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Abstract: Laminar free convection flow of viscous, incompressible fluid with variable viscosity and viscous dissipation 

through two horizontal parallel walls embedded in a porous medium is studied. Arrhenius model is used in which the 

variable viscosity is used to be decreasing exponentially with temperature. An approximation technique is defined to ob-

tain the solution of the coupled non-linear equations of the velocity and the temperature fields. The expressions for wall 

shear stress and the rate of heat transfer are also derived. The effects of various parameters, entered into the momentum 

and energy equations, are studied on velocity field, temperature distribution, wall shear stress and rate of heat transfer, and 

are shown graphically. 

INTRODUCTION 

 In nature and in engineering problems on the convective 
flow, viscosity of many fluids varies with temperature. 
Therefore, the results drawn from the flow of fluids with 
constant viscosity are not applicable for the fluid that flows 
with temperature dependent viscosity, particularly at high 
temperature. The fluids that flow with variable viscosity are 
useful in chemical, bio-chemical and process industries as 
well as in physics of fluid flows, wherein the flow of fluids 
is governed by different temperatures. A number of ap-
proximate solution techniques is available in the open litera-
ture for the convective flow in the vicinity of a vertical flat 
plate, embedded in porous medium under different condi-
tions, as proposed by Raptis [1], Cheng and Pop [2], Ingham 
and Pop [3], Haq and Mulligan [4], and Pop and Herwig [5]. 

 Rao and Pop [6] have studied free convection in a fluid 
saturated porous medium with temperature dependent vis-
cosity. Recently, Singh et. al. [7] have studied free convec-
tion flow with temperature dependent viscosity in a fluid 
saturated porous medium, along a vertical isothermal and 
non-isothermal plate using Karman-Pohlhausen integral 
method. More recently, Kankane and Gokhale [8] have used 
Arrhenius model (commonly known as exponential model) 
to study fully developed flow through horizontal channel, 
wherein variable viscosity is decreasing exponentially with 
temperature. However, there are situations when the fluid 
with variable viscosity flows in porous medium. Important 
applications of such flows include geothermal energy utiliza-
tion, thermal energy storage and recoverable systems, petro-
leum reservoirs, chemical catalytic convectors, storage of 
grain, fruits and vegetables, pollutant dispersions in aquifers, 
industrial and agricultural water distribution, combustions in 
situ in underground reservoirs for the enhancement of oil  
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recovery, ceramic radiant porous burners used by industrial 
firms as efficient heat transfer devices, etc. 

 The object of the present work is to study free convection 
flow of a viscous fluid with variable viscosity and viscous 
dissipation through horizontal long channel, embedded in a 
porous medium using Arrhenius model. The coupled non-
linear equations of momentum and energy are solved by ap-
proximation technique. The velocity field, temperature dis-
tribution, wall shear stress and rate of heat transfer are dis-
cussed through graphs for different numerical values of the 
parameters entered into the equations governing the flow. 
The results of this study are in well agreement with those of 
Kankane and Gokhale [8] when permeability of the medium 
is not taken into account. 

FORMULATION OF THE PROBLEM 

 Consider fully developed laminar flow of a viscous in-

compressible fluid of temperature dependent viscosity and 

viscous dissipation between two long parallel, and horizontal 

walls, forming a channel embedded in a porous medium. The 

fluid flows under constant pressure gradient, i.e., 

 

p'

x'
= P' . Since the walls are long enough, all the vari-

ables are functions of 'y  only. Let 2h be the width of the 

channel, 
  
T

1

'
 and 

  
T

2

'
 be the temperatures of the upper and 

lower walls, respectively. In two-dimensional Cartesian co-

ordinate system 
 

x', y'( ) , the x' -axis is taken in the middle 

of the channel and 
 
y' -axis is taken normal to it. The viscos-

ity of the fluid is assumed to be variable, decreasing expo-

nentially with temperature and is given by (Arrhenius model, 

see Kankane & Gokhale [8]) : 

  
μ' = μ

0
e

'
T

'
T
1

'( )
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where, 
 

'
 is the small positive constant, 

 
μ

0
 is constant vis-

cosity and 
 
μ'  is variable viscosity. 

