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Abstract: An exact solution method in terms of an infinite power series is developed for linear ordinary differential 

equations with polynomial coefficients. The method is general and applicable to a wide range of equations of any N-

th order presented in normal form. The final solution is defined by a linear combination of S functions fj(x) j=1,...,S 

expressed in the form of a power series, and by additional (S-N) number of accompanied relationships for unknown 

constants. Each term of the series fj(x) is defined by a finite number of operations involving matrix calculations. The 

term calculation is independent on unknown constants.  

The method is also applicable to any system of R differential equations in normal form with the restriction that all 

equations in the system are of the same order. The advantage over the “classical” method of undetermined coeffi-

cients is that here the recursions are of first order even for higher-order differential equations. The general solution is 

expressed explicitly in the form allowing for application of any form of initial, boundary, or combined conditions. 

The paper presents the development of the method and, as examples, its application to solving selected second- and 

third-order differential equations.  
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1. INTRODUCTION 

 We consider a homogenous system of R – linear ordinary 

differential equations (ODE), each of N-th order, written in 

normal matrix form [2, 5] 

Y
(N)

 + wN-1(x)Y
(N-1)

 + ... + w1(x)Y
I
 + w0(x)Y = 0.     (1.1) 

 Bold letters indicate square matrices (lower case) and 

column vectors (capital letters). 
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Y  - is the column vector of dependent variables, 

and 
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)(KY  - is the vector of their K-th order 

(K=0,1,2,...,N) derivatives. 

 We consider the cases where the nonconstant coefficients 

are polynomials in the form 

K,0K,1

1m

1mK

m

mKK ww...w= w w
KK

,, ++++ xxx(x) KK  (1.2) 

where i
K

mK,w , i = 0,1,...,mK – are the R R matrices of 

constant coefficients and mK is the degree of the polynomial 

representing the matrix wK. It is assumed that 0.w  (x) 0  
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 We are looking for analytic solutions of the system (1.1). 

The general solution of (1.1) is expressed in the form of a 

power series, and additionally, the matrix calculation is ap-

plied for the method of undetermined coefficients [1].  

2. IMPROVED METHOD OF UNDETERMINED 

COEFFICIENTS  

 Based on the existence theorem for equations with analy-

tic coefficients [2], the solution of the system (1.1) can be 

sought in the form of an infinite power series, convergent for 

all real x 

0=j

j

j .=  AY x(x)          (2.1) 

 The symbol Aj indicates R 1 column vectors of the cons-

tant series coefficients. The vector made up of K-th order 

derivatives can be expressed in the form 

.=  
0=j

(K) AY j

j+K x(x)
j!

(j+K)!
        (2.2) 

 The determination of the vector Y(x) is based on an algo-

rithm consisting of a finite number of matrix operations used 

for computing any vector Aj of constants in the series (2.1) 

and (2.2). The algorithm developed below is derived without 

any approximate assumptions, and in this way, the presented 

method is formally exact. Any vector of unknown constants 

(with a sufficiently large index) is dependent on the fixed 

finite number of initial constants (dependent on boundary or 

initial conditions).  

 Applying the method of undetermined coefficients, we 

substitute series (2.1) and (2.2) into the system (1.1), diffe-

rentiate term by term, and equate to zero the coefficients 
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(vectors) of each power x
j
 of x. In this way, we obtain suc-

cessive equations of the form 

.=         
S

1=k
k-jkj AaA (j)Sfor j        (2.3) 

where R R matrices ak(j) are dependent on the matrices of 

the polynomial coefficients imK, K
w defined by (1.2) and 

the index j. S indicates the number of matrices ak(j) presen-

ted in the equation (2.3). This number depends on the order 

N of the differential equations (1.1) and on the degrees mk of 

the polynomials wK(x) 

S = N-min{K-mK}, for K=0,1,...,N-1.       (2.4) 

 If (as has been assumed earlier) w0 0, then S  N. For the 

cases where S > N (see the examples) in addition to the equa-

tion (2.3), we have S-N equations obtained from equating to 

zero the coefficients of x
j
 for j=0,...,S-N. Usually, these equa-

tions can be obtained from (2.3) by substituting a fixed value 

for j. If S=N, then all the recurrence relationships are expres-

sed by (2.3). To find a relationship between any vector Aj 

and the finite number of initial constants, we group all the 

vectors Aj with R elements into larger vectors Bj with R·S 

elements according to the following formula: 

=

+

+

1SnS

1nS

nS

nS

A

A

A

B , where n=0,1,2,...      (2.5) 

and nS means the product of n and S. 

