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Abstract: Many branches of Physics and Engineering use perturbed linear ODE´s. One method of resolution is based on

the use of Scheifele functions for systems. This paper systematically expands three applications of the Scheifele method

adapted to stiff problems. For this purpose, a family of matrices, �-functions and the numerical method are presented for

the integration of perturbed linear systems with constant coefficients, which enables the solution to be expressed as a se-

ries of �-functions. The series coefficients are obtained through recurrence relations involving the perturbation function.

One of the main difficulties in terms of implementing the method is the need to determine these relations for each case.

Furthermore, in this paper, the necessary adaptations are made in order to facilitate the calculation of the recurrence rela-

tions required for system integration. In each problem, the numerical algorithm is designed with a view to enabling com-

putational implementation. This algorithm presents the same good properties as the integration method for harmonic oscil-

lators, in other words it can accurately integrate the non-perturbed problem using just the first term in the series.

The results show increased accuracy in the application of the model when compared to other known methods imple-

mented in Maple V.

Keywords: Numerical solutions for perturbed linear ODE systems; Stiff problems.

INTRODUCTION

In 1971, Scheifele [1] constructed a one-step numerical

method for the integration of perturbed oscillators, a problem

that frequently appears in many branches of Physics and

Engineering. This method is based on the construction of a

family of functions, kG , which enables the solution to the

oscillator to be expressed in terms of the series

0
( ) k kk
x t b G

�

=
= � [2] and also offers the advantage of being

able to integrate accurately the non-perturbed oscillator using

just the first two terms. The generalization of this method to

perturbed first-order linear differential equation systems can

be found in [3], where a new family of functions, k� , is con-

structed, adapted to the integration of this type of system.

The solution in terms of �-functions is given by the se-

ries
0

( ) k kk
t �

�

=
= � bx , where the coefficients kb are ob-

tained using recurrences involving the perturbation function

of the system. This means that the �-functions series method

for systems presents difficulties in terms of its application

particularly when the perturbation function has a compli-

cated analytical expression. However, given its good per-

formance in relation to stiff problems and highly oscillatory

problems, the �-functions method is crucial for the construc-

tion of multistep algorithms that solve this drawback, such as

the SMF [4-6], SVF [7] and EIpPC [8] methods, among
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others. Furthermore, the �-functions series method retains

the good properties displayed by the series method in rela-

tion to differential equations, in other words, if at a specific

time t the perturbation terms disappear, the �-functions se-

ries method will accurately integrate the homogenous prob-

lem using just the first term in the series.

In addition to provide a detailed presentation of �-

functions and their most relevant properties as well as the

calculation of residuals, this paper systematically expands

three applications of the method to the integration of stiff

systems. In these problems, all the necessary adaptations are

made in order to facilitate their integration, applying Steffen-

sen techniques [9, 10] and defining in each of them the nu-

merical algorithm that allows for computational implementa-

tion. Finally, the relative error for the solutions obtained us-

ing the �-functions method is compared with that of solu-

tions provided by other well-known codes such as LSODE,

MGEAR and GEAR, implemented in Maple V.

GENERATION AND PROPERTIES OF ��- FUNC-

TIONS

Let us consider the following initial value problem, IVP:

( ) 0( ) 0A t�� = + , , =x x f x x x (1)

where A is a regular n -order matrix, � is a small pertur-

bation parameter and the components of vector x are func-

tions ( )ix t with 1,2, ,i … n= . The components of the vector

perturbation field ( )t,f x are ( )if t,x with 1,2, ,i … n= and

the field is continuous, with continuous derivatives until a

certain order so that it satisfies the conditions for existence
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and uniqueness of the solution. This type of system is called

a perturbed linear system.

Let us suppose that the perturbation function

( ) ( )t t= ,g f x admits the following series expansion:

1

0

( )
k

k

k

t
t

k

�

+

=

, =
!

� cf x , (2)

In this case, the initial value problem can be expressed as

follows:

( )1 0

0

0
k

k

k

t
A

k
�

�

+

=

� = + , =
!

� cx x x x . (3)

The solution to IVP (3) can be obtained by applying the

superposition principle, in other words, by constructing the

general solution for the homogeneous system using the ini-

tial condition given and adding a solution to the complete

problem with a null initial condition.