 Under the present configuration, the flow can be shown 
to be governed by the following system of coupled non-
linear equations. 

  

p

x'

'
+

d

dy'
μ'

du'

dy'

μ'

K '
u' = 0          (1) 

  

K
T

d2T '

dy'2
+ μ'

du'

dy'

2

= 0           (2) 

where, the first term on the left hand side of equation (1) is 

the pressure gradient term, the second term is the momentum 

term with temperature dependent viscosity, and the third 

term is the Darcian bulk force term. In fact, the permeability 

term results from the modeling of the momentum exchange 

between the porous continuum and the fluid, according to the 

Darcy law. Darcy term is included as a volumetric force term 

in the momentum equation 
  

. + f = 0  (inertia terms ig-

nored). Also, from the physical condition of the problem and 

kinematic hypothesis 
  
vy = 0  and 

 
vx y( ) , which on applying 

the Newtonian flow rule, the momentum equation leads to 

  

dp '

dx '
= constant = P ' . Hence, the pressure gradient is neces-

sarily constant. In Eq. (2), the first term on the left-hand side 

defines the thermal diffusion and the second term defines 

viscous heating effect. 

 The boundary conditions relevant to the problem are: 

  u' = 0  , 
  
T ' = T

2

'
 at 

 
y' = h   

  u' = 0 ,  
  
T ' = T

1

'
 at 

 
y' = h          (3) 

where,  u'  is the velocity along the channel,  K
'  is the per-

meability of the porous medium,  T '  is the fluid temperature, 

 
K

T
 is the thermal conductivity of the fluid, and other sym-

bols are defined in the nomenclature. 

 We introduce the following non-dimensional quantities 
and parameters; 

 

u =
u'

u
m

, 
 
y =

y'

h
, 

  

μ =
μ'

μ
0

, 

  

T =

T ' T
1

'

T
2

'
T

1

'

, 

  

P =
P ' h

2

μ
0
u
m

 

  

= ' T
2

'
T

1

'
(Viscosity parameter), 

  

K =
K

'

h
2

(Permeabil-

ity parameter), 

  

Pr =
μ

0
C

p

K
T

(Prandtl number), 

  

E
c
=

u
m
2

C
p

T
2

'
T

1

'

(Eckert number) 

 By introducing these non-dimensional quantities and 
parameters in the equations (1) and (2), we obtain: 

  

P +
d

dy
μ

du

dy

μ

K
u = 0           (4) 

  

d2T

dy2
+ Pr Ecμ

du

dy

2

= 0           (5) 

 The boundary conditions (3) reduce to: 

  u = 0  ,   T = 1   at 
  
y = 1  

  u = 0 ,    T = 0   at 
  
y = 1         (6) 

SOLUTION OF THE PROBLEM 

 In order to solve the non-linear system of equations (4)-

(5), we expand u and T in powers of Ec , under the assump-

tion   Ec << 1 , which is valid for incompressible fluids (see 

Raptis et. al. [9]). Hence, we assume : 

  
u = u

0
+ Ecu

1
 and  

  
T = T

0
+ EcT

1
         (7) 

 By substituting (7) in (4) and (5), and equating the con-

stant as well as the coefficients of Ec , neglecting the coef-

ficients of 

  

O Ec
2

, we obtain : 

  

d

dy
e

T
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d2T
0
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1
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+ P

r
e

T
0
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0
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2

= 0         (11) 

 Also, the boundary conditions (6) are transformed to : 

  
u

0
= 0 , 

  
u

1
= 0 , 

  
T

0
= 1 , 

  
T

1
= 0  at 

  
y = 1  

  
u

0
= 0 , 

  
u

1
= 0 , 

  
T

0
= 1 , 

  
T

1
= 0  at 

  
y = 1       (12) 

 The solutions of equations (8) – (11), under the corre-
sponding boundary conditions, (12) are obtained as follows : 

  
T

0
=

1

2
1 y( )           (13) 
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 The constants are given in the appendix. 

