [38]) answers the 13th Hilbert’s problem, showing that any

continuous d -variable function can be represented by one-dimensional functions (for an outline of the

interesting history of the Kolmogorov Superposition Theorem, see [39, pp. 168-169]). For the reader’s

convenience, we report here a simplified form of the improved version provided in [39, p. 168].
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Theorem 1 (Arnold-Kolmogorov-Lorentz-Sprecher). There exist d constants 0 ≤ λp ≤ 1, p = 1, . . . , d

and 2d + 1 continuous functions ϕq : [0, 1] → R, q = 1, . . . , 2d + 1 , with the following property. For

every continuous function f : [0, 1]d → R , one can find a continuous function g such that

f(x1, . . . xd) =
2d+1∑
q=1

g

(
d∑

p=1

λp ϕq(xp)

)
. (5)

In [35], Hecht-Nielsen called attention to the fact that this theorem can be read as an existence theorem

for neural networks with two hidden layers, used to represent any continuous function. More precisely,

he remarked that Theorem 1 has the following interpretation in terms of neural networks. For each

q = 1, . . . , 2d + 1 , let us take d neurons, each with an activation function ϕq . This represents the first

hidden layer of the network. The weighted sums of the outputs ϕq(xp) , q = 1, . . . , 2d + 1, p = 1, . . . , d

of these neurons are the inputs to the second hidden layer, having 2d+1 neurons, each of them with the

activation function g . Finally, the output layer performs the sum of the outputs of the second hidden

layer. Note that Theorem 1 guarantees the exact representation of every real-valued continuous function

with d variables; moreover, the network is ”almost universal,” in the sense that everything but the

activation functions in the second hidden layer is independent of the function to be represented.

After the seminal work [35], the importance of the Kolmogorov Superposition Theorem for the theory

of representation and approximation of functions by neural networks was argued in both ways. For

instance, in [40] it was remarked that the one-dimensional functions involved in Theorem 1 depend on the

desired d -dimensional function to be represented and are far from those currently used in applications,

where computational units are fixed in advance and have a simple form (e.g., they are sigmoidal functions).

However, in [41] and [42], it was shown that, by replacing the exact representation guaranteed by the

Kolmogorov Superposition Theorem with the search of an arbitrarily good approximation, the difficulties

pointed out in [40] can be overcome, and the C -density property can be proved by means on Theorem 1

for networks with two hidden layers. (Also an estimate of the number of hidden units was provided in [41]

and [42].) For further work on the computational aspects of the Kolmogorov Superposition Theorem and

its connections with neural networks, we refer the reader to [43] and [44]. An innovative neural-network

architecture based on this theorem was later proposed in [45].

Going back to the seminal work [35], the author remarked that

“no constructive method for developing the” basis “functions is known” ... “the direct use-

fulness of this result is doubtful, at least in the nearest term”

Hence, the work [35] established an existence result that gave a hint into the capabilities of ridge

OHL networks but that did not explain the successful performances of such networks in applications. A

question naturally arose: is it possible to guarantee, if not an exact representation, at least an arbitrarily

good approximation (in a suitable norm; e.g., the C -density property) by using only computational units
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with the same fixed and simple structure, such as those successfully used in applications? In subsequent

years, this question received various answers, many of which will be reviewed in the following.

4.2 1988-1989: starting with sigmoidals

A first answer was given in 1988 by the author of [35] himself: in [46] he proved that ridge OHL networks

with the so-called logistic sigmoid (i.e., h(t) = 1
1+e−t ) enjoy for every compact set K ⊂ Rd the density

property in L2(K) . In the same year, it was proved in [47] that the density property in L2(K) is

enjoyed also by ridge OHL networks having, as computational unit, the so-called cosine squasher, i.e., a

nondecreasing sigmoidal function defined as

h(t) =





0, if t ≤ −π/2,

(cos(t + 3π/2) + 1) /2, if −π/2 ≤ t ≤ π/2,

1, if t ≥ π/2.

However, the works [46] and [47] still deal with particular computational units, i.e., the logistic sigmoid

and the cosine squasher. Hence, they leave open the question whether other computational units enjoy

similar density properties.

Another paper that motivated the study of density properties for ridge OHL networks was [29],

published in 1988. It showed the possibility of exactly representing every function in L2(Rd) by an

integral representation that can be considered as a one-hidden-layer network with a “continuum” of

certain hidden units belonging to L1(Rd) (note that sigmoidal functions do not satisfy this condition).

Although this result is of almost no practical utility, as it involves a continuum of computational units, it

is theoretically important and offered a basis for subsequent developments (e.g., [48]), which investigated

approximations instead of exact representations. Note that most of the subsequent works focused on

C - and Lp -density properties for functions defined on compact subsets of Rd and not on all Rd . The

density property in the whole Rd was considered again in [49, 50, 51, 52].

