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Abstract: The effect of spin on the equation of motion of a sliding object is assessed. The spatial dependence of the 
friction force on a spinning object is calculated and used to describe the equation of motion. 
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1. INTRODUCTION 

 The dynamics of a curve ball represents a well known 
example of the complex interactions between translation, 
rotation, and friction. A related example, which is finding a 
burgeoning range of applications, concerns the equation of 
motion of a sliding, rotating object such as a disk. When two 
objects slide along each other, there is often some 
component of rotation in addition to translation. The rotation 
adds complexity to the interaction, and there is no general 
approach that takes this into account in a systematic way. 

 Let us adopt the simplifying assumption that the 
magnitude of the kinetic friction force is proportion to the 
normal force. Then for an object either sliding without 
rotating, or rotating without sliding on a flat surface, the 
equation of motion is trivial. But if it is simultaneously 
rotating and sliding then the equation of motion becomes 
surprisingly complex. 

 A related effect was recently discussed that concerned a 
rotating sliding disk: It was shown that, due to rotation, the 
translation of a sliding object will end when the rotation does 
[1]. In their analysis they assumed that the normal force was 
constant, but also recognized that the normal force is not 
really constant, and deduced that the object would 
experience a sideways deflection. These authors also point 
out that there are important applications to packing and 
settling, and possibly to avalanches. In this paper I will 
derive this sideways deflection force and describe the 
equation of motion under certain approximations. This 
problem has also been discussed by Penner [2] where the 
application is the game of curling. In that work a functional 
form for the normal force is assumed whereas here the 
normal force is derived. Another interesting aspect of this 
problem is that, although we start with the assumption that 
the coefficient of sliding friction is independent of speed, the 
net frictional force is in fact a function of velocity. Velocity 
dependent frictional forces may also play an important  
part in the dynamics of sphere packing [3], exact solitonic  
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traveling wave solutions [4], nanotribological properties of 
C 60  [5].  
 The effect is readily visible in many common lab or 
household situations and may be seen in sliding a cup or 
tumbler along a kitchen counter top, a kilogram mass (right 
cylinder) along a desktop, and of course many other similar 
situations. The effect was most pronounced when sliding a 
felt bottom chess piece (a pawn) along a polished dining 
room table. 

2. EQUATION OF MOTION 

 The qualitative explanation is that the normal force on an 
object sliding with friction is not uniform, but is greater in 
the front (the direction of motion). Therefore, when looking 
at the friction component that arises from the spin it is 
evident that it is greater in the front than the back. This 
breaks the symmetry and produces a net force in the side 
wise direction, depending on the direction (up or down) of 
the spin. 

 To see the basic physics in a simple case, consider two 
small cylinders connected by a rigid massless rod— a 
squared off dumbbell, as shown in Fig. (1). Each cylinder 
has a height 2b , mass m , and are separated by a distance of 
2a . Assume the ``dumbbell'' slides without rotating parallel 
to the rod. Then, assuming that the torque must vanish 
(otherwise it would flip up) one finds (See Appendix for 
details on derivation),taking the coefficient of kinetic friction 
to be µ , 
 
 
 
 
 
 
 

 

Fig. (1). The z  axis points up out of the page, so the 
counterclockwise rotation of the dumbbell has angular momentum 
in the postive z  axis. 
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           (1) 

            (2) 

where N
a

 is the normal force on the front cylinder, cylinder 
A, and N

b
 is the normal force on the rear cylinder, cylinder 

B. 

 Now suppose we consider the effects on an ordinary 
drinking tumbler. Before doing a detailed calculation one 
may place an upper bound on the sideways deflection by 
approximating the tumbler of radius a  by the dumbbell, and 
taking the y  component of the force to be !µN

a
+ µN

b
, 

which gives a deflection of !µkgt 2  where k = µb / a . This 
is an over estimate because the force is distributed, and not 
all acting on ±a , and also because the direction varies along 
the rim. 

 Now consider an instant when this object is rotating 
about its center of mass while the center of mass is 
translating in the x  direction. Let   xx̂  be the coordinate  
to the center, aâ  be a vector from the CM to the cylinder  
A, !aâ  to the cylinder B, so that the positions of the 
cylinders are  

  
r

a
= x + a             (3) 

  
r
b

= x - a   

and the velocities are 

   
v

a
= (U - awsin!) x̂ + awcos! ŷ           (4) 

   
vb = (U + awsin! )x̂ - awcos! ŷ    

where  U = !x  and !  is the angular velocity which points in 
the plus z  direction. 

