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Abstract: The present work deals with applying the variational iteration method to the problem of the nonlinear vibra-

tions of multiwalled carbon nanotubes embedded in an elastic medium. A multiple-beam model is utilized in which the 

governing equations of each layer are coupled with those of its adjacent ones via the van der Waals inter layer forces. The 

amplitude-frequency curves for large-amplitude vibrations of single-walled, double-walled and triple-walled carbon nano-

tubes are obtained. The influence of changes in material constants of the surrounding elastic medium and the effect of 

changes in nanotube geometrical parameters on the vibration characteristics are studied by comparing the results with 

those from the open literature. This comparison illustrates that the solutions obtained are of very high accuracy and clari-

fies the capability and the simplicity of the present method.  
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1. INTRODUCTION 

 With the rapid development of nanotechnology, there 
appears an ever-increasing interest of scientists and resear-
chers in this field of science. Nanomaterials, because of their 
exceptional mechanical, physical and chemical properties 
have been the main topic of research in many scientific pu-
blications. Nowadays, they are used as the substantial parts 
of nanoelectronics, nanodevices, and nanocomposites. One 
of these materials attracted great attention due to its high 
mechanical strength is carbon nanotube (CNT). CNTs were 
discovered by Iijima [1] in 1991. In spite of being too small 
and having light weight, they have very large Young’s mo-
dulus in axial direction (nearly 1TPa). Undoubtedly, CNTs 
have the eligibility to be the new and most popular nanoma-
terial of this early part of the 21

st
 century. Since the vibration 

of CNTs are of considerable importance in a number of na-
nomechanical devices such as oscillators, charge detectors, 
field emission devices and sensors, Many researches have 
been so far devoted to the problem of the vibration of these 
Nanomaterials [2-5]. However, most of the investigations 
conducted on the vibration of multiwalled carbon nanotubes 
(MWNTs) have been restricted to the linear regime and fe-
wer works were done on the nonlinear vibration of these 
materials. Recently Fu [6] studied the nonlinear vibrations of 
embedded nanotubes using the incremental harmonic balan-
ced method (IHBM). In that work, single-walled nanotubes 
(SWNTs) and double-walled nanotubes (DWNTs) conside-
red for the study. The present work is an extension of the 
work of [6] for TWNTs using the variational iteration me-
thod (VIM). The aim of this investigation is to feature the 
capability of VIM for finding approximate solutions of many  
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nonlinear vibrating systems. The VIM was first proposed as 
a general Lagrange multiplier method to solve nonlinear 
problems by Inokuti et al. [7] in 1978. This method has so 
far been shown to be effective, simple and accurate for sol-
ving a large variety of nonlinear problems [8-13] and also 
coupled system of differential equations [14, 15] with ap-
proximations converging rapidly to the accurate solutions. 
To illustrate the basic ideas of VIM, consider the following 
general nonlinear system 

  
Lu t( ) + Nu t( ) = f t( )             (1) 

where  L  is a linear operator, N  is a nonlinear operator, and 

  
f t( )  is a known analytic function. According to the varia-

tional iteration method, we can construct the following itera-

tion formulation 

     

u
n+1

t( ) = u
n

t( ) +

0

t

Lu
n ( ) + Nu

n ( ) f ( )( )d     (2) 

so called a correction functional with initial approximation 

of 
   
u

0
t( ) . Here  is called a general Lagrange multiplier, 

which can be determined optimally via the variational theo-

ry, and 
 

u
n

 is considered as a restricted variation [16], i.e. 

     
u

n
= 0 . Now we adopt VIM to the problem of the nonli-

near vibrations of CNTs. 