WALL SHEAR STRESS AND RATE OF HEAT 
TRANSFER 

 The wall shear stress ( ) is given by : 
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 The rate of heat transfer ( Nu ) is given by : 

  

Nu =
dT

dy
y= 1

         (19) 
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VERIFICATION OF THE RESULTS FOR SIMPLE 
CASES 

1. In the limit, when  K , i.e., in the absence of 

porous medium, the results obtained are similar to 

those obtained by Kankane and Gokhale [8]. 

2. When viscosity parameter is zero, the results obtained 
are in agreement with those of Singh et. al. [10]. 

RESULTS AND DISCUSSION 

 Analytical solutions of the equations of momentum and 
energy (1)-(5) are obtained in (13)-(16). The equations gov-
erning the flow show that the fluid velocity is governed by 
viscosity parameter ( ) and permeability parameter (K), 
while the temperature distribution is governed by Prandtl 
number (Pr), Eckert number (Ec), and viscosity parameter 
( ). In order to get physical depth of the problem and to es-
tablish the effects of various parameters on the flow and heat 
transfer processes, numerical calculations are performed and 
presented in the form of figures. The values of Prandtl num-
ber (Pr) are chosen to be 0.025, 1.0, 7.0, and 11.4, which 
respectively correspond to mercury, electrolyte solution, 
water at 20

0
C and water at 4

0
C and one atmospheric pres-

sure, important fluids in energy and naval / aero-space tech-
nologies [4-5]. The numerical values of the remaining pa-
rameters are chosen arbitrarily, but do retain physical signifi-
cance in real energy system applications [2, 3]. Besides, 
Eckert number (Ec) is included to add a dissipative effect in 
all the flow computations with the nominal value Ec = 0.01, 
0.02. Observations of the variations in fluid velocity, tem-
perature distribution, wall shear stress and rate of heat trans-
fer are made with an aid of a number of graphical figures. 
The value of the constant pressure gradient is chosen to be 
unity, so in all the cases, a flow regime under constant pres-
sure gradient is studied. Besides, when viscosity parameter 
( ) is zero, i.e., when the viscosity variation is independent 
of temperature, the solution converges to the known solution 
expressed in particular case of Singh et al. [10]. The soft-
ware mathematica is used to draw the figures. 

 Fig. (1) shows the variations of the temperature distribu-

tion (T) versus non-dimensional y coordinate, for a set of 

four values of Prandtl number (Pr) and for fixed values of 

viscosity parameter ( ); solid curves for 
 
= 0.5  and dotted 

curve 
 
= 1.5 , with   Ec = 0.01 . As the Prandtl number in-

creases, i.e.,  Pr  rises from 0.025 (mercury) to 1.00 (electro-

lyte solution), 1.0 to 7.0 (water at 20
0
C), and from 7.0 to 

11.4 (water at 4
0
C), i.e., curves I, II, III and IV, the tempera-

ture raised from T = 1 at the lower channel wall (y = 1) to 

approximately T = 1.15 at y =  0.75. Thereafter it decreases 

and ultimately becomes zero at the upper wall (y = 1) of the  
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Fig. (1). Effect of Prandtl number on temperature profile at  

Ec = 0.01. 

channel. As expected, the temperature is seen to decrease 

substantially, but in case of water at 4
0
C (i.e., curve IV), it 

decreases drastically. In fact, the Prandtl number mathemati-

cally defines the rate of momentum diffusivity to the thermal 

diffusivity. Higher-Pr fluids transfer heat less effectively 

than do lower-Pr fluids; consequently, lower temperature is 

observed in profile I as compared with II, III and IV profiles. 

This general trend of decreasing temperature with increase in 

Pr is in agreement with [11-13]. Again, an increase in vis-

cosity parameter ( ) increases the temperature throughout 

the flow region between channel walls. Hence, the viscosity 

parameter exerts a positive influence on the temperature 

throughout the flow region of the channel (
  

1.0 < y < 1.0 ). 

In absence of the porous medium (i.e., when  K ,) our 

results are in well agreement with those of Kankane and 

Gokhale [8]. Besides, the temperature is always constant at 

the channel walls, which satisfies and also verifies the rele-

vant boundary conditions. 

Fig. (2). Effect of Prandtl number on temperature profile at b = 0.5. 