 The vector for n=0 

=

1

1

0

A

A

A

B
0

S

         (2.6) 

is the vector of initial constants. Substituting (2.3) for the 

vectors AnS+i, i=1,...,S-1 grouped in BnS, and using each time 

the relationships defined earlier, we are able to depend all 

these vectors on vectors A(n-1)S+i grouped in B(n-1)S. Due to the 

form of the equation (2.3), the relationship between the suc-

ceeding vectors BnS and B(n-1)S is linear: 

BnS = b(nS) B(n-1)S, n  1.        (2.7) 

 The (R·S) (R·S) matrix b(nS) can be presented as the 

matrix consisting of S
2
 R R submatrices bij(nS) placed in S 

rows and S columns 

=

(nS)(nS)(nS)

(nS)(nS)(nS)

(nS)(nS)(nS)

(nS)

SS2S1S

S22221

S11211

bbb

bbb

bbb

b
.       (2.8) 

 Submatrices bij(nS) are defined using the following rela-

tionships 

b1j(nS) = aS+1-j(nS), j=1,...,S 

and for i = 2,...,S         (2.9) 

. +   
1i

1k=
(S+i-j)j,(i-k)k )1(nS+i-(nS))1(nS+i-(nS) abab = ij

 

 Matrices ak for k = 1,...,S are expressed by (2.3), but for k 

= S+1, ..., 2S-1, zero matrices ak = 0 are used. It should be 

noted that, on the right-hand side of the equations (2.9), each 

time there are terms that were defined earlier. The equation 

(2.7) expresses the one-term recurrence relationship, which 

will be used to determine any vector BnS as dependent on the 

initial vector B0. Making substitutions one after the other 

according to (2.7), we obtain the equation 

n  1 BnS = b(nS)b((n-1)S)...b(S)B0.    (2.10) 

 Introducing a new matrix given as the product of the 

following matrices 

c(nS) = b(nS)b((n-1)S)...b(S),       (2.11) 

(2.10) can now be written shortly 

n  1 BnS = c(nS)B0.      (2.12) 

 Applying the grouping of vectors Aj, defined by (2.5) and 

(2.6), we can express the vector of the dependent variables as 

follows: 

 

Y(x) = x0 ,x1 ,...,xS-1

A0

A1

AS-1

+...+ xnS ,xnS+1 ,...,xnS+S-1

AnS

AnS+1

AnS+S-1

+...
 (2.13) 

 If we substitute the relationship (2.12) into (2.13), we 

obtain  

Y(x) = x0 ,x1 ,...,xS-1 B0 +...+ xnS ,xnS+1 ,...,xnS+S-1  c(nS)B0 +...  (2.14) 

or 

Y(x) = f0 , f1 , ... , fS-1[ ]B0 .       (2.15) 

 fj(x) denotes the R R matrices of the functions defined as 

=1=n
1)+(jkj )( ,cif  + =  

s
nS(x)

1k

1nS+k-j
xx , for j=0,...,S-1   (2.16) 

in which i – is the R R identity matrix. 

 The K-th order derivatives of the functions fj can be easi-

ly calculated by differentiating (2.16) term by term 

 

 f (K)
j (x) = j (j - 1) ... (j - K + 1) ix

j-K  + 

+ (nS + k - 1) (nS + k - 2) ... (nS + k - K)ck,(j+1) (nS)x
nS+k -1-K

k=1

s

n=1

 

for j=0,...,S-1       (2.17) 

 In the two previous formulae, cij(nS) denotes submatrices 

defined by the distribution analogous to (2.8). According to 

(2.16), each function matrix fj is expressed as the power se-

ries beginning with a different power of x. This means [2] 

that these functions are linearly independent, and that the 

vector of sought-after functions Y(x) defined by (2.15) is the 

general solution of the differential equations (1.1), together 
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with S-N (if positive) number of accompanying algebraic 

equations defined by (2.3) for j=0,...,S-N.  