In 1988, the work [53] regarded as computational units the so-called squashing functions, i.e., non-

decreasing sigmoidals [34, Definition 2.3] (a slightly different definition of squashing function is given in

[47]). Examples of squashing functions are the Heaviside function, the ramp function, defined as h(t) = 0

if t ≤ 0, h(t) = t if 0 ≤ t ≤ 1, and h(t) = 1 if t ≥ 1, and the cosine squasher. It was proved in [53] that

the C -density property can be achieved by monotone squashing functions and two hidden layers.

The year 1989 is a milestone for the theory of ridge computational models and, more generally, for

neurocomputing: for wide classes of sigmoidal functions the C -density property on compacta was proved

independently and almost simultaneously in the works [54, 48, 34], using different proof techniques. In

the same year 1989, the L2 -density property on compacta was proved in [55] for continuous sigmoidals,

using different tools. For an extension of the proof technique described in [48] and [34] to networks with

the squashing function in the output layer, see [56].
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The results in [48] and [54] regard continuous sigmoidals and continuous strictly increasing sigmoidals,

respectively. In [57, p. 254], it was noted that the proof technique used in [54] can be easily generalized

to the case where the computational unit is not necessarily a continuous sigmoidal but is continuous and

has distinct finite limits at ±∞ . The density result in [34] allows a noncontinuous sigmoidal, too: the

only requirement is that the sigmoidal be nondecreasing (hence bounded). Moreover, it was noted in [57,

p. 253] that the methods used in [34] can be easily modified to extend the C -density property whenever

the computational unit has distinct finite limits at −∞ and +∞ .

4.3 Being sigmoidal is not substantial

After the density proofs for sigmoidals, obtained in [34], [48], [54], and [55], many papers improved and

extended density results to wider classes of computational units. It is obvious that OHL networks with

certain non-sigmoidal computational units enjoy suitable density properties: this is the case, for example,

with the sine and cosine functions [47]. Let us consider some non-trivial extensions.

In Table 5.4 and the references cited therein, the reader can find other details on conditions under

which the C - and Lp -density properties were proved in various papers (in reading the table, one should

recall that conditions guaranteeing density in C(K) implies density in Lp(K) ).

The first result extending the density property to a class of non-necessarily sigmoidal computational

units proved that every h ∈ L1(R) such that
∫ +∞
−∞ h(t) dt 6= 0 has the C-density property on com-

pacta (note that sigmoidal functions do not belong to L1(R) ). This justified theoretically the successful

applications of ridge OHL networks with computational units different from “biologically motivated”

sigmoidals [58].

Subsequently, various authors proved density results for non-necessarily sigmoidal computational units

(e.g., the exponential h(t) = et [59], piecewise linear functions, etc.). In [57], the C -density property was

proved for any continuous bounded and nonconstant computational unit, and the Lp -density property

was proved for any bounded and nonconstant computational unit. The C-density property for functions

on the whole Rd was investigated in [50] and [51].

In [60], it was shown that, if h : R→ R is a continuous function, bounded by a polynomial of degree

k on all of R, lim
t→−∞

h(t)
tk

= 0, lim
t→+∞

h(t)
tk

= 1 (such a function h is called k -th degree sigmoidal) and,

for some constant C > 0 and all t ∈ R , |h(t)| ≤ C(1 + |t|)k , then the C-density properties holds if and

only if h is not a polynomial. Thus, in this terminology, a zeroth degree sigmoidal function is what is

usually called a sigmoidal function.

Other extensions were described in [52], [61], [62], [63], [64], [65], [66], [67], [68] and the references

therein. In the papers [69] and [70], the investigations of the C- and Lp -density properties were given an

exhaustive answer. In [70], it was proved that, for a wide class of non-necessarily continuous computational

units, the necessary and sufficient condition for the C - and Lp -density properties is non-polynomiality.

Similar conclusions were drawn in [69].
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Among related results, it is worth mentioning that every real-valued function defined on a finite

subset of Rd (in particular, every Boolean function f : {0, 1}d → R ) can be implemented (so, there is

no approximation error) by a ridge OHL network with certain sigmoidal computational units (see the

references in [14, Section 5]).

4.4 Approximating also derivatives

A successive step lay in proving that ridge OHL networks are able to approximate up to any degree of

accuracy functions together with their derivatives. This can be modeled as a density property in suitable

Sobolev spaces 5. We shall not discuss this density issue here, as our focus is on the density properties in

C(K) and Lp(K) spaces, in relation with the problem of rates of approximation); the reader can look

up in [14, Section 4] and the references therein.