2. SOLUTION PROCEDURE  

2.1. Applying VIM for Nonlinear Vibration of a SWNT 

 Consider a SWNT of length  l , Young’s modulus  E , 

density 
 

, cross-sectional area A , and cross-sectional iner-

tia moment I , embedded in an elastic medium with material 
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constantk . The nonlinear vibration equation for this CNT is 

in the following form [6] 

    

d
2
W

dt
2

+

4
EI

Al
4

+
k

A
W +

4
E

4 l
4
W

3
= 0           (3) 

 Under the transformations 
    

r =
I

A
,a =

W

r
,

l
=  

    

2

l
2

EI

A
,

k
=

k

A
, = t,  the above equation can be 

transformed to the following dimensionless nonlinear vibra-

tion equation 

    

2 d
2
a

d
2

+
b

2
a +

l

2
a

3
= 0,            (4) 

in which    = 0.25  and 
    b

=
l

2
+

k

2 , is the linear, 

free vibration frequency. Applying VIM constructs the fol-

lowing correction functional on Eq. (4) 

     

a
n+1

= a
n

+ ( )
0

t
d

2
a

n ( )
d

2
+

b

2
a

n
+

l

2
a

n

3
d   (5) 

herein 
n
a  is considered as a restricted variation. Making the 

above correction functional stationary, together with consi-

dering ( )0 0,a = we arrive at 

    
a

n+1 t( ) = a
n

t( ) + ( a
n
) |0

t
a

n
|0
t +

    

+
b

2( )
0

t

a
n
d = 0            (6)  

 Its stationary conditions can be written down as 

    

1 ( ) | =t
= 0,

( ) | =t
= 0,

( )+
b

2 ( ) = 0,

           (7) 

 Solving this, a Lagrange multiplier can be readily identi-

fied as 

    

( ) =
1

b

sin
b
( t) . Therefore the iteration 

formula of Eq. (5) becomes 

    

a
n+1 = a

n
+

1

b

sin
b
( t)

0

t
d

2
a

n ( )
d

2
+

b

2
a

n
+

l

2
a

n

3
d   

              (8) 

 In order to seek the periodic solution of Eq. (4) assume 

the initial approximation to be the linear solution of Eq. (4) 

as 
    
a0 = X cos(

b
t) . This initial approximation is a trial 

function and it is used to obtain more accurate approximate 

solution of Eq. (4). Here 
 

, is the ratio of the nonlinear fre-

quency,  , to the linear frequency, 
  b

. Substituting the 

initial approximation into Eq. (4) results in the following 

residual 

    
R0 ( ) = ( X

2
b

2 +
b

2
X + 0.75

l

2
X

3)cos(
b

)  

    
+ 0.25

l

2
X

3 cos(3
b

)           (9) 

 In order to ensure that no secular terms appear in the next 

iteration, the coefficient of 
   
cos(

b
)  must vanish. There-

fore  

    

= 1 +
3

4
( l

b

)2X 2           (10) 

 Using Eqs. (8) and (9), we have 

    

a1 = a0 + ( )
0

t

R0 ( )d

=
1

(9 2 1)

X cos
b
t( ) + 9X 2 cos

b
t( )

0.0625X 3 cos
b
t( ) + 0.0625X 3 cos 3

b
t( )

   (11) 

with  defined as in Eq. (10). The amplitude-frequency 

response curves for a SWNT for different spring k constants 

are shown in Fig. (1). The material and geometric parameters 

taken here are    E = 1.1TPa, = 1300kg /
   
m

3,l = 45nm,  

the outer diameter 
   
d

1
= 3nm,  and the inner diameter 

   
d

0
= 2.32nm.  In Fig. (1), 

 
is the ratio of nonlinear fre-

quency to linear frequency as discussed earlier and  X  is the 

maximum vibration amplitude. It can be seen that as the 

spring constant  k increases, the nonlinear frequencies tend to 

approach the linear ones especially when  k  exceeds the va-

lue  107 n/m2 . It should be noted that Fig. (1) is exactly the 

same as the figure obtained via incremental harmonic ba-

lance method (IHBM) [6].  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Effect of spring constant k on nonlinear amplitude-

frequency response curves of SWNT. 
 