 Fig. (2) represents the variations of the temperature dis-

tribution (T) versus y coordinate for a set of four values of 

Prandtl number (Pr) and for fixed values of Eckert number 

(Ec); solid curves for   Ec = 0.01  and dotted curve 

  Ec = 0.02 , when 
 
= 0.5 . As the Prandtl number increases, 

i.e.,  Pr  rises from 0.025 (mercury) to 1.00 (electrolyte solu-

tion), 1.0 to 7.0 (water at 20
0
C), and from 7.0 to 11.4 (water 

at 4
0
C), i.e., curves I, II, III and IV, the temperature raised 

from T = 1 at the lower channel wall (y = 1) to approxi-

mately T = 1.18 at y =  0.75 and thereafter it decreases and 

ultimately becomes zero at the upper wall (y = 1) of the 

channel. Again, the temperature is seen to decrease substan-

tially, but in case of water at 4
0
C (i.e., curve IV), it decreases 

drastically due to point of maximum density for water, this 

result is consistent with the behavior of higher-Prandtl-

number industrial fluids. Again, an increase in Eckert num-

ber Ec increases the temperature throughout the flow region 

between channel walls. 

Fig. (3). Effect of viscosity parameter on velocity field at Pr = 1.0 

and Ec = 0.01. 

 Fig. (3) shows the variations of the fluid velocity (u) ver-

sus y, for different values of viscosity parameter ( ) with 

fixed values of Prandtl number (Pr = 1.0) and Eckert number 

(  Ec = 0.01 ), when K = 10.0 the variations in velocity are 

shown by solid curves, while by dotted curves, when K = 

20.0. The velocity (u) is maximum for 
 
= 0.0  (indicated by 

I) and minimum for 
 
= 0.7  (indicated by V). This indicates 

that the fluid with low value of viscosity parameter has a 

dominant effect in controlling the fluid velocity. Obviously, 

maximum magnitude is recorded for minimum magnitude of 

viscosity parameter. It is also noted that as permeability pa-

rameter, K, is increased from   K = 10.0  (solid curves) to 

  K = 20.0  (dotted curves), the fluid velocity, u, increased. 

The physical interpretation behind this property is the fact, 

that as K is increased, the bulk porous medium resistance is 

lowered. This in turn, increases the momentum development 

of the flow velocity. We note that in the fluid as  K , the 

Darcian term vanishes and the porous regime transforms to a 

pure fluid regime, and in this case our results are in good 

agreement to those of Kankane and Gokhale [8]. 

 Fig. (4) shows variations of the fluid velocity (u) versus 

y, for values of viscosity parameter ( ) with fixed values of 

Prandtl number (Pr = 1.0) and permeability parameter  
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Fig. (4). Effect of viscosity parameter on velocity field at Pr = 1.0 

and K = 10.0. 

(  K = 10.0 ). When   Ec = 0.01 , the variations in velocity are 

shown by solid curves, while by dotted curves when 

  Ec = 0.02 . The velocity (u) is maximum for curve IV, when 

 
= 0.1 . Obviously, maximum magnitude of velocity is re-

corded for minimum value of viscosity parameter. This 

demonstrates that as viscosity parameter is increased, the 

velocity is decreased for fixed Prandtl number and perme-

ability parameter; a result consistent with [14]. It is also 

noted that a rise in Eckert number (Ec) leads to an increase 

in the velocity. 

 In Fig. (5) we have plotted the wall shear stress 

  

=
u

y y= 1

, i.e., the spatial velocity gradient at the lower 

wall, versus viscosity parameter ( ) for different Pr-fluids. 

Again, two sets of profiles, four for K = 10.0 (solid curves) 

and four for K = 15.0 (dotted curves) are plotted. In these 

plots, we have varied the parameter Pr choosing   Ec = 0.01 . 

The Ec represents very weak viscous dissipation and realisti-

cally represents thermo-convection regimes in nuclear, geo-

physical and naval energy systems [15, 16]. As Pr increased 

from 0.025 (mercury) to 1.0 (electrolyte solution), 1.0 to 7.0 

(water at 20
0
C) and 7.0 to 11.4 (water at 4

0
C), a clear rise in 

wall shear stress is witnessed. Thus, we note that the maxi-

mum wall shear stress occurs in higher Pr-fluid. This shows 

that maximum Pr value fluids boost the wall shear stress. 