4.5 Restricting the parameter set

A successive step was to prove density under restriction on the parameter set A ⊂ Rk (see (1)). Various

authors showed that, for a certain class of computational units, there exists a constant (dependent on

certain characteristics of the computational units) such that the C - density property holds also if the

values of the weights and thresholds are bounded from above by a value not smaller than such a constant.

In [69], the results were extended to an arbitrarily small upper bound on the values of the weights and

thresholds.

The effects of constraining the sizes of parameters were further investigated in [71]. In [72], it was

noted that inspection of the proofs reveals that some density results in [70] hold also when parameters

are bounded by an arbitrarily small upper bound.

In the papers [51] and [61], various density properties were proved for monotone sigmoidal functions,

using only weights with a norm equal to 1. The case of continuous sigmoidal computational units and of

weights and thresholds taking only integer values was addressed in [73].

In [69], conditions on the computational units were given such that a single threshold in the hid-

den layer suffices for density (in writing “a single threshold,” we mean that all the thresholds of the

computational units have the same value).

5If for the multi-integer k = (k1, . . . , kd) one lets |k| =Pd
j=1 kj and Dkf(x) = ∂|k|

∂x
k1
1 ...∂x

kd
d

f(x) , then, for an open set

Ω ⊆ Rd , the Sobolev space W s
p (Ω) consists of all the functions f : Ω → R such that there exists almost everywhere in Ω all

partial derivatives Dkf with |k| ≤ s , and all of these derivatives are in Lp(Ω) , i.e., W s
p (Ω) = {f : Ω → R such that f (i) ∈

Lp(Ω), i = 1, . . . , s} , where f (i) denotes the partial derivative of order i of f . The Sobolev norm of f ∈ W s
p (Ω) is defined

as ‖f‖W s
p (Ω) =

P
|k|≤s ‖Dk f‖Lp(Ω) . Thus, the necessity for approximating arbitrarily well not only a function but also

certain derivatives corresponds to the density property in a suitable Sobolev space.
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5 Proof techniques

Various methods have been used to prove the C - and Lp -density properties for ridge OHL networks.

Although all methods yield similar or equivalent results, the proof techniques employed often have im-

portant consequences on computational aspects. For example, the proof can be merely existential or

constructive; in the latter case, it gives useful information on the implementation of the network (e.g., by

suggesting an algorithm to construct the network). Sometimes the proof can provide, as an important

by-product, upper or lower bounds on the number n of computational units necessary to obtain the

desired approximation accuracy, etc.

An intuitive way of proving the C - and L2 -density properties of Pd(h) for suitable computational

unit functions h is the following, qualitatively described in [74, p. 511]. First, one can decide to

approximate any given function in C or L2 by a classical multivariable finite trigonometric sum, with

an arbitrarily small error (in the sup or L2 norm, respectively). Let us focus on the case d = 2 . In

such a case, the terms of the sum are of the form amn cos mx cos ny . By substituting into the sum the

relationship 2 cos mx cos ny = cos(mx+ny)+ cos(mx−ny) , one obtains a linear combination of terms

of the form cos(zi) , where each zi is a linear function of x and y . Now, it is easy to show (see, e.g.,

[75]) that every function f of a single real variable can be approximated arbitrarily well by a ridge OHL

network in the sup norm if f is continuous and in the L2 norm if it is square-integrable on a compact

set. Hence, if one approximates the function cos(zi) in such a way, also the original trigonometric sum

is approximated by a ridge OHL network.

As regards the three works [34], [48], and [54], in which the C -density property on compacta was

first proved independently and almost simultaneously for wide classes of sigmoidal functions, it should

be noted that three different proof techniques were used. Another technique was used in [55], where the

first proof of the L2 -density property of ridge OHL networks was given.

In the remaining of this section, we shall first shortly review the techniques used in the four papers

cited above, then we shall focus on one of them, namely, the proof technique used in [34]. Then we

shall discuss in detail the quite general density results later obtained in [70] by means of an improved

application of the same technique.

5.1 Proofs based on Fourier Analysis

The proof technique adopted in [48] is based on the integral representation developed in [29], combined

with tools from Fourier Analysis. Such an integral representation is approximated by a finite sum that,

in turn, can be expressed as a ridge OHL network with continuous strictly increasing sigmoidals. It is

worth noting that, for the case of networks with two hidden layers, in [48] also an alternative proof of

the C -density property based on Kolmogorov Superposition Theorem (see Theorem 1) is given.
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5.2 Proofs based on the Hahn-Banach Theorem

In [54], the C -density property is proved via the Hahn-Banach Theorem [76, Section 4.8], which is a

standard tool to conclude about the densities of sets of functions. Such a theorem implies that, if a

linear subspace Y of a normed linear space H is not dense in H , then there exists a nonzero continuous

functional on H that is equal to zero for all elements of Y [76, p. 153].