2.2. Applying VIM for Nonlinear Vibration of a DWNT 

 The nonlinear vibration governing equation for a DWNT 

is in the following form [6]. 
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d
2
W

1

dt
2

+

4
EI

1

A
1
l
4

+
c
1

A
1

W
1

+

4
E

4 l
4
W

1
3

c
1

A
1

W
2

= 0,

d
2
W

2

dt
2

+

4
EI

2

A
2
l
4

+
c
1

A
2

+
k

A
2

W
2

+

4
E

4 l
4
W

2
3

c
1

A
2

W
1

= 0,

  (12) 

where 
 
c
i
 is the coefficient of the van der Waals force bet-

ween the ith tube and the i-1th tube. By substituting the fol-

lowing dimensionless parameters 

    

r =
I
1

A
1

, a
1

=
W

1

r
, a

2
=

W
2

r
,

l
=

2

l
2

EI
1

A
1

,
k

=  

    

k

A
1

,
c

=
c

A
1

, = t, =
A

1

A
2

, =
I
1

I
2

, = 0.25,  

 Eq. (12) can be transformed to the following dimension-

less nonlinear system 

    

l

2
d

2
a

1

d
2

+ B
1
a

1
+ a

1
3

B
2
a

2
= 0,

l

2
d

2
a

2

d
2

+ B
3
a

2
+ a

2
3

B
4
a

1
= 0,

        (13) 

with 
  
B

1
to 

  
B

4
defined as 

    

B
1

= 1 +
c

l

2

, B
2

=
c

l

2

, B
3

=
1

+
c

l

2

+
k

l

2

,

    

B
4

=
c

l

2

          (14) 

 Applying VIM yields the correction functional of Eq. 

(13) as follows 

     

a
1n+1

= a
1n

+
1 ( )

0

t
d

2
a

1n ( )
d

2
+ B

1 l

2
a

1n
+

l

2
a

1n

3
B

2 l

2
a

2n
d

a
2n+1

= a
2n

+
2 ( )

0

t
d

2
a

2n ( )
d

2
+ B

3 l

2
a

2n
+

l

2
a

2n

3
B

4 l

2
a

1n
d

 

            (15) 

herein 
   
a

1n
and 

   
a

2n
, are considered as the restricted varia-

tions. Considering 
    
a

1
0( ) = 0,  and 

    
a

2
0( ) = 0,  the sta-

tionary conditions of the above correction functionals can be 

expressed as follows 

    

a1n : 1 1 ( ) | =t
= 0,

a1n : 1 ( ) | =t
= 0,

a1n : 1 ( )+
l

2
s1

2
1 ( ) = 0,

 

    

a2n : 1 2 ( ) | =t
= 0,

a2n : 2 ( ) | =t
= 0,

a2n : 2 ( )+
l

2
s2

2
2 ( ) = 0,

         (16)  

 Defining 
   
s
1

= B
1

 and 
   
s
2

= B
3

, the Lagrange mul-

tipliers can be readily identified as 

    

1 ( ) =
1

l
s1

sin
l
s1( t)

2 ( ) =
1

l
s2

sin
l
s2( t)

         (17) 

and the following iteration formulas can be obtained  

    

a1n+1 = a1n +
1

l
s1

sin
l
s1( t)

0

t

 

 

d
2
a

1n ( )
d

2
+ B

1 l

2
a

1n
+

l

2
a

1n

3
B

2 l

2
a

2n
d

 

    

a2n+1 = a2n +
1

l
s2

sin
l
s2( t)

0

t

      (18) 

     

d
2
a

2n ( )
d

2
+ B

3 l

2
a

1n
+

l

2
a

2n

3
B

4 l

2
a

1n
d  

 Substituting 
    
a10 = X1 cos(

b
t)  and 

    
a20 = X2 cos(

b
t) , 

as the initial approximations of 
  
a

1
and 

  
a

2
 into the Eq. (13) 

results in the following residuals 

    
R10 ( ) = ( X1

2
b

2 + B1 l

2
X1 + 0.75

l

2
X1

3  

 

B2 l

2
X2)cos(

b
) + 0.25

l

2
X1

3 cos(3
b

)

