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Abstract: The problem of generation and existence of large-scale vortices in the ionosphere is analyzed in this paper. 

Some exact solutions of the magneto-hydrodynamic (MHD) equations have been found and new invariants have been 

constructed allowing to descover mechanisms of generation of large-scale vortices and planetary waves in the 

electroconducting atmosphere under the action of non-conservative Coriolis and Ampere forces. 

1. INTRODUCTION 

 Recently the problem of study of dynamics of large-scale 

( 10
3

10
4

km) motions in the ionosphere against the 

background of which occur almost all physicochemical 

processes is in the focus of attention of the researches 

investigating the upper atmosphere. This is caused by the fact 

that at the considered altitudes ( 80 600 km) atmosphere is 

weakly ionized ionospheric plasma the charged component of 

which instantly reacts to any changes of the dynamic mode of 

the neutral component of ionosphere. The response to the 

dynamic impact has electromagnetic character. It propagates in 

the medium with velocity above 1 km s
1

 in the form of 

natural (background) oscillations and contains valuable 

information about external sources and electrodynamic 

precesses in the upper atmosphere. The response is registered by 

ionospheric and magnetic observatories during magnetic storms, 

substorms [1], earthquakes [2-4], spacecraft startups [5,6] etc. In 

the latter case, the response represents solitary, large-scale 

cyclonic and anticyclonic type vortex structure. Interpretation of 

the response of ionospheric plasma is a main goal of the 

researchers of the upper atmosphere and near-earth cosmic 

space [7-11]. 

 The problem of generation and conditions of existence of 

large-scale vortices in the ionosphere is analyzed in this 

paper. Some exact solutions of the magneto-hydrodynamic 

(MHD) equations have been found and new invariants have 

been constructed allowing to reveal the mechanisms of 

generation of large-scale vortices and planetary waves in the 

electroconductive atmosphere under the action of non-

conservative Coriolis and Ampere forces. 

2. MODEL OF MEDIUM AND BASIC EQUATIONS 

 Weather-forming low frequency ( 10
4

10
6

 s
1

) 

planetary-scale processes proceed very slowly in the  
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troposphere, with local wind velocities ( 5 20  m s
1

) [12-

14]. As observations have shown [12,15,16], large-scale 

dynamic processes in the ionosphere have long time intervals 

(from ten seconds up to several hours for electromagnetic 

planetary waves, and from two days up to two weeks and 

more for Rossby-type waves) and velocities from 

 10 100  m s
1

 up to several tens of k m s
1

. Time of 

global impact of the above sources on the ionosphere 

corresponds to the frequencies of electromagnetic planetary 

waves [6,12]. This leads to the resonance amplification of 

the amplitudes of these wave oscillations and allows 

registering them by delay of perturbation by ionospheric and 

magnetic observatories located at the same latitude and 

thousands of kilometres distant from each other. 

Characteristics of the dynamic processes in the upper 

atmosphere is determined by the presence of 

electroconductive component and by effect of geomagnetic 

field on this componenet. Presence of anisotropic 

conductivity and inhomogeneous geomagnetic field gives 

additional electromagnetic elasticity to the upper atmosphere 

of the earth. As a result, dynamic processes in the ionosphere 

can be described by three-component liquid model: pressure 

of neutral molecules (neutral gas) Pm , pressure of electrons 

(electron gas) Pe  and ions (ion gas) Pi , and also pressure of 

geomagnetic fild 
  
P

H
= H

0

2
/ 8 = Q

2
/ 8 r

6
, where H0  is a 

strength of geomagnetic field, 
  
Q = 8,1 10

25

 Gauss sm
3

 - 

magnetic dipole moment of the Earth,  r - distance between 

the centre of the Earth and the selected point. Magnetic 

pressure PH  in the  E  and  F regions of ionosphere 

( 80 600 km) hardly changes with hight and approximately 

equals 4 10 3
 
dyne sm

2
. On the contrary, the pressure of 

the molecules Pm , rapidly (exponentially) decreases with 

height and at the altitude of 130 km 
 
P

m
P

H
 [17]. Pressure 

of ionospheric plasma 
  
P

pl
= P

e
+ P

i
2N kT

e
 is