As, for any continuous function h on K , Pd(h) is a linear subspace of C(K) , to verify the density

of Pd(h) by the Hahn-Banach Theorem it is sufficient to show that every linear functional vanishing on

Pd(h) must be equal to zero on the whole of C(K) . This is proved in [54] by exploiting the representation

of continuous functionals on C(K) (see [76, Theorem 4.14.8]).

The same proof technique was used in [57] to prove the Lp -density property. More precisely, as, for

any bounded function h on K , Pd(h) is a linear subspace of Lp(K) , to verify the density of Pd(h) it is

sufficient to show that every linear functional vanishing on Pd(h) must be equal to zero on the whole of

Lp(K) . To prove this, [54] exploited the representation of continuous functionals on Lp(K) spaces [76,

Theorem 4.14.1 and 4.14.6]. This elegant proof technique was later used in other papers (see Table 5.4).

5.3 Proofs based on the Radon Transform

The proof technique followed by [55] to prove the L2 -density property is based on the Radon transform.

Without going into details (we refer the reader to [77] and [78]), here we just recall that the Radon

transform and its inverse are basic theoretical tools in medical and geographical imaging and computerized

tomography. Loosely speaking, they allow one to represent exactly a function by all its integrals over

hyperplanes of Rd . Each hyperplane is identified by its unit normal vector and its distance from the

origin.

In [55], the integral formula obtained by the Radon transform and its inverse is approximated by a

finite sum of terms, which, in turn, are approximated by a ridge OHL network with continuous sigmoidals.

Proof techniques based on the Radon transform were later exploited also in [50] and [52].

5.4 Proofs based on the Stone-Weierstrass Theorem

Another tool widely used in the study of density properties of ridge OHL networks, and first exploited

for this purpose in [34], is the Stone-Weierstrass Theorem (e.g. [79, p. 190] and [12, pp. 146-153]), which

is Stone’s extension of the classical Weierstrass theorem on density of algebraic polynomials in C([a, b])

(e.g. [79, p. 66] and [12, p. 146]). Such extension is obtained by “isolating” the properties of polynomials

that make Weierstrass theorem possible and by generalizing it to a more general context in which these

properties hold. To explain the Stone-Weierstrass Theorem, let ut first recall some concepts.

According to the usual definition of multiplication between two functions, i.e., (f g)(x)
4
= f(x) g(x) ,

the linear space C([a, b]) of continuous functions over the interval [a, b] becomes an algebra6. The poly-
6An algebra of real-valued functions is simply a linear space H of functions endowed with a multiplication that satisfies,

Universal Ridge Approximation The Open Applied Mathematics Journal, 2008, Volume 2          45



Universal Ridge Approximation 16

nomials defined over [a, b] are a subset of C([a, b]) and, as they are closed under multiplication (a product

of polynomials is a polynomial), they are also an algebra; hence, they form a subalgebra of C([a, b]). The

Weierstrass Theorem can be rephrased by saying that the subalgebra of real-valued algebraic polynomials

defined over [a, b] is dense in C([a, b]) with the sup norm.

Two more concepts have to be introduced at this point. A set A of functions defined on K separates

points on K if, for any two distinct points x, y ∈ K , there exists a function f ∈ A such that f(x) 6= f(y) .

Clearly, the algebra of all polynomials with one real variable satisfies this condition in R . On the other

hand, the set of all even polynomials, say over the compact interval [−1, 1] , provides an example of

an algebra that does not separate points, since f(−x) = f(x) for every even function f . A set A of

functions defined on K vanishes at no point of K if, for any x ∈ K , there exists a function f ∈ A such

that f(x) 6= 0 . We are now ready to state Stone’s generalization of the Weierstrass Theorem: it says

that the same density conclusion with respect to the sup norm as in the Weierstrass theorem holds in

any algebra C(K) of continuous, real-valued functions on a compact set7 K ⊂ Rd, for every algebra A

that vanishes at no point of K and A separates points of K. 8 For the reader’s convenience, we report

here the Stone-Weierstrass Theorem [12, p. 150 and p. 153].

Theorem 2 (Stone-Weierstrass). Let K ⊂ Rd be compact and A an algebra of real-valued continuous

functions defined on K (i.e., let A be a subalgebra of C(K) ). If A separates points of K and vanishes

at no point of K , then it is dense in C(K) .

Note that the theorem does not extend to complex-valued functions (see [76, p. 118] and [12, pp. 152-153]

for additional conditions guaranteeing the C -density property in the case of algebras of complex-valued

functions). Of course, the Weierstrass Theorem on the density of algebraic polynomials in C(K) , for

every compact set K ⊂ Rd , immediately follows from Theorem 2.