Also, we observe that wall shear stress increases with an 

increase in permeability parameter and viscosity parameter. 

Physically, a rise in K implies lower Darcian bulk resistance, 

as the Darcian term, 
 

u k , in the momentum equation ex-

ists in denominator. This, therefore, accelerators the flow, 

increasing the wall shear stress with increase in viscosity 

parameter. 

 In Fig. (6) we have plotted the influence of Prandtl num-

ber (Pr) versus viscosity parameter ( ). Heat transfer is em-

bodied in Nusselt number 

  

Nu =
T

y y= 1

, i.e., the surface 

temperature gradient at the lower wall (y = 1), as defined in 

equation (19). In all plots, we observe that Nu has maximum 

value for K = 15.0 and Pr = 11.4, and minimum value for K 

= 10.0 and Pr = 0.025 (mercury), which suggests and also 

confirms the utility and applications of mercury in energy 

systems and thermo-convection regimes [17, 18]. 

Fig. (5). Effect of Prandtl number on wall shear stress at Ec = 0.01. 

CONCLUSIONS 

 In this work, a general criterion for free convection flow 
with variable viscosity through horizontal channel, embed-
ded in porous medium using Arrhenius model, is presented 
in terms of parameters of engineering importance, which 
include viscosity parameter, permeability parameter, Prandtl 
number, and Eckert number. The criterion proposed in this 
study is more general than the previous criterion suggested 
by Kankane and Gokhale [8], because the present analysis is 
applicable when free convection is the dominant heat trans-
fer mode in a porous medium; an important medium used is 
geophysical and aerospace systems technologies [2]. 

Fig. (6). Effect of Prandtl number on rate of heat transfer at  

Ec = 0.01. 

 In the present study, it is observed that the temperature 
dependent viscosity has a substantial effect on the drag and 
heat transfer characteristics within the boundary layer. 
Therefore, it can be concluded that when the viscosity of the 
working fluid is sensitive to temperature variation or the 
temperature differences between the channel walls and the 
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ambient fluid is moderate, the variable viscosity effect has 
dominant role and be taken into consideration. Otherwise, in 
the prediction of wall shear stress and heat transfer rate, a 
considerable error may occur.  

 The conclusions of the study are as follows : 

 An increase in Prandtl number (Pr) decreases tem-
perature. 

 An increase in viscosity parameter ( ) increases the 

temperature between channel walls throughout the 

flow region. 

 An increase in Eckert number (Ec) increases the tem-
perature between channel walls throughout the flow 
region. 

 An increase in permeability parameter or Eckert 
number increases the fluid velocity. 

 An increase in viscosity parameter decreases the ve-
locity. 

 An increase in Prandtl number, permeability parame-
ter or viscosity parameter increases the wall shear 
stress. 

 An increase in Prandtl number or permeability pa-
rameter increases the rate of heat transfer. 
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NOMENCLATURE 

 
C

p
 = Specific heat at constant pressure 

 
E

c
 = Eckert number  

 h  = Width of the channel 

 K
'
  = Permeability of the porous medium, 

 
K

T
  = Thermal conductivity 

 K  = Permeability parameter 

 Nu  = Rate of heat transfer 

P = Non-dimensional pressure 

  

P ' =
p '

x '
 = Constant pressure gradient 

 Pr  = Prandtl number 

 T  = Non-dimensional temperature 

 T '   = Fluid temperature 

  
T1

'
,T2

'
 = Temperatures of the upper and lower  

   walls 

 u  = Non-dimensional velocity 

 u'   = Velocity along the channel 

 
u
m

 = Mean velocity 

  
x, y  = Non-dimensional coordinates 

  
x ', y '  = Coordinate system 

Greek Symbols 

 

'
  = Small positive constant 

 = Viscosity parameter 

 
μ

0
  = Constant viscosity when 

 
' = 0  

 
μ'   = Variable viscosity 
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