3. EXAMPLE - SECOND ORDER DIFFERENTIAL 

EQUATION  

 In the literature, [5] the series solutions are mostly appli-

cable to homogenous linear ordinary differential equations. 

To illustrate the application of the developed algorithm, we 

consider the following second-order differential equation:  

y
II
+(w12·x

2
+w11·x+w10)y

I
+(w02·x

2
+w01·x+w00)y= 0.     (3.1) 

 First we have to define the recursion formula analogues 

to (2.3) involving S terms on the right side. According to 

(2.4), we expect to get 

S = 2 –min{(1-2), (0 – 2)} = 4, (for N=2, K=0, and mK=2).     (3.2) 

 Substituting (2.1) and (2.2) into (3.1) and rearranging the 

term numbering in every series, we obtain  

0.

)1(

)1()1)(2( 

0=j

j

j00

1=j

j

1-j01

2=j

j

2-j02

0=j

j

1+j10

1=j

j

j11

2=j

j

1-j12

0=j

j

2+j

xxx

xx

xx

=+++

++++

++++

AAA

AA

AA

www

jwjw

jwjj

     (3.3) 

 Grouping the coefficients corresponding to the same 

powers of x and equating to zero produces 

for j=0  2A2 + w10A1+ w00A0 =0 

for j=1 6A3 +2w10A2+(w11+w00)A1+ w01A0 =0     (3.4) 

for j 2 (j+2)(j+1)Aj+2+w10(j+1)Aj+1+(w11·j+w0)Aj+ 

(w12·(j-1) +w01)Aj-1+ w02·Aj-2=0. 

 Substituting m=j+2 and rewriting the recursion formu-

la (3.4) in the form (2.3), we find 

 ,Aa = A       
4S

1=k
k-mkm (m)4m for

=

       (3.5) 

where 

,
)1m(m-

-
(m)

10
1

)w1(m-
a =  ,

)1m(m-

)w)w2-((m-
(m) 0011

2a
+

=  

,
)1m(m-

)w)w3-((m-
(m) 0112

3a
+

=  .
)1m(m-

-w
(m) 02

4a =        (3.6) 

 The next step is to create matrices b(4n) and c(4n) fol-

lowing the formulae (2.9) and (2.11). The entire process 

can be easily programmed, and approximations of func-

tions fj(x) (2.16) can be calculated for finite n terms after 

numerical values are substituted for coefficients wij in 

(3.6). Using the first two equations (3.4) for relating A3 

and A2 to A1 and A0 , we can express the general solution of 

(3.1) as follows: 

y(x)= A0·F0(x)+A1·F1(x),        (3.7) 

where 

,(x)f
6

www
(x)f

2

w
(x)f(x)

3

010010

2

00

0
0F +=

     (3.8) 

.(x)f
6

w-ww
(x)f

2

w
(x)f(x)

3

0011

2

10

2

10

1
1F +=

 

 Functions fj(x), j=0,1,2,3 are defined by (2.16) with 

S=4. Figs. (1 and 2) show diagrams of functions fj(x) and 

Fi(x) for two particular equations (3.1) 

y
II
 + (x

2
±2x+1)y

I
 + (x

2
±2x+1)y= 0.       (3.9) 

 Each time, a different sign for the coefficients w11 and 

w01 is taken. The presented diagrams were obtained using the 

MathCAD program [3]. The first 100 terms (nmax=100) for 

series (2.16) were calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Functions fj(x) and Fi(x) for equation y
II
 + (x

2
+2x+1)y

I
 + (x

2
+2x+1)y= 0.  
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 Using (2.17), we can calculate the derivatives of the so-

lution functions Fi(x). As an example, Fig. (3a) presents 

first-order and Fig. (3b) second-order derivatives of the 

solution functions shown in Fig. (2b). 

4. EXAMPLE - HERMITE EQUATION 

 To show in more detail the development of the func-

tions fj(x), we consider a special case of (3.1). After substi-

tuting for coefficients wij  

w12=0, w11=-2, w10=0, w02=0, w01=0, w00=2p.   (4.1) 

where p is a constant, (3.1) takes the form of the Hermite 

equation [4] 

y
II
 – 2xy

I
 + 2py= 0.       (4.2) 

 For p=0,1,2,... the equation (4.2) has polynomial solu-

tions called Hermite polynomials Hp [4]. We will show 

how these particular solutions are obtained using the algo-

rithm described above. 