As a first application of the Stone-Weierstrass Theorem to the study of the density properties of

ridge OHL networks, we give the following theorem (see [70, Proof of Theorem 1, Step 2]), which can be

considered a “dimension-reduction” result for ridge OHL networks.

Theorem 3 (“Dimension-reduction” for ridge OHL networks). Let h : R → R . If P1(h) is dense in

C(I) for some nonempty compact interval I ⊂ R , then, for every positive integer d and every compact

set K ⊂ Rd , Pd(h) is dense in C(K) .

According to Theorem 3, one can restrict the study of the C -density property for ridge OHL networks

to networks with a single input, i.e., to the case in which functions to be approximated depend only

for all f, g, h ∈ H and all α ∈ R , the following properties: i) f(g +h) = fg +fh, ii) (f +g)h = fh+gh, iii) f(gh) = (fg)h,

iv) α(fg) = (α f)g = f(α g), v) H is closed under such a multiplication. Thus, an algebra of functions is closed under

addition, multiplication and scalar multiplication. Any subset of an algebra is called a subalgebra if itself is an algebra.
7Note that a closed interval in R , as the one to which Weierstrass theorem makes reference, is of course a compact set:

according to the Heine-Borel theorem, every bounded and closed subset of Rd is compact (see, e,g, [76, p. 92].
8Sometimes, instead of requiring that A should vanish at no point of K , the more restrictive condition that the constant

function 1 should belong to A is used in the statement of the theorem; e.g. [76, Theorem 3.7.1]).
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on one variable. A similar dimension-reduction theorem was proved in [80]. Moreover, using a proof

technique based on the Radon transform, a result was proved in [52, Theorems 2 and 3], regarding the

reductions from Lp(K) to Lp(I) and from C(R̄d) to C(R̄) , where, for all d ≥ 1 , C(R̄d)
4
= {f ∈ C(Rd) :

lim‖x‖→∞ f(x) exists} . An analogous dimension-reduction theorem was also proved in [65] and [61].

To describe the idea behind the proof of Theorem 3, let us investigate the applicability of the Stone-

Weierstrass Theorem to the sets Pd(h) of ridge OHL networks defined on the compact set K ⊂ Rd with

a ridge computational unit h . Such sets are closed with respect to addition and, for suitable functions

h, they vanish at no point of K and separate points on K but generally they are not closed up to

multiplication (for example, they are not closed if h is the widespread logistic sigmoidal function or the

hyperbolic tangent). However, for every d, the set Pd(exp) of d-variable functions on K computable

by ridge OHL networks with the exponential as a computational unit is an algebra that separate points

of K and contains the constant functions, so it vanishes at no point of K . Hence, for all d, the set of

functions Pd(exp) satisfies the assumptions of the Stone-Weierstrass Theorem, so it is dense in C(K) .

On the other hand, the density of P1(h) in C(I) , where I is a nonempty compact interval of R , allows

one to approximate up to any desired accuracy all continuous functions on I, in particular, the function

exp(·) . Thus one can compose the two approximations, first approximating f ∈ C(K) by an element of

Pd(exp) and then approximating by an element of P1(h) the one-variable function exp[g((x)] , where

g(x) = x>α + β (once a suitable re-scaling of the variables has been made, so that the range of such a

composed function is contained in the interval I). Thus, the density of Pd(h) in C(K) is implied by the

density of P1(h) in C(I) .

In [59], a variety of computational units were considered, that satisfy the hypotheses of the Stone-

Weierstrass Theorem. So, the latter can be applied directly to OHL networks with such computational

units to prove the C -density property without the two-step approximation argument mentioned above.

Possible advantages of using computational units that satisfy the hypotheses of the Stone-Weierstrass

Theorem are discussed in [81, p. 30] and [59].

The Stone-Weierstrass Theorem is a widespread tool for verifying the density of sets of continuous

functions. After the work [34], in which it has been used to prove the C -density property of ridge OHL

networks with sigmoidal activation functions in C(K) , proof techniques based on the Stone-Weierstrass

Theorem have been applied to prove the same property with more general computational units [70].

Also [54], which, as discussed above, exploits an argument based on the Hahn-Banach Theorem to prove

the C -density property for sigmoidal computational units, applies the Stone-Weierstrass Theorem to

prove the same property for certain nonsigmoidal activation functions. For the relationship between the

Stone-Weierstrass Theorem and neural networks, see also [81] and [59].