The solution to the complete problem with a null initial

condition can be obtained by resolving the following indi-

vidual IVP´s:

( )1 1

j
k k k

j j

t
Ax x e

j
+ +

�
= +

!
, (4)

(0) 0 0 1 2 1 2
k

j
j k nx = = , , ,... = , ,..., ,

where:

( 1 )
k

j
M nx � , ;R , (5)

( )

(0 1 0)
k

k T
e = ,..., , ..., ,

and effectively combining them with coefficients� and kc .

In order to simplify the notation, squared n-order matri-

ces, jX , are introduced, in which the columns are matrices

k

jx , in other words:

( )
1 2

with 0 1 2
n

j j j j
X … jx x x= , , , = , , ,... . (6)

Clearly, these matrices are solutions to the following

IVP:

(0) 0 0 1
!

j

j j j

t
X AX I X j

j
� = + , = , = , ,... . (7)

where jX is a real function with values on ring ( )n,RM of

the squared n-order matrices, in which I and 0 are the unity

and neutral elements of this ring, respectively.

The solutions to (7) are the Scheifele �-functions [3] and

are expressed as:

( ) ( )1 0 1j jX t t j�
+

= , = , ,... . (8)

Although the notation does not indicate this explicitly,

these functions depend on A.

The �-functions obey:

( ) ( )1 2 3j jt t j� �
�

� = = , ,... . (9)

By using the differentiation rule (9), the first � -function

is defined, 0 ( )t� , is given by:

( ) ( )0 1t t� � �= . (10)

Taking into account (8), (9) and (10), the following re-

currence relation is obtained:

( ) ( )1 0 1
j

j j

t
t A t I j

j
� �

+
= + , = , ,...

!
. (11)

The importance of this recurrence relation lies in its ap-

plication to the calculation of �-functions.

From (10) and (11), it can be deduced that the function

0� is the solution to the following IVP:

( )0A I� = , =x x x , (12)

in other words:

( ) ( )0 0t A t� �� = and ( )0 0 I� = . (13)

Another significant property in relation to the calculation

of �-functions is that such functions can be expressed using

series expansions:

( )
0

( )
( )

k j

j k k

k

t
t M M n

k j
�

+�

=

= , � ,
+ !

� RM . (14)

By analytically expanding the function 0� , we see that:

( )0

0 !

k

k

k

t
t M

k
�

�

=

= � , where ( )kM n� ,RM . (15)

By taking the derivative of the above expression, we get:

( )

1

0 1

1 0( 1)!

k k

k k

k k

t t
t M M

k k
�

�� �

+

= =

� = =
� !

� � , (16)

by (12) and (13)

1

0 0 0

k k k

k k k

k k k

t t t
M A M AM

k k k

� � �

+

= = =

= =
! ! !

� � � , (17)

by identifying these terms, we get:

1 0 1k kM AM k
+
= , = , ,... . (18)

and hence:

0 0 1k

kM A M k= , = , ,... . (19)

On the basis of (12) and (13), and having evaluated

( )0 t� as 0t = , we can deduce that:

0M I= ,

1k

kM A k= , = ,... , (20)

then:
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( )0

0

k
k tA

k

t
t A e

k
�

�

=

= =
!

� , (21)

A particular solution to the problem:

( )1

0

0 0
k

k

k

t
A

k
�

�

+

=

� = , =
!

� cx x + x , (22)

is:

1

( )p k k

k

t� �

�

=

= � cx . (23)

The solution for the IVP:

( ) 0( ) 0A t�� = + , , =x x f x x x , (24)

takes on the form:

0 0

1

( ) ( ) ( )k k

k

t t t� � �

�

=

= + � cx x . (25)

This result enables the numerical integration to be de-

fined on the basis of �-functions.

FINITE EXPANSIONS IN ��-FUNCTIONS AND THE

CALCULATION OF RESIDUALS

By performing a Taylor series expansion and truncating

the solution x(t) for IVP (1), an approximation of the solu-

tion can be obtained, as follows:

0

( )
km

m k

k

t
t

k=

=
!