 Substituting the values (4.1) into (3.6), we readily find 

,0)4(n1a =  ,
)1n-4n(4

p2)2n-4(2
)4(n2a =  ,0)4(n3a =  .0)4(n4a =       (4.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Functions fj(x) and Fi(x) for equation y
II
 + (x

2
-2x+1)y

I
 + (x

2
-2x+1)y= 0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Derivatives of functions Fi(x) for equation y
II
 + (x

2
-2x+1)y

I
 + (x

2
-2x+1)y= 0. 
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 Hence, the matrices (2.8) according to (2.9) are 

++

+

+
=

)14n(a)34n(a000

0)4n(a)24n(a00

)14n(a000

0)4n(a00

22

22

2

2

)4(nb

 

(4.4) 

 Subsequent multiplication of matrices (4.4) according 

to (2.10) produces matrices c(n4) with only four nonzero 

elements  

=

)4n(c000

0)4n(c00

)4n(c000

0)4n(c00

44

33

24

13

)4(nc .        (4.5) 

 According to (2.16), each function fj(x) is expressed as 

the series created by the summation of elements along the 

columns of subsequent matrices c(n4), each time multi-

plied by appropriate powers of x. Based on (4.5), the 

summation along the first two columns breaks off the se-

ries for the first two functions fj(x) 

 1, =f  (x)0
 

x, =f  (x)1
 

 f2 (x) = x2 + c13(4n)x4n +c33(4n)x4n+2

n=1

, 

 f3 (x) = x3 + c24 (4n)x4n+1 +c44 (4n)x4n+3

n=1

.         (4.6) 

 After applying (4.1) in (3.4) to relate constants A2 and 

A3 to A0 and A1, the general solution of the equation (4.2) 

has the form (3.7) with the following functions Fi(x) 

(x),fp1(x)F
20 =          (4.7) 

.(x)f
3
-p1

x(x)F
31 +=  

 For p=0, the first solution function (4.7) is identical to 

the Hermite polynomial of degree 0, F0(x)=H0(x)=1 [4]. 

For p=1, the second solution function (4.7) takes the form 

of the Hermite polynomial of degree 1, F1(x)= H1(x)=x. 

Figs. (4 and 5) show the solutions for p=2 and p=3. Dia-

grams 4.1a and 4.2a present the functions fj(x) for equation 

(4.2), for p=2 and p=3, respectively. Diagrams 4.1b and 

4.2b show the corresponding functions Fi(x) and particular 

solutions yp(x)=Hp(x), marked with dotted lines. Using the 

formula (3.7), the particular solutions yp(x) are determined 

as curves passing through selected points lying on corres-

ponding Hp(x). The constants A0 and A1 in (3.7) were cal-

culated by applying the corresponding boundary condi-

tions. Assuming for p=2, y(0)=-2 and y(1)=2, we obtain as 

the particular solution the curve y2(x) coinciding with 

H2(x)=4x
2
-2 (Fig. 4b). Analogously, for p=3, assuming 

y(0)=0 and y(1)=-4, we obtain in Fig. (5b) the particular 

solution y3(x) coinciding with H3(x)=8x
3
-12x. In both Figs. 

(4b and 5b), zeros for the particular solutions yp(x) are also 

shown. In the same way, the particular solutions correspon-

ding to the higher-degree Hermite polynomials can be de-

termined as particular solutions of ODE (4.2) satisfying ap-

propriate boundary conditions. 

5. THIRD ORDER DIFFERENTIAL EQUATION AND 

COMBINED CONDITIONS  

 Now we consider a third-order differential equation of 

the form  

y
III

+(w22·x
2
+w21·x+w20)y

II
+(w11·x+w10)y

I
+w00y=0.     (5.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4). Functions fj(x), Fi(x) and particular solution y2(x)=H2(x) for p=2. 
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 This is one of the examples where number S of the “natu-

ral” functions fj(x) defined by (2.16) is equal to the order of 

the equation. According to (2.4), we have 

S = N – min{(0 – 0), (1-1), (2-2)} = 3.      (5.2) 

 This means that a linear combination of functions fj(x) 

forms the general solution 

y(x)= A0·f0(x)+A1·f1(x)+A2·f2(x).       (5.3) 