As a final remark on the different density-proof techniques mentioned so far, it is worth noting that

some of them are simply existential (e.g., those based on the Hahn-Banach Theorem and the Stone-
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Weierstrass Theorem), whereas others (e.g., those based on the Radon transform) are constructive, i.e.,

they provide a (typically not easy) way to construct ridge OHL networks with the desired density property

and, sometimes, they give upper bounds on the number n of computational units of a certain type that

guarantees a given degree of approximation accuracy (see also Table 5.4).

Table 5.4, which is by no means exhaustive, summarizes a variety of density results, listed in chrono-

logical order (in the case of papers that appeared in the same year, the order is alphabetical starting

from the first author’s name) for many types of computational units.

5.5 A case study

In the following, we present and discuss a slightly simplified form of the C - and Lp -density theorems

in [70], which improve and generalize the results of [60]. This choice is motivated by the fact that they

guarantee density in C(K) under quite mild hypotheses on the computational units and their proof can

be sketched in a way that gives useful information. The next result is a slight simplification of [70,

Theorem 1].

Theorem 4. Let h : R→ R be locally essentially bounded 9 and piecewise continuous and d be a positive

integer. Then for every compact set K ⊂ Rd , Pd(h) is dense in C(K) if and only if h is not a

polynomial.

The necessity for nonpolynomiality in Theorem 4 can be easily seen. Indeed, if h is a polynomial of

degree k, then h(x>α + β) is also a polynomial of degree k for every α and β . Hence, Pd(h) is the

set of algebraic polynomials of degree at most k, thus it cannot be dense in C(K) . The proof of the “if”

part of Theorem 4 is the following.

Step 1. First one proves that, for ridge OHL networks, it is sufficient to prove the density of P1(I)

in C(I) , where I is a compact interval of R . This is done using Theorem 3.

Step 2. Then one considers the one-dimensional case and proves the density of P1(h) in C(I) for

every compact interval I ⊂ R .

Step 2 is subdivided into four substeps, which we are am going to outline in the following. Let C∞(R)

denote the space of functions f : R→ R having derivatives of every order. Recall that the support of a

continuous function f : Rd → R , d ≥ 1 , is the complement of the largest open set in which f is equal
9Recall that a real-valued function f defined almost everywhere with respect to the Lebesgue measure µ on a measurable

set Ω ⊆ Rd d ≥ 1 is said to be essentially bounded on Ω if |f(x)| is bounded almost everywhere on Ω. We denote f ∈ L∞(Ω),

with the norm ‖f‖L∞(Ω) = inf{c ��µ({x : |f(x)| ≥ c}) = 0} = ess supx∈Ω |f(x)|. A locally essentially bounded function

f : Ω → R is a function that is in L∞(K) for every compact subset K of Ω; the notation f ∈ Lloc∞ (Ω) is used to denote

such functions.
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Space H Basis function ϕ(·) Proof technique Constructive Bound on Ref.

(main tool) approach the number

of units

L2(K) continuous sigmoidal Radon Transform Yes O
((

1
n

) 1
d−1

)
[55]

C(K) continuous sigmoidal Hahn-Banach Th. No - [54]

L1(K) bounded sigmoidal Hahn-Banach Th. No - [54]

L1(K) ϕ ∈ L1(R) ,
∫

ϕ(t) dt 6= 0 Hahn-Banach Th. No - [54]

C(K) strictly increasing continuous Fourier Analysis No - [48]

C(K) non-decreasing sigmoidal Stone-Weierstr. Th. No - [34]

Lp(K) non-decreasing sigmoidal Stone-Weierstr. Th. No - [34]

C(K) ϕ ∈ L1(R) ,
∫

ϕ(t) dt 6= 0 , Stone-Weierstr. Th. No - [82]

and continuous ϕ

C(K) bounded sigmoidal staircase functions Yes - [80]

C(K) continuous, bounded, Hahn-Banach Th. No - [57]

and nonconstant

Lp(K) bounded and nonconstant Hahn-Banach Th. No - [57]

C(K) increasing sigmoidal Hahn-Banach Th. No - [61]

C(K) increasing sigmoidal polyn. approx. Yes - [61]

C(K) continuous and ϕ/P bounded Hahn-Banach Th.

for a polyn. P but ϕ and Fourier Analysis No - [60]

ϕ not a polyn. itself

C(K) k -th degree sigmoidal spline approximation Yes O
((

1
n

)d+1+ d
k+1

)
[60]

C(K) locally bounded,

piecewise continuous, Stone-Weierstr. Th. No - [70]

and not an algebraic polyn.

C(K) locally Riemann integrable Hahn-Banach Th. No - [69]

and not an algebraic polyn.

Lp(K) locally bounded Hahn-Banach Th. No - [69]

and not an algebraic polyn.