� ax with ( )
) 0k n

k = �a x R . (26)

By replacing expression (11) in (26) and taking into ac-

count that matrices ( )k t� and A commute, the following

can be expressed:

0 0( ) ( )m t t�= ax

( )( )
1

1 1 1

0

( )
m

k k k m m

k

t A t A� �

�

+ + +

=

+ � �� a a a . (27)

By defining a new sequence of coefficients as:

0 0=b a ,

1 1k k kA
+ +
= �b a a , (28)

(27) is reduced to:

( ) ( )1

0

( )
m

m k k m m

k

t t t A� �
+

=

= �� b ax . (29)

Eliminating the final term gives a different ap-
proximation:

( )
0

( )
m

m k k

k

t t�

=

= � bX , (30)

which provides greater accuracy than

0

( )
!

km

m k

k

t
t

k=

=�x a . (31)

In fact, the coefficients in the expression of

0

( )
!

km

m k

k

t
t

k=

=� ax and ( )
0

( )
m

m k k

k

t t�

=

= � bX for IVP (1) are:

0 0=a x ,

( )

1 (0)k

k kA �
+
= +a a f , (32)

0 0=b x ,

( )

1 1(0)k

k k� �
+ +
= =b cf , (33)

so:

( ) ( )
( 1)

0 0

1

( ) (0)
m

k

m k

k

t t t� � �
�

=

= + �X x f . (34)

By inserting (34) into (1), we get the residual:

( ) ( ) ( ( ) ( ))m m mt t t A t� �= � �R f X X

( ) (0)
k

k

k m

t

k
�

�

=

=

!
� f . (35)

Furthermore, by taking into account that:

( ) ( )m mt A t� �x x

( ) ( )( )( )
1

1 1

0

m

k k k k

k

t A t A� �

�

+ +

=

= � �� a a

( ) ( )( )1m m mt A t A� �
+

� � a , (36)

and by using (11), the residual corresponding to ( )m tx is

given by:

( )( ) ( ) ( ) ( )m m mt t t A t� �= � �r f x x

( ) (0)
k m

k

m

k m

t t
A

k m
�

�

=

= +
! !

� af . (37)

Significant conclusions can be drawn from the expres-

sions ( )m tr and ( )m tR . In ( )m tR , the perturbation parame-

ter � is a factor of the residual, therefore ( )m tR is small

with � . On the contrary the residual ( )m tr splits into the

sum of two quantities of which only one is proportional to

� ; so in general ( )m tr is not small with � . If 0� = , the

Taylor series method produces a truncation error and yet the

�-functions method, using just the first term, can accurately

integrate the system of differential equations [3, 5].

A NUMERICAL INTEGRATION METHOD BASED

ON ��-FUNCTIONS

Following a similar procedure to the one described in [2,

5], in order to integrate IVP (1) using the �-functions

method, the function ( )t,f x is expanded as follows:

1

0

( )
k

k

k

t
t

k

�

+

=

, =
!

� cf x , (38)

and the solution, in terms of �-functions, is given by
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0 0

1

( ) ( ) ( )k k

k

t t t� � �

�

=

= + � cx x , (39)

where kc are the derivatives of the perturbation function

( )1( ( ) ) ( ) ( ) ( )mt t t g t g t, = = ,...,f x g , (40)

Denoting the point mesh in [ ]a b, as

1i i it t h
�

= + , 1 2i = , ,... , and the approximation to ( )itx as

ix , and assuming that we have calculated an approximation

to the solution on point nt , which we will call nx , it can be

verified that

( )A t�� = + ,x x f x ,

( )n nt =x x . (41)

In order to obtain an approximation to the solu-

tion 1( )nt +
x , we switch the independent variable nt t� = � ,

therefore (41) becomes:

( )nA t� �� = + , +x x f x ,

( )0 n=x x , (42)

which leads back to the initial situation.

The recurrence relation is used to calculate the expansion

coefficients for:

1

0

( ( ) )
k

n k

k

t
k

�
� �

�

+

=

, + =
!

� cf x , (43)

with

1

( )(0)
kk

n
k k k

d td

d dt�
+
= =

gg
c , (44)

and having calculated the necessary �-functions, it is possi-

ble to express the approximation to the solution at point tn+1
as follows:

( 1)

1 0 1 1

1

( ) ( ) ( )
p

j

n n n j n n

j

h h t� � �
�

+ + +

=

= + �x x g , (45)

which constitutes the numerical integration method for per-

turbed linear differential equations, on the basis of �-

functions.

