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Abstract: We have applied the concept of the single-particle Schrödinger fluid to calculate the reciprocal values of the ri-

gid body-model, the cranking-model, and the equilibrium-model moments of inertia of the axially-symmetric deformed 

nuclei as functions of the deformation parameter , and the non deformed oscillator parameter 
0

0
. As examples for the 

application of this concept to the heavier deformed even-even nuclei the uranium isotopes 
230

U, 
232

U, 
234

U, 
236

U and 
238

U 

have been chosen. The obtained results showed that the assumption that these nuclei have axes of symmetry is more relia-

ble. 

1. INTRODUCTION 

 It is well known that the nucleons inside the nucleus oc-

cupy approximately 1/50 of the volume of the nucleus. It is 

not surprising to find that nucleon properties are maintained 

inside the nucleus. In particular this situation is responsible 

for the fact that the magnetic moments of nucleons inside 

nuclei are the same as for free nucleons. In accordance with 

the above, we describe the motion of each nucleon indivi-

dually in a common potential field. Because the surface of 

deformed nuclei is distorted at some moment, the potential 

felt by the nucleons is not spherically symmetric. 

 The basic ideas concerning non spherical nuclei have 

been most completely described by A. Bohr [1]. The most 

important distinction between non spherical and spherical 

nuclei is that the former can have rotational levels. The elon-

gation of the nucleus is related to the interaction between the 

surface and the nucleons outside closed shells. Many of the 

light nuclei are spherical. This is due to the success of the 

shell model, which is based on states in a field of spherical 

symmetry. According to the basic ideas of quantum mecha-

nics the concept of rotation in a spherically symmetric sys-

tem is meaningless. However, in an elongated nucleus the 

concept of rotation is meaningful, and the nucleus can rotate 

about an axis perpendicular to the axis of symmetry. 

 An axially symmetric deformed nucleus is characterized 
by the moment of inertia about the axis perpendicular to the 
symmetry axis of the nucleus, its magnetic dipole moment 
and its electric quadrupole moment. In the present paper we 
are only interested in the nuclear moments of inertia. Accor-
dingly, we have applied the concept of the single-particle 
Schrödinger fluid to calculate the reciprocal values of the 
rigid-body model, the cranking-model and the equilibrium - 
model moments of inertia of the uranium even-even isotopes 
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230
U, 

232
U, 

234
U, 

236
U, and 

238
U in their ground states as func-

tions of the deformation parameter  and the non-deformed 

oscillator parameter 0

0
. Variations of these three recipro-

cal moments of inertia with the deformation parameter are 

also given.  

2. THE SCHRÖDINGER FLUID 

 Consider a nucleon that is moving in a potential field, 

whose Hamiltonian operator is given by 

  
H r,p, t( )( ) =

2

2m
2

+ V r, t( )( ).
      

(2.1)
 

 Here  represents some time-dependent collective pa-

rameter which in the case of rotation becomes the angle of 

rotation t= , where  is the angular velocity. 

 The single-particle time-dependent Schrödinger equation 

for this nucleus is 

H (r, p, (t)) 
k

(r, ( t ), t ) = i
t

k
(r, (t), t)      (2.2) 

 This equation has solutions of the form [2,3] 

k (r, ( t ), t ) = ( )( )tk ,r exp{-
i

t

0

k
( ( /

t )) /
dt }, 

           (2.3) 

where 
k

is the single-particle energy density, which depends 

on the time through the parameter ( )t . The complex wave 

function ( )( )tk ,r  can be written in the following polar 

form 

( )( )tk ,r  = 
k

(r, ( t )) exp { i
m

k
S (r, ( t )),    (2.4) 
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where 
k

 and 
k

S  are assumed to be real functions and 
k

 

is positive.  

 Substituting from equations (2.1), (2.3) and (2.4) into 

equation (2.2) and separating the real and the imaginary 

parts; a pair of coupled equations for 
k

 and Sk are obtai-

ned. The first is  

t
.vv.

k

kkkk
=+

 

,        (2.5)

 

which is the well-known equation of continuity in fluid me-

chanics. The density 
k

 is equal to the probability density 

of the particle distribution, 
k

 = 
2

k
, and the irrotational 

velocity field vk is defined by 

vk = - 
k

S ,          (2.6) 

k
S  = 

m2

i
Ln ( k / 

*

k ).         (2.7) 

The second equation is 

( H + 
dynV ) 

k
 = 

kk
,         (2.8) 

which is a modified Schrödinger equation through the modi-

fied dynamical potential 

dynV  = - m (
t

S
k -

2

1 2

k
v ).        (2.9)  

 In the adiabatic approximation where 
dt

d
 0, the kth 

single-particle wave function k of equation (2.4) is ap-

proximated by [2] 

k = ( )/exp kk imS  kk iu μ+ ,     (2.10)  

where ( ),rkk uu =  is the quasi-static wave function satis-

fying the quasi-static Schrödinger equation 

,kuHu kkkk ==
       

(2.11)
  

and 
kμ  is the first-order time-dependent perturbation correc-

tion, which for rotation about the x-axis is given by 

.=
kj kj

x
k j

kLj
μ

      