C(K) bounded sigmoidal Radon Transform Yes O
((

1
n

) 1
d−1

)
[52, 65]

Lp(K) sigmoidal and ϕ ∈ Lloc
p (R) Fourier Analysis Yes - [65]

C(K) bounded s.t. ∃ limt→±∞ ϕ(t) Radon transform Yes O
((

1
n

) 1
d−1

)
[70]

Table 1: Density properties in C(K) and Lp(K).
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to zero. In other words, the support of f is the closure 10 in Rd of the set {x ∈ Rd : f(x) 6= 0} . In the

following, Cc(R) denotes the space of real-valued continuous functions with compact support (i.e., they

are equal to zero outside a compact set of R) and C∞c (R)
4
= C∞(R) ∩ Cc(R) , i.e., it denotes the space of

real-valued continuous functions with derivatives of every order and compact support.

Step 2.1. If h is not a polynomial and h ∈ C∞(R) , then P1(h) is dense in C(I) for every compact

interval I ⊂ R .

From now on, let the function h satisfy the hypotheses of Theorem 4, i.e., let it be locally bounded

and piecewise continuous.

Step 2.2. For every ξ ∈ C∞c (R) and every compact interval I ⊂ R , h ∗ ξ ∈ clC(I) P1(h) , where

(h ∗ ξ)(x)
4
=

∫
h(x− y) ξ(y) dy denotes the convolution between h and ξ 11 and clC(I) Pd(h) denotes the

closure of Pd(h) with respect to the sup norm in the space C(I) . 12

Step 2.3. If there exists ξ ∈ C∞c (R) such that h ∗ ξ is not a polynomial, then P1(h) is dense in

C(I) for every compact interval I ⊂ R . This is shown as follows. By Step 2.2, for every compact interval

I ⊂ R , one has (h ∗ ξ)(·) ∈ clC(I) P1(h) ; hence, for every α, β ∈ R , (h ∗ ξ)(·>α + β) ∈ clC(I) Pd(h) . On

the other hand, h∗ ξ ∈ C∞(R) .13 Thus, by Step 2.2, if h∗ ξ is not a polynomial, then P1(h∗ ξ) is dense

in C(I) for every compact set I ⊂ R . Finally, (h∗ξ)(·>α+β) ∈ clC(I) Pd(h) and clC(I) P1(h∗ξ) = C(I)

for for every compact set I ⊂ R imply clC(I) P1(h) = C(I) .

Step 2.4. If h ∗ ξ is a polynomial for all ξ ∈ C∞c (R) , then h itself is a polynomial.

Finally, the density of P1(h) in C(I) is obtained by combining as follows the above-summarized

substeps: by 2.4, if the function h is locally bounded, piecewise continuous and not a polynomial, then

there must exist ξ ∈ C∞c (R) such that the function h ∗ ξ is not a polynomial and so, by 2.3 (whose

proof exploits 2.2 and 2.1), P1(h) is dense in C(I) .

A more detailed inspection of the arguments used in [70] reveals that Theorem 5 extends to the case

where all network parameters are bounded by an arbitrarily small upper bound. This is important as, in

practice, the values of the parameters are always bounded.

As regards the spaces Lp(K) , p ∈ [1,∞) , the following theorem is a slightly simplified form of [70,

10If M ⊂ Rd , then clRd M =
�
x ∈ Rd : (∀ε > 0) (∃ y ∈ M) (‖x − y‖ < ε)

	
, where ‖ · ‖ denotes the Euclidean

norm in Rd .
11Note that such a convolution is well-defined. In general, given f ∈ L1(Rd) and g ∈ Lp(Rd) , the function f ∗ g is

integrable on Rd; moreover, f ∗ g ∈ Lp(Rd) and ‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p (e.g., [83, Section IV.4]).
12I.e., h∗ξ ∈ clC(I) P1(h) means that, for every ε > 0 , there exist n ∈ N+ and fn ∈ P1(h) such that supx∈I |h∗ξ−fn| <

ε .
13More generally, if f ∈ C∞c (Rd) and g ∈ Lloc

1 (Rd) , where Lloc
1 (Rd) denotes the space of functions in Lloc

1 (K) for every

compact set K ⊂ Rd , then f ∗ g ∈ C∞(Rd) (e.g. [83, Section IV.4]).
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Proposition 1].

Theorem 5. Let h : R→ R be locally absolutely bounded and piecewise continuous and d be any positive

integer. Then, for every compact set K ⊂ Rd , Pd(h) is dense in Lp(K) , p ∈ [1,∞) , if and only if h

is not an algebraic polynomial.

The guidelines of the proof of Theorem 5 are quite plain. The necessity for nonpolynomiality immedi-

ately follows: note that, if h is a polynomial of degree k, then Pd(h) is a subset of the set of polynomials

of degree at most k, hence it cannot be dense in Lp(K) . As regards the sufficiency of nonpolynomiality,

from Theorem 4 Pd(h) is dense in C(K) . So one concludes using standard results of functional analysis

and the argument of Section 2.3.