In certain cases, an alternative to switching the independ-

ent variable nt t� = � is the technique used by Steffensen

[9], which involves some auxiliary variables which enable

the system’s perturbation function to be transformed into a

function that does not depend explicitly on time or which

transforms the system into a non-perturbed system, achiev-

ing integration in this case with just one �-function.

RESOLUTION OF STIFF PROBLEMS

In this section we present three examples showing the

behaviour of the �-functions series method, against the

known codes:

LSODE methods, causes a numerical solution to be

found using the Livermore Stiff ODE solver. It solves stiff

and nonstiff systems. It uses Adams methods (predictor-

corrector) in the nonstiff case, and Backward Differentiation

Formula (BDF) in the stiff case.

GEAR causes a numerical solution to be found by way of

a Burlirsch-Stoer rational extrapolation method. The method

has higher precision and calculation efficiency, especially in

solving stiff differential equations.

MGEAR [msteppart] is a multi-step method suitable for

stiff systems.

Using in the last ones the implementations of MAPLE V

to ensure that the results are not distorted by a deficient pro-

gramation that favours the new code.

Problem I

Let us consider the following stiff problem, which ap-

pears in [11-13]:

1 1 2

2 1 2

( ) 2 ( ) ( ) 2sin( )

( ) ( 2) ( ) ( 1)( ( ) cos( ) sin( )) ,

x t x t x t t

x t x t x t t t� �

� = � + +�

�
� = � + + + � +�

(46)

with 2 1

( 2) 1
A

� �

�� �
= � �

� + +� 	

, 1� = , initial conditions

1 2(0) 2, (0) 3x x= = and solution, independent of � :

1( ) 2 sin( ) ,tx t e t�
= +

2 ( ) 2 cos( ) ,tx t e t�
= + (47)

The eigenvalues of the system are 1� and � , which

enables its degree of stiffness to be regulated. For the case

1000� = � , the following stiff problem is obtained, pro-

posed in [14]:

( )

1 1

2 2

1 2

2sin( )( ) ( )2 1

999 cos( ) sin( )( ) ( )998 999

(0) 2, (0) 3 .

tx t x t

t tx t x t

x x

� � � �� � � �� �
= + � �� � � �� �

� ��� 	� 	 � 	 � 	

= =

, (48)

Considering variables
3 ( ) sin( )x t t= , 4 ( ) cos( )x t t= , it is

possible to tackle the following non-perturbed problem:

( ) ( )

1 1

2 2

3 3

4 4

0 1 2 3 4

( ) ( )2 1 2 0

( ) ( )998 999 999 999
,

( ) ( )0 0 0 1

0 0 1 0( ) ( )

(0) (0) (0) (0) 2 3 0 1 .
T T

x t x t

x t x t

x t x t

x t x t

x x x x

� �� � � �� �

� � � �� �
� � �

� � � �� �=
� � � �� ��

� � � �� �� �� � � �� �� 	� 	 � 	

= =x

(49)

The introduction of new variables increases the dimen-

sion of the problem, but enables its integration using just the

first of the �-functions, 0� .

Let ( )tx be the solution to the above problem, which we

assume to be analytical:

( )1 2 3 4( ) ( ) ( ) ( )
T

x t x t x t x t =

1 2 3 4

0 0 0 0

T
k k k k

k k k k

k k k k

t t t t
a a a a

k k k k

� � � �

, , , ,

= = = =

� �

� �
! ! ! !� 	

� � � � , (50)
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and when it is replaced in (49), we get:

1 1

1 2

0 1 3

1 4

k

k
k

k k

k

a

at

ak

a

+ ,

�
+ ,

= + ,

+ ,

� �

� �

� �

� �!
� �
� �
� 	

�

1

2

0 3

4

2 1 2 0

998 999 999 999

0 0 0 1

0 0 1 0

k

k
k

k k

k

a

at

ak

a

,

�
,

= ,

,

=

� � �� �

� 	� 	
� �

� 	� 	

� 	� 	!
� 	� 	� 	� 	

�� 
� 


� . (51)

Identifying the coefficients gives

11 1

1 2 2

1 3 3

1 4 4

2 1 2 0

998 999 999 999

0 0 0 1

0 0 1 0

k k

k k

k k

k k

a a

a a

a a

a a

+ , ,

+ , ,

+ , ,

+ , ,

�� � � �� �

� � � �� �
� �

� � � �� �=
� � � �� �

� � � �� �� �� � � �
�� �� � � �

, (52)

with 0 1k …= , , .