    
R20 ( ) = ( X2

2
b

2 + B3 l

2
X2 + 0.75

l

2
X2

3     (19) 

    
B4 l

2
X1)cos(

b
) + 0.25

l

2
X2

3 cos(3
b

)  

 Herein , the ratio of the nonlinear frequency   to the 

linear frequency 
 b

, is the unknown constant. Following the 

same approach as above and also eliminating the coefficient 

of 
   
cos

b
t  in the above system due to avoiding the secular 

terms, results in the following nonlinear system which can be 

easily solved using a simple mathematical algorithm such as 

Newton-Raphson technique. 

    

l

2

X
1 b

2
+ B

1
X

1
+

3

4
X

1

3
B

2
X

2
= 0

l

2

X
2 b

2
+ B

3
X

2
+

3

4
X

2

3
B

4
X

1
= 0

       (20) 

 Also the solutions 
  
a

1
 and 

  
a

2
can be achieved from the 

following equations 

    

a
11

= a
10

+
1 ( )

0

t

R
10 ( ) , a

21
= a

20
+

2 ( )
0

t

R
20 ( )   (21) 
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 To calculate the linear vibration frequencies for DWNT, 

we shall first substitute 
    
a

1
= X

1
cos t and 

    
a

2
= X

2
cos t  

into Eq. (13) without considering the nonlinear terms in Eq. 

(13), so that 

    

l

2
+

c

2 2

c

2

c

2 l

2

+
c

2
+

k

2 2

X
1

X
2

=
0

0

   (22) 

 Then by setting the determinant of the matrix in Eq. (22) 

equal to zero, the frequency characteristic equation will be 

obtained. The fundamental linear vibration frequency of 

DWNT is the lowest root of the resulting equation. Fig. (2) 

shows the variation of the nonlinear amplitude-frequency 

response curves of DWNT against the maximum vibration 

amplitude for different spring constants k. The material and 

geometric parameters used to obtain this figure  

are     E = 1.1TPa, = 1300kg/m3,c = 0.3 1012N/m2 , 

   
l = 45nm,d

0
= 1.64 nm,d

1
= 2.32nm  and 

   
d

2
= 3nm . It 

can be seen that the effect of spring constant on nonlinear 

vibration of DWNT is similar to that emerged in the case of 

SWNT (Fig. 1) and this figure is exactly the same figure as 

that obtained via (IHBM) [6].  

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Effect of spring constant k on nonlinear amplitude-

frequency response curves of DWNT. 

 

2.3. Applying VIM for Nonlinear Vibration of a TWNT 

 The nonlinear vibration governing equations for TWNTs 

are in the following form 

    

d
2
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dt
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+
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            (23) 

 In a similar manner, introducing the following dimen-

sionless parameters  

    

r =
I
1

A
1

, a
1

=
W

1

r
, a

2
=

W
2

r
, a

3
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W
3

r
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l
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2
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EI
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A
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,
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= t, =
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1

A
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, =
I
1

I
2

, =
A

1

A
3

, =
I
1

I
3

, = 0.25,  

to the Eqs. (23) leads to the dimensionless nonlinear vibra-

tion equations as 
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            (24) 

 Applying VIM, yields the following correction functio-

nals 
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  (25) 

 In a similar manner as above, making the above correc-

tion functionals stationary, together with considering 

    
a

1
0( ) = 0,

    
a

2
0( ) = 0,  and 

    
a

3
0( ) = 0,  solving their 

stationary conditions, The Lagrange multipliers can be ob-

tained as  

    
1 ( ) =

1

l
s1

sin
l
s1( t), 2 ( ) =  

    