 From now on the subscripts a  and b  will be dropped: 
cylinder A will be specified by !  and B by ! + " , and if no 
parenthetical value of a quantity is explicitly given it, then it 
is taken to be a function of ! . We can take the torque 
perpendicular to the direction of the rod in the (x, y)  plane to 
vanish and find (the derivation is in the Appendix) 

        
(5)

 
 To model a tumbler, which we assume has a bottom 
characterized by a thin ring of radius a , it is assumed that 
the frictional force from an element of the tumbler at !  is 
given by 

  
!f = -µ!Nv̂             (6) 

where  v̂  is the unit velocity vector, and !N  is given by (5) 
with m  replaced by !m  where !m = (m / (2" )d# . Thus the 
total frictional force on the tumbler is given by 

           
(7)

 

 In order to obtain an expression for the deflection in the 
y  direction, the 

 
y  component of this expression is 

considered next. The integration may be simplified if we 
restrict our attention to small k , which is usually valid for a 
wide variety of conditions (but not always)1. With this, !N  
is 

    
(8)

 
The force in the y  direction is given by the y  component 
of (7), which, with (8), becomes after integration 

         (9) 

 
where E  is the complete elliptic integral of the second kind, 
K  is the complete elliptic integral of the first kind, and 
! = a" /U . 

 Now let us consider the motion of the center of mass: We 
assume that, to lowest order, the coupling between 
translation and rotation is ignored, so that 

U =U
0
! µgt           (10) 

! =!
0
" µgt / a.  

where U
0

 is the initial velocity and !
0

 is the initial angular 
velocity. 

 To the next order of approximation these are used in  
(9). I have not found an analytical expression for this integral 
so its numerical evaluation will be given. The results of 
course depend on various parameters, the initial translational 
speed U

0
, the initial angular velocity !

0
, the ratio of 

tumbler height to radius b / a , and as before the coefficient 
of kinetic friction µ  (the mass m  of the tumbler drops away 
when the acceleration and its integrals are computed below). 
The most important of these is the value of k  (= µb / a ) 
which contains the ratio of height to width. For a fixed 
radius, then the taller the tumbler, the bigger the effect is. 
This result follows from the same ``common sense'' notion 
that the taller (and narrower) the object is, the more likely  
it is to tip over. Essentially, what happens is that the ratio  
on the force at the front edge to the force on the back  
edge increases as the object gets taller and narrower.  
Typical values for a tumbler on a common black lab  
table are, a = 4  cm,  b = 8 cm, U

0
 = 100 cm sec !1 , 

µ = 0.05 , and !
0
= v

0
/ a . These numbers give the glass a 

two second time of flight, with the rotation ending at the 
same time as the translation. 
 Thus the velocity in the y  direction is given by 

                                                
1Actually, the approximation is  

 For the numerics used later this can be shown to be a 

good approximation. 
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          (11) 
and the displacement 

          
(12)

 
 A useful way to exhibit this is a parametric plot of y  vs. 
x . Using (12) and x , found from integrating (10), this is 
shown in Fig. (2). Experiments performed on a common 
black lab table, also shown in Fig. (2). 
 The data was taken as was more of a reality check of the 
results than a proper physics experiment. A line was drawn 
across the glass with a marker and the initial angular velocity 
was obtained by measuring the angular rotation with a stop 
watch. In a better experiment this could easily be measured 
with a strobe light. The glass was started by hand, and only 
those ''slides'' that started along the x  axis were kept. 
 
 
 
 
 
 
Fig. (2). The solid line is the theoretical result for the negative of 
the y  displacement vs. x  in cm. The solid circles are the data of 
Tthe typical results of an experiment, measured in cm. 

 

 

 

 

 

 

 

 
Fig. (3). The negative of Fy  vs. time in cgs units. 