By defining a new sequence of coefficients as:

0 0 0= =b a x ,

1

2 1 2 0

998 999 999 999

0 0 0 1

0 0 1 0

k k k�

�� �

� �
� �

� �= �
� �

� �� �
�� �

b a a , (53)

with 1 2k …= , , .

Hence, it is possible to express the solution to the prob-

lem in terms of �-functions:

1

2

0 3

4

( ) ( )

k

k

k

k k

k

b

b
t t

b

b

�

,

�
,

= ,

,

� �

� 	

� 	
=

� 	

� 	
� 	
� 


�x , (54)

and having obtained the value of the �-functions;

0 ( )
Att e� = matrix has been calculate by the Richardson-

type linear elimination procedure [15,16]; denoting by 1x

the approximation to ( )h ,x this approximate solution is

given by:

1 0 1

2 0 2

1 0

0 3 0 3

4 0 4

( ) ( )

k

m
k

k

k k

k

b b

b b
h h
b b

b b

� �

, ,

, ,

= , ,

, ,

� � � �

� � � �

� � � �
=

� � � �

� � � �
� � � �
� 	 � 	

=�x . (55)

In order to calculate 2x (i.e. the approximation

to (2 )hx ), the same process is carried out taking 1x as the

initial value.

Each step is completed using the following algorithm:

0 i=a x ,

1 1 1

1 2 2

1 3 3

1 4 4

2 1 2 0

998 999 999 999

0 0 0 1

0 0 1 0

k k

k k

k k

k k

a a

a a

a a

a a

+ , ,

+ , ,

+ , ,

+ , ,

�� � � �� �

� � � �� �
� �

� � � �� �=
� � � �� �

� � � �� �� �� � � �
�� �� � � �

for 0k = ,... ,

0 0=b a ,

1

2 1 2 0

998 999 999 999

0 0 0 1

0 0 1 0

k k k�

�� �

� �
� �

� �= �
� �

� �� �
�� �

b a a for 1k = ,... ,

1 0 1

2 0 2

1 0

0 3 0 3

4 0 4

( ) ( )

k

m
k

i k

k k

k

b b

b b
h h
b b

b b

� = �

, ,

, ,

+

= , ,

, ,

� � � �

� � � �

� � � �
=

� � � �

� � � �
� � � �
� 	 � 	

�x . (56)

Fig. (1) and Fig. (2) show the results obtained , with 40

and 60 digits, respectively, when the logarithm of the rela-

tive error vs t of the �-functions method, using just one �-

function, 0� , step size 0.1h = and 1000 iterations, is com-

pared with the LSODE (tol =10
-16
), MGEAR (errorper =

Float(1,10
-16
)) and GEAR (errorper = Float(1,10

-16
)).

Fig. (1). Lambert´s problem, h = 0.1, 40 digits, one �-function.

Fig. (2). Lambert´s problem, h = 0.1, 60 digits, one �-function.

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

-10

-15

-20

-25

-30

-35

0 20 40 60 80 100
t

-functions

lo
g(

er
ro

r)

LSODE
MGEAR

GEAR

-10

-20

-30

-40

-50

0 20 40 60 80 100
t

-functions

lo
g(

er
ro

r)

LSODE
MGEAR

GEAR



An Adaptation of the Scheifele Method to Stiff Systems The Open Applied Mathematics Journal, 2008, Volume 2 91

The error is taken to be the difference between the solu-

tion of the several methods and the exact solution. Is noted

the well behaviour of the �-function series method, main-

taining the error bounded throughout the integration.

Fig. (1) and Fig. (2) show that with the same conditions,

increasing the number of digits, the error decreases.