(2.12) 

 The collective kinetic energy for a nucleon, in the adiaba-

tic approximation, is given by [2] 

 

Tk =
m

2 kvk . r( )d ,      (2.13) 

and the collective kinetic energy of the nucleus is then given 

by 

 

T =
m

2 T vT . r( )d ,      (2.14) 

where 
T

 is the total density distribution of the nucleus and 

Tv  is the total velocity field 

=

=
=

occk

k

occk

kk

T

v

v .       (2.15) 

 The probability density of the nucleon distribution, in 

view of equation (2.10), assumes the form 

22

kkk u μ+= .        (2.16) 

 The occurrence of the two distinct velocity fields in equa-

tions (2.13) and (2.14), v and  r  reflects the two essen-

tial aspects of the cranking motion: (i) the rotation of the 

potential well which can be described by the velocity field 

( r ), and (ii) the response of the individual particle to 

that motion of the potential which is described by the veloci-

ty v.  

 For the quasi-static motion of the nucleon we choosed the 

anisotropic harmonic oscillator potential to be the average 

potential field of the nucleus with oscillator frequencies gi-

ven by [4] 

+==
3

2
1

2
0

22
yx

,      (2.17)

 

,
3

4
1

2
0

2
=z

       
(2.18)

 

where  is a deformation parameter related to the well-

known deformation parameter  by 

4

5

2

3
= .        (2.19)

 

 In equations (2.17) and (2.18) the frequency 
0

 is given 

in terms of the non deformed frequency 0

0
 by [4] 

( ) .
6

1

3

27

162

3

4
1

0
000 ==

    

(2.20)

 

 In the last equation 0
0

 is the non-deformed frequency, 

which equals ( )0
 when  equals zero. The non-deformed 

oscillator parameter in our calculations is given in terms of 

the mass number A, the number of neutrons N, and the num-

ber of protons Z by [5] 

( )
.

A

N191.0

A

646.1
1

A6.38

2

3

1

0

0

+

=

Z

    

(2.21)

  

 The following expressions for the cranking-model and 

the rigid body-model moments of inertia can be easily obtai-
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ned on the basis of the concept of the single-particle Schrö-

dinger fluid [3] 

,)1(
1

)1(
1

1

26

1 23

1

2
++

+

+
= qq

E

o

cr
  
(2.22) 

[ ],)q1()q1(
1

1

26

1E 3

1

2
o

rig ++
+

+
=         (2.23) 

where q  is the anisotropy of the configuration, which is de-

fined by  

+

+

=

occ
z

occ
y

n

n

q

)
2

1
(

)
2

1
(

,        (2.24) 

and E is the total energy given by 

.)
2

1
()1( ++++=

occ
znzxnynyE     (2.25)

 

 In equations (2.24) and (2.25) zyx nnn  and ,,  are the 

state quantum numbers of the oscillator. In equations (2.22) 

and (2.23)  is a measure of the deformation of the potential 

and is defined by 

zy

zy

+
= .        (2.26) 

 We note that the cranking-model and the rigid body-

model moments of inertia are equal only when the harmonic 

oscillator is at the equilibrium deformation. 

3. RESULTS AND CONCLUSIONS 

 The total energy E and the anisotropy of the configura-

tion q are easily calculated for a given nucleus with mass 

number A, number of neutrons N and number of protons Z. 

Accordingly, the cranking-model and the rigid-body model 

moments of inertia are obtained as functions of the deforma-

tion parameter  and the non deformed oscillator parameter 

0

0
 by suitable filling of the single-particle states 

corresponding to the ground-state of the given nucleus. 

 In Fig. (1) we present the variations of the reciprocal va-

lues of the cranking-model moments of inertia of the ura-

nium isotopes 
230

U, 
232

U, 
234

U, 
236

U and 
238

U with respect to 

the deformation parameter . Since the reciprocal values of 

the rigid-body moments of inertia of these isotopes are slo-

wly varying with respect to , we present only in Fig. (1) the 

variation of the reciprocal values of the rigid-body model 

moment of inertia of the nucleus U
234

 with respect to . 

 In Table 1 we present the calculated values of the reci-

procal moments of inertia for the uranium isotopes:  

 

 

 

 

 

 

 

 

Fig. (1). Moments of inertia of the axially deformed nuclei 
230

U, 
232

U, 
234

U, 
236

U and 
238

U. The solid curves represent the cranking-

model moments of inertia. The dotted curve represents the rigid-

body moment of inertia of the nucleus 
234

U. 