 To find functions fj(x), we will follow the procedure defi-

ned in Section 2 and illustrated in Section 3. First, substitu-

ting (2.1) and (2.2) into (5.1), rearranging term numbering in 

every series, and grouping coefficients corresponding to the 

same powers of x, we obtain  

,Aa = A       
3S

1=k
k-mkm (m)3m for

=

       (5.4) 

where 

,
m

w
(m)

20a =1
 ,

)1m(m

)w)w3-((m
(m) 1021

2a
+

=  

 .
21

343
001122

3
))(mm(m

)w)w(m)w)(m-((m

(m)a
++

=        (5.5) 

 The elements of the matrices b(n3) (2.8) are defined row 

by row using the general formula (2.9). In our case, we get 

for n>1 and j=1,2,3 

,(n3) (n3) j)-(41j   = ab  

1),+(n3(n3)1)+(n3 (n3) j)-(51j12j  +  = abab       (5.6) 

2),+(n3(n3)2)+(n3(n3)2)+(n3 (n3) j)-(61j22j13j  +   = ababab +  

where a4(m)=a5(m)=0 for every m (e.g. m=n3, n3+1,…). 

The functions fj(x) are 

=

+

+
=

1n=

3

1k

1kn3

)1(j,k

j

j )x3(nc+ = x f (x)2,1,0for j       .     (5.7) 

 The matrices c(n3) are determined as the successive 

multiplication of the matrices b(n3) defined by (5.6), 

conducted in agreement with (2.11). Fig. (6) shows two 

solutions for the example equations. 

y
III

+ (x
2
+2x+1)y

II
 + (x+1)y

I
 + y= 0        (5.8) 

y
III

+ (x
2
-2x+1)y

II
 + (x+1)y

I
 + y= 0.       (5.9) 

 For each case (5.8) and (5.9) in Fig. (6), there are dia-
grams of the functions fj(x) and the particular solutions 
y(x) obtained as curves crossing two selected points (-3,-
1), (3,1) and satisfying the following combined condition. 

y
II
(2)+ y

I
(1) + y(-1)= 0.     (5.10) 

Finding constants Aj satisfying the conditions of any form 

is straightforward (practically in the region where the po-

wer series (5.7) can be calculated) once we have the func-

tions fj(x) (and their derivatives) defined by (5.7) and using 

(5.3).  

6. SUMMARY  

 The method of power-series expansions is used mostly 

to study the functions defined by certain classes of linear 

differential equations. For most of these equations, appli-

cation of the standard method of undetermined coefficients 

leads to two- up to three-term recursion formulae [4]. Due 

to the application of the matrix calculation, the method 

presented in this paper always leads to the one-term recur-

sion formula expressed in the matrix form (2.12). A gene-

ral solution is defined as a combination of functions fj(x) 

expressed by power series independent of unknown cons-

tants. The functions fj(x) are naturally related to the consi-

dered differential equation and are independent of initial 

or boundary conditions. The presented algorithm can be 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Functions fj(x), Fi(x) and particular solution y3(x)=H3(x) for p=3. 
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applied to any system of equations of the form (1.1) wi-

thout formal limitations regarding the order of equations 

or degree of polynomial coefficients.  

 The demonstrated method of applying a matrix calcula-

tion can be easily programmed using a computer. Howe-

ver, the numerical calculation of the power series for func-

tions fj(x) is always limited to the interval around origin 

a<x<b, where a<0 and b>0, even though formally the 

series are convergent for all real x. For greater values of x, 

the calculation involves summation of large real compo-

nents (positive and negative), many orders greater than 

their sum. It requires increasing the precision, which is 

strictly limited for computer calculations using general-

purpose mathematical programs. Within the interval (a,b), 

the values of functions fj(x) and their derivatives can be 

calculated before the initial or boundary conditions are 

stated. Therefore, any form of initial or boundary condi-

tions (or their combination such as (5.10)) can be used to 

calculate particular solutions. The problem of numerical 

calculations outside the interval (a,b) with the application 

of multiple-precision modules needs further consideration.  
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Fig. (6). Functions fj(x) and particular solutions y(x) crossing two points (-3,-1), (3,1) and satisfying combined condition (5.10). Solu-

tions of equations a) (5.8) and b) (5.9).  
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