Problem II

Let us consider the following stiff test problem, proposed

in general terms in [17]:

( )
1 1 2

1 1 2

2 1 2 2

( ) 2 ( ) ( )

( ) ( ) ( )(1 ( ))

x t x t x t

x t x t x t x t

� �
� �� � = � + +�

�
� = � +��

, (57)

with the initial conditions 1 2(0) 1, (0) 1x x= = and solution,

independent of � :

2

1 2( ) , ( )t tx t e x t e� �
= = , (58)

the eigenvalues of the system are ( )
11, 2 �

�
� � + , which

enables the degree of stiffness to be regulated. A particulari-

sation for 110�
�

= is represented in [18, 19] sets forth the

Kaps problem for 310�
�

= obtaining the following stiff sys-

tem:

( ) ( )

2
1 1 2

2
2 2 2

0 1 2

( ) ( )1002 0 1000 ( )

( ) ( )1 1 ( )

(0) (0) 1 1 .
T T

x t x t x t

x t x t x t

x x

� � � �� � � �� �
= + � �� � � �� �

� � �� 	� 	 � 	 � 	

= =x

, (59)

Let ( )tx be the solution to the abovementioned problem,

which we assume to be analytical:

( )1 2( ) ( )
T

x t x t

1 2

0 0

T
k k

k k

k k

t t
a a

k k

� �

, ,

= =

=
� �

� �
! !� 	

� � . (60)

By substituting (60) in (59) and applying the Cauchy´s

rule for the series product, we get:

11 1

0 01 2 2

1002 0

1 1

k k
k k

k kk k

a at t

a ak k

� �
+ , ,

= =+ , ,

�� � � �� �
=� 	 � 	� 	

�! ! � 
� 
 � 

� �

,2 ,2

0

0

,2 ,2

0

1000
k

i k ik
i

k
k

i k i

i

k
a a

it

k k
a a

i

�
�

=

=

�

=

+

� �� �
� 	� 	

� 
� 	

� 	! � �
� 	� � 	� 	

� 
� 


�

�

�

. (61)

Identifying coefficients gives

11 1

1 2 2

1002 0

1 1

k k

k k

a a

a a

+ , ,

+ , ,

�� � � �� �
=� � � �� �

�� �� � � �

,2 ,2

0

,2 ,2

0

1000
k

i k i

i

k

i k i

i

k
a a

i

k
a a

i

�

=

�

=

+

� �� �
� �� �

� 	� �

� �
� �

� �� � �� �
� 	� 	

�

�

, (62)

an expression that enables us to define the following succes-

sion of coefficients:

0 0 0= =b a x ,

1

1002 0

1 1
k k k�

�� �
= � � �

�� �

b a a

1

,2 1,2

0

1

,2 1,2

0

1
1000

1

k

i k i

i

k

i k i

i

k
a a

i

k
a a

i

�

� �

=

�

� �

=

� � �� �
� �� �

� 	� �
=
� �

�� �
� �� � �� �

� 	� 	

�

�

with 1 2k …= , , . (63)

Hence, it is now possible to express the solution to (59)

in terms of �-functions:

1

0 2

( ) ( )
k

k

k k

b
t t

b
�

�
,

= ,

� �
= � 	

� 

�x . (64)

0 ( )
Att e� = matrix has been calculate by the Richardson-

type linear elimination procedure [15,16] and ( )k t� for

1,k = … , are calculated by recurrence relation (11).

Denoting the approximation to ( )h ,x as 1x , said approxima-

tion to the solution is given as follows:

1

1

0 2

( )
m

k

k

k k

b
h
b

�
,

= ,

� �
= � �

� 	
�x . (65)

In order to calculate 2x , the same process is carried out,

taking 1x as the initial value.

Each step is completed using the following algorithm:

0 i=a x ,

,2 ,2

01 1 1

1 2 2

,2 ,2

0

1000
1002 0

1 1

k

i k i

ik k

k
k k

i k i

i

k
a a

ia a

a a k
a a

i

�

=+ , ,

+ , ,

�

=

� �� �
� �� �

�� � � �� � � 	� �
= +� � � �� � � �� � �� 	� 	 � 	

� �� � �� �
� 	� 	

�

�

for 0k = ,... .

0 0=b a ,

1

1002 0

1 1
k k k�

�� �
= � � �

�� �

b a a

1

,2 1,2

0

1

,2 1,2

0

1
1000

1

k

i k i

i

k

i k i

i

k
a a

i

k
a a

i

�

� �

=

�

� �

=

=

� � �� �
� �� �

� 	� �

� �
�� �

� �� � �� �
� 	� 	

�

�

,

for 1k = ,... .

1

1

0 2

( )
m

k

i k

k k

b
h
b

�
,

+

= ,

� �
= � �

� 	
�x . (66)

Fig. (3) shows the result obtained when the logarithm of

the relative error vs t of the 16 �-functions method, step size
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0.01h = and 1000 iterations, is compared with the LSODE

(tol = 10
-20
) and GEAR (errorper = Float(1,10

-20
)) methods,

with 40 digits.

Fig. (3). Kaps´ problem, h = 0.01, 40 digits, sixteen �-functions.

The error is taken to be the difference between the solu-

tion of the several methods and the exact solution. Is noted

the well behaviour of the �-function series method, main-

taining the error bounded throughout the integration.

Problem III

This example shows an application of the �-functions

method to a problem of quasiperiodic orbits studied by [20],

which can also be found in [13, 21-23], among others.

Let

3( ) ( ) 10 itx t x t e�
�� + =

, (67)

with the initial conditions:

(0) 1, (0) 0.9995 ,x x i�= =
(68)

for which the analytical solution is:

( )
4( ) 1 5 10 itx t it e�

= � �

( )
4cos( ) 5 10 sin( )t t t�

= + �

( )
4sin( ) 5 10 cos( )i t t t�

+ � � . (69)

The solution represents motion on a perturbation of a

circular orbit in the complex plane. The problem may be

solved either as a single equation in complex arithmetic or a

pair of uncoupled equations.

Noting

( ) ( ) ( )x t u t iv t= +
,

and by substituting in (67), we get the following second or-

der system:

3

3

( ) ( ) 10 cos( ) ,

( ) ¨ ( ) 10 sin( ) ,

u t u t t

v t v t t

�

�

��� + =�
�
�� + =��

(70)

with the initial conditions:

(0) 1, (0) 0, (0) 0, (0) 0.9995 .u u v v� �= = = =
(71)

By defining the variables:

1 2( ) ( ), ( ) ( ),x t u t x t u t�= =

3 4( ) ( ), ( ) ( )x t v t x t v t�= = . (72)

(70) becomes the system of first order linear equations:

1 2

3

2 1

3 4

3

4 3

( ) ( ) ,

( ) ( ) 10 cos( ) ,

( ) ( ) ,

( ) ( ) 10 sin( ) ,

x t x t

x t x t t

x t x t

x t x t t

�

�

� =�

�
� = � +�

�
� =

�

� � = � +�

(73)

with the initial conditions:

1 2 3 4(0) 1, (0) 0, ( ) 0, (0) 0.9995 .x x x t x= = = = (74)

The auxiliary variables [9, 10]:

5 6( ) cos( ), ( ) sin( ) ,x t t x t t= = (75)

enable (73) to be expressed as a non-perturbed first order

linear system:

1 1

3

2 2

3 3

3

4 4

5 5

6 6

( ) ( )0 1 0 0 0 0

( ) ( )1 0 0 0 10 0

( ) ( )0 0 0 1 0 0
,

( ) ( )0 0 1 0 0 10

( ) ( )0 0 0 0 0 1

( ) ( )0 0 0 0 1 0

x t x t

x t x t

x t x t

x t x t

x t x t

x t x t

�

�

�� � � �� �

� � � �� �
� �

� � � �� �

� � � �� ��
=� � � �� �

� �� � � �� �

� � � �� �� �
� � � �� �

� �� � � �� � 	� 	 � 	

(76)

with the initial conditions:

( )0 1 2 3 4 5 6(0) (0) (0) (0) (0) (0)
T

x x x x x x=x

( )1 0 0 0.9995 1 0
T

= . (77)

Although this procedure increases the dimension of the

problem, it enables integration using just the first of the �-

functions, 0� .

Let ( )tx be the solution to the previous problem, which

we assume to be analytical:

0

( ) 1,...,6
k

i k i

k

t
x t a i

k

�

,

=

= =
!

� . (78)

By substituting (78) in (76) and identifying the coeffi-

cients, we get:

1 1 1

3
1 2 2

1 3 3

3
1 4 4

1 5 5

1 6 6

0 1 0 0 0 0

1 0 0 0 10 0

0 0 0 1 0 0
,

0 0 1 0 0 10

0 0 0 0 0 1

0 0 0 0 1 0

k k

k k

k k

k k

k k

k k

a a

a a

a a

a a

a a

a a

+ , ,

�

+ , ,

+ , ,

�

+ , ,

+ , ,

+ , ,

� � � �� �

� � � �� �
�

� � � �� �

� � � �� �

=� � � �� �
�� � � �� �

� � � �� ��
� � � �� �

� �� � � �
� �� � � �

(79)

an expression that enables us to define the following se-

quence:
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0 0 0= =b a x ,

3

13

0 1 0 0 0 0

1 0 0 0 10 0

0 0 0 1 0 0

0 0 1 0 0 10

0 0 0 0 0 1

0 0 0 0 1 0

k k k

�

��

� �

� �
�

� �

� �

= � � �
�� �

� ��
� �
� �
� �

b a a ,

with 1 2k …= , , . (80)

Having obtained the value of the �-functions;

0 ( )
Att e� = matrix has been calculate by the Richardson-

type linear elimination procedure [15,16]; denoting the ap-

proximation to ( )h ,x as 1x , this approximation to the solution

would be given as follows:

( )1 1 2 3 4 5 6

0

( ) , , , , ,
m

T

k k k k k k k

k

h b b b b b b�
, , , , , ,

=

= �x . (81)

In order to calculate 2x , the same process is carried out,

taking 1x as the initial value.

Each step is completed using the following algorithm:

0 ,i=a x

3

1 13

0 1 0 0 0 0

1 0 0 0 10 0

0 0 0 1 0 0
,

0 0 1 0 0 10

0 0 0 0 0 1

0 0 0 0 1 0

k k

�

+ ��

� �

� �
�

� �

� �

= � �
�� �

� ��
� �
� �
� �

a a

for 0k = ,... .

0 0 ,=b a

3

13

0 1 0 0 0 0

1 0 0 0 10 0

0 0 0 1 0 0

0 0 1 0 0 10

0 0 0 0 0 1

0 0 0 0 1 0

k k k

�

��

� �

� �
�

� �

� �

= � � �
�� �

� ��
� �
� �
� �

b a a

for 1k = ,... .

( )1 1 2 3 4 5 6

0

( ) , , , , , ,
m

T

i k k k k k k k

k

h b b b b b b�
+ , , , , , ,

=

= �x

(82)

Fig. (4) shows the result obtained when the logarithm of

the relative error vs t of the �-functions model, with just one

�-function, 0� , step size 0.1h = and 1000 iterations, is

compared with the LSODE (tol = 10
-16
), MGEAR (errorper

= Float(1,10
-16
)) and GEAR (errorper = Float(1,10

-16
))

methods implemented in Maple V, with 60 digits.

Fig. (5) shows the same comparison as the previous fig-

ure but with a step size nine times greater, in other words

0.9h = and 100 iterations.

Fig. (4). Stiefel and Bettis problem, h = 0.1, 60 digits , one �- func-

tion.

Fig. (5). Stiefel and Bettis problem, h = 0.9, 60 digits, one �- func-

tion.

The error is taken to be the difference between the solu-

tion of the several methods and the exact solution. Is noted

the well behaviour of the �-function series method, main-

taining the error bounded throughout the integration.

Fig. (5) shows the well behaviour of the �-function series

method, if it increase the step size.

CONCLUSIONS

The method here considered is the direct generalization

of the algorithm for the integration of perturbed oscillators

described in [2], to perturbed linear systems of differential

equations; the good properties of this algorithm for equations

are retained.

Numerical experiments confirm the strong performance

of the numerical integration method, based on the Scheifele

�-functions series; when treating stiff problems, it enables

the non-perturbed problem to be accurately integrated using

just the first term in the series.
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Furthermore, the method can be taken as the foundation

for multistep numerical methods, also based on �-functions

or some refinement such as SMF [4], SVF [7, 21] and EIPPC

[8].
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