Table 1. Rigid-Body and Cranking-Model Reciprocal Moments of Inertia, in KeV, of the Uranium Isotopes 

Nucleus 
 

0

0  
(MeV) 

rig2

2
 

cr
2

2
 

exp2

2
 

230U  0.18 

-0.19 

6.69 

6.69 

7.75  8.63 

8.23  8.74 

 

8.68 

 232U  0.19 

-0.20 

6.69 

6.69 

7.60  8.27 

8.09  8.32 

 

8.28 

 234U  0.19 

-0.20 

6.69 

6.69 

7.43  7.31 

7.88  7.25 

 

7.29 

 236U  0.20 

-0.21 

6.69 

6.69 

7.33  7.55 

7.80  7.49 

 

7.57 

238U 0.19 

-0.21 

6.68 

6.68 

7.29  7.80 

7.76  7.84 

 

7.82 
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230
U, 

232
U, 

234
U, 

236
U and 

238
U for the rigid-body model and 

the cranking-model together with the corresponding experi-

mental values [6]. The values of the deformation parameter  

and the non deformed oscillator parameter 0

0
 are also 

given in this table. 

 In Table 2 we present the calculated values of the reci-

procal moments of inertia for the five nuclei in the case of 

the equilibrium deformation, where the rigid and the cran-

king reciprocal moments are equal. The values of the defor-

mation parameter  and the non deformed oscillator parame-

ter 0
0

 are also given in this table. 

 It is seen from the tables that the obtained results of the 

reciprocal cranking-model moments of inertia are in good 

agreement with the corresponding experimental values for 

the five isotopes while the values of the reciprocal moments 

of inertia by using the other two models are not in good 

agreement with the corresponding experimental values, a 

result which has been also occurred for the even-even nuclei 

in the s-d shell [7,8] and showed that the pairing correlation 

[9] is very important to improve the results in these two ca-

ses.  

 In Appendix-1 we present the protons oscillator quantum numbers for the ground-state wave function of the nucleus U
230

92
, 

the corresponding quantum numbers for neutrons are similar. The classifications of the protons and neutrons in the ground-state 

wave functions of the other isotopes are also similar. 

Appendix 1. Protons Oscillator Quantum Numbers for the Ground State Wave Function of the Nucleus U
230

92  

shell qu. no.  nz ny nx shell qu. no.  nz ny nx 

0 0 0 0 0 2 1s, N=0 

0 0 0 0 0 2 

1 0 0 2 0 0 

1 0 0 2 0 0 

0 1 0 1 1 0 

0 1 0 1 1 0 

0 0 1 1 0 1 

 

1p, N=1 

0 0 1 1 0 1 

0 2 0 0 1 1 2s, N=2 

0 2 0 

 

 

 

1d, N=2 

0 1 1 

 

 

Table 2. Reciprocal Equilibrium-Deformation Moments of Inertia of the Uranium Isotopes, in KeV 

Nucleus 
  

0

0
 (MeV)  

equ

2

2

 

exp2

2
 

 230U  0.160 

-0.185 

6.69 

6.69 

7.76 

8.20 

 

8.68 

232U  0.170 

-0.197 

6.69 

6.69 

7.62 

8.08 

 

8.28 

234U  0.194 

-0.220 

6.69 

6.69 

7.43 

7.92 

 

7.29 

236U  0.195 

-0.218 

6.69 

6.69 

7.35 

7.83 

 

7.57 

238U 0.182 

-0.205 

6.68 

6.68 

7.29 

7.75 

 

7.82 
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(Appendix 1). Contd….. 

Shell qu. no.  nx ny nz Shell qu. no. nx ny nz 

2 1 0 2 1 1 

2 1 0 

1g, N=4 

2 1 1 

1 2 0 1 2 1 

1 2 0 1 2 1 

3 0 0 0 2 2 

3 0 0 0 2 2 

0 3 0 0 1 3 

0 3 0 0 1 3 

1 0 2 1 0 3 

1 0 2 1 0 3 

0 1 2 1 1 2 

0 1 2 

 

 

2d, N=4 

 

1 1 2 

0 2 1 0 0 4 

 

 

 

1f, N=3 

0 2 1 

3s, N=4 

0 0 4 

2 0 1 5 0 0 

2 0 1 5 0 0 

1 1 1 0 5 0 

1 1 1 0 5 0 

0 0 3 0 0 5 

 

 2p, N=3 

0 0 3 0 0 5 

4 0 0 4 1 0 

4 0 0 4 1 0 

0 4 0 4 0 1 

0 4 0 4 0 1 

3 1 0 0 4 1 

3 1 0 0 4 1 

1 3 0 0 1 4 

1 3 0 0 1 4 

2 2 0 1 4 0 

2 2 0 1 4 0 

2 0 2 1 0 4 

2 0 2 1 0 4 

0 3 1 3 2 0 

0 3 1 3 2 0 

3 0 1 3 0 2 

 

  

  

 1g, N=4 

 

3 0 1 

 

  

  

  

  

 1h, N=5 

3 0 2 
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