 Another interesting aspect of the dynamics is that the 
deflection force increases slightly just before the tumbler 
comes to rest. This seems wrong at first glance, because the 
friction force is assumed to be independent of the magnitude 
of the velocity. But the friction force does depend, of course, 
on the direction and, as (8) shows, this enters into the 
resulting force. This is shown in Fig. (4), which is a plot  
of Fy  vs t  and shows that the deflective force increases 
somewhat as the tumbler nears the end of its motion. This is 
a direct result of the fact that the force increases with 
decreasing ! , which is what Fig. (4) really shows. 
 Although the main thrust of this paper has been with the 
sideways deflection force, we can also look at the force in 
the x  direction, and demonstrate the non-obvious result that 
this forces decreases due to rotation, as first shown in [1]. 
 From (7) we have 
F
x
= !µmgI

x
          (13) 

where 

    (14) 

 
 The integral may be evaluated in terms of elliptic 
integrals, but the graph is more illustrative and is shown in 
Fig. (5). For zero rotational velocity ! = 0  and I

x
=1  which 

shows that for an object under pure translation the frictional 
force in the x  direction is !µmg , as we know, but that  
as the rotational velocity increases the frictional force 
decreases. 

3. SUMMARY 

 A simplified analysis of a sliding rotating object has been 
presented which shows how a sideways deflection force 
arises from the detailed interaction of translation and 
rotation. It is assumed that the friction is given solely by the 
coefficient of kinetic friction, which is assumed to be 
independent of the magnitude of the velocity. In reality, as 
the object comes to rest, the coefficient of kinetic friction 
must rise to the value of static friction. From this we can see 
that the actual coefficient of friction must be a function of 
the velocity, one that increases with decreasing speed. 
 
 
 
 
 
 

 
 
Fig. (4). This shows that the frictional force in the x  direction 
decreases with increasing rotational velocity ( ! = a" /U ) . 

 In addition, as the spinning tumbler comes to rest, one 
part of the tumbler may find itself at rest with respect the 
table momentarily. At this point the coefficient of static 
friction, which is substantially larger than the coefficient of 
sliding friction can dominate the final moments of the 
motion. 
 None of these effects is included in the theory, but at 
times their effects may be manifested in the experiments. 
Other variations are caused by the fact that the coefficient of 
friction along a typical surface is not really constant, even 
for clean lab table. In the case of the pawn and kilogram 
mass, where the deflection is considerably bigger, the 
coefficient of friction is larger, and, of course, the ring 
approximation fails and the method should be generalized to 
a disk surface. 
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APPENDIX 

 The object of this appendix is to derive (5). In order to do this it is necessary to discuss in more detail the nature of the 
model. The dumbbell is assumed to consist of two point masses, A and B. In a real dumbbell each mass would have some non-
zero base area, and of course the normal force would vary throughout this area. In this case, assuming the dumbbell remains flat 
on the table, we would have to set the total torques in the ( x, y ) plane equal to zero. Setting the torque along the axis 
perpendicular to the connecting rod axis to zero is a statement that the object does flip end over end style, and setting the torque 
along the axis to zero states that it does not “roll”, or rotate around the rod axis. If we were really interested in a dumbbell, we 
would have to specify the width (measured perpendicular to the rod) of each cylinder, and compute the torque along the 
associated axis and insure that it does vanish. But we are using the dumbbell as a stepping stone to the tumbler, so we will stick 
with the point mass approach in which case we can only set the torque perpendicular to the connecting rod to zero. 
 To do this, we call the frictional forces on cylinders A and B 

  
f

a
 and 

  
f

b
 and assume they are µ  times the normal force in 

magnitude, and opposed to the direction of the velocity so that. 
 The torque, ! , through the center of mass about the axis perpendicular to the connecting rod arises from the normal forces 
and the friction forces. The component of the friction force on cylinder A along  a  is 

  
f

a
! â , and similarly for the other friction 

force. Thus the torque is 
! = a(N

a
" N

b
) + bâ # (f

a
+ f

b
)                      (15) 

where f
a
= !µN

a
v̂
a

 etc. Also, since each mass is m  we have 
Na + Nb = 2mg.                        (16) 
 These two equations may be solved for N

a
 and N

b
. N

a
 is found to be 

                     
(17)

 
Now remember that 

  
v̂

a
= v

a
/ v

a
 and use the notation that v

a
= v(!)  and v

b
= v(! + " )  and this result becomes (5).  
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