Theorems 4 and 5 deserve some further remarks.

First, note that, according to them, the C - and Lp -density properties are not restricted to “biologi-

cally motivated” sigmoidals but, with the exception of polynomials, they are satisfied by any “reasonable”

computational unit.

Second, the computational units need not be continuous or smooth to guarantee C - and Lp -density

properties: the only requirement is nonpolynomiality. In such a way, the results from [70], together with

those in [69], answer the basic question raised in [57, Discussion, p. 253]:

“Whether or not the continuity assumption can entirely be dropped is still an open (and quite

challenging) problem.”

Third, it is worth investigating the role played by the thresholds, i.e., by the parameters βi in the

computational units h(x>αi+βi) (see (2)). Toward this end, following [70] let us consider the continuous,

bounded, non-constant and non-polynomial computational unit h(x) = sin(x) and the compact interval

[−1, 1] ⊂ R . As the family {sin(w x), w ∈ R} consists only of odd functions, functions like cos(x)

cannot be approximated by using such a family. Hence, the set of functions {sin(w x), w ∈ R} cannot

be dense in C([−1, 1]) . However, density can be recovered by adding to such a set functions with a

threshold element (corresponding, in this case, to a phase shift), e.g., sin(x + π/2) = cos(x) . On the

other hand, there exist ridge computational units on which the threshold has no influence: for example,

this is the case with the exponential function. As previously stated in this section, in [69] conditions on

the computational units are given such that a single threshold suffices for C - and Lp -density properties

(i.e., the density properties can be guaranteed also when all the thresholds of the computational units

have the same value).

6 The price of universality

We have seen that quite mild assumptions on the computational units allow one to prove that ridge

computational models enjoy the density properties in C(K) and Lp(K) . Various techniques can be used
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to prove the C - and Lp - density properties for ridge and radial networks: the Kolmogorov Theorem

and its variations, the Hahn-Banach Theorem, the Stone-Weierstrass Theorem, Fourier Analysis, and the

Radon Transform.

Some proof techniques are merely existential: neither provide an algorithm to construct a model nor

estimate the number of computational units necessary to guarantee the desired approximation accuracy.

Other proofs, instead, are constructive; among these, some provide an upper bound on the number

of computational units. However, typically, these upper bounds grow “very fast” with the number d of

variables of the functions to be approximated. This is illustrated in the fifth column of Table 5.4: either

no estimate is given of the rate of growth of the number n of computational units in consequence of

the number d of variables or upper bounds on this rate are provided that exhibit an exponential growth

with d. Hence, they suffer from the so-called “curse of dimensionality” [84]. Loosely speaking, to achieve

density in the whole spaces C(K) and Lp(K) , an exponential growth of the number of computational

units may occur.

Using the number n of computational units as a measure of model complexity and extending to a

general context the expression “universal approximator” employed in neural network-parlance, the above-

described behavior can be summarized in the following qualitative but deep and intriguing sentence:

“universality can be obtained for arbitrarily large dimensions at the price of an exponentially growing

complexity.” So we can say, more shortly: “the price of universality is complexity.”

Of course, computational models based on ridge functions are not always the best choice; depending

on the application at hand, other approximators (based, e.g., on radial functions or tensor-product

construction) may be better suited (see the discussion in [5], particularly Section 4 therein). For example,

when one has to guarantee some directional homogeneity property, radial computational units should be

preferred, as ridge functions are constant along certain hyperplanes. However, when ridge computational

models have to be used, the recipe to cope with the curse of dimensionality lies in giving up proving

density in all the spaces C(K) and Lp(K) . In other words, if one confines oneself to using suitable

subsets of functions, then one can obtain arbitrarily accurate approximations by ridge computational

models with a number of computational units that, for a fixed approximation accuracy, grows “slowly”

with d (see, e.g., [11, 85, 86, 87, 88, 89, 90] and the references therein).
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[81] Kůrková V. Are sigmoidals the best activation functions in multilayer feedforward networks? Neural

Network World 1992;1:27–34.

[82] Stinchcombe M, White H. Universal approximation using feedforward networks with non-sigmoid

hidden layer activation functions. In: Proceedings of the International Joint Conference on Neural

Networks. vol. 1. Washington, D.C.: San Diego: SOS Printing; 1989 (Reprinted in Artificial Neural

Networks: Approximation & Learning Theory, H. White, Ed., Blackwell, 1992). p. 613–617.

[83] Brezis H. Analyse Fonctionnelle - Théorie et Applications. Masson, Paris; 1983.
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