1

l
s2

sin
l
s2( t), 3 ( ) =

1

l
s3

sin
l
s3( t)          (26) 

where 
   
s
3

= B
4

, 
  
s
1

 and
  
s
2

are similar as above. Substitu-

ting 
   
a10 = X1 cos(

b
t) , 

    
a20 = X2 cos(

b
t)  and 

    
a30 = X3 cos(

b
t) , as the initial approximations of 

  
a

1
, 
  
a

2
 

and 
  
a

3
 into the Eq. (24) results in the following residuals 
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 Eliminating the coefficient of 
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) , yields 
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which can be solved using a simple mathematical approach 

to give the unknown constant 
 

. Calculation of the linear 

vibration frequencies for TWNT can be performed in the 

same manner that mentioned earlier for DWNT. Substituting 

    
a

1
= X

1
cos t,a

2
= X

2
cos t  and 

    
a

3
= X

3
cos t  into 

Eq. (24), simultaneously neglecting the nonlinear terms in 

Eq. (24) yields 
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            (29) 

 For a nontrivial solution to exist, the determinant of the 

above matrix must be vanished which leads to the frequency 

characteristic equation to be solved. The fundamental linear 

vibration frequency of TWNT is the lowest root of the resul-

ting equation. The variation of the nonlinear amplitude-

frequency response curves of TWNT against the maximum 

vibration amplitude for different spring constants is also il-

lustrated in Fig. (3). The material and geometric param- 

eters used are
   
c1 = c2 = 0.3 1012N/m2,l = 45nm,d0 = . 

   
0.96nm,d

1
= 1.64 nm,d

2
= 2.32nm,d

3
=3nm  Clearly the 

same behavior as above is indefeasible in the case of TWNT. 

A comparison between the amplitude of the nonlinear vibra-

tion of the first layer of TWNT with its linear vibration am-

plitude is shown in Fig. (4) for
   
X

1
= 3  and    k = 0  against 

the linear period of vibration (
   

=
b
t ). Its worthwhile to 

say that the discrepancy between the linear and nonlinear 

amplitudes increases with the increment of the maximum 

amplitude. In Fig. (5), the parameters are    k = 107 N/m2 , 

   c = 0.3 1012 N/m2  and 
   
d

2
= 3nm . It is observed that 

with the increase of the aspect ratio of the nanotubes, the 

nonlinear vibration frequencies of MWNTs decrease. Due to 

convenience in calculating the nonlinear free vibration fre-

quency 
 

,  the linear vibration frequencies 
  b

 of SWNT, 

DWNT and TWNT for all cases are listed in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Effect of spring constant k on nonlinear amplitude-

frequency response curves of TWNT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The nonlinear amplitude of the vibration of the first layer 

of TWNT. 

 

3. CONCLUSIONS 

 In this paper, we have studied the problem of the nonli-

near vibrations of multiwalled carbon nanotubes with the 

variational iteration method. Using this technique, a correc-

tion functional can be constructed by a general Lagrange 

multiplier, and the multiplier can be readily obtained by va-
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riational theory. Including the application of restricted varia-

tions in correction functional makes it much easier to deter-

mine the multiplier. Numerical solutions have been compa-

red with the results obtained via IHBM and excellent correla-

tion has been obtained. The results clarify the significance 

dependency of the nonlinear free vibration of nanotubes to 

the surrounding elastic medium. The nonlinear vibration 

frequency of nanotubes rises rapidly with increasing the am-

plitude especially when the stiffness of the medium is relati-

vely small. For larger stiffnesses (say    k > 109
N / m

2 ), the 

nonlinear vibration tends to the linear regime. This method 

can be easily extended to the multiwalled CNTs with number 

of walls more than three. It is worthwhile to mention that 

VIM is straightforward and it is a promising and powerful 

technique for solving many nonlinear equations arising in 

mathematical physics. 
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Fig. (5). Effect of aspect ratio 
  
L / d2 on nonlinear amplitude-

frequency response curves for TWNT. 

Table 1. The Linear Free Vibration Frequencies 
  b

of 

SWNT, DWNT and TWNT in Figs. (1-3) 

   b
(THz)  

  k (N / m2)  

 SWNT DWNT TWNT  

0 0.128 0.116 0.111 

107  0.138 0.122 0.117 

108  0.209 0.170 0.156 

109  0.536 0.410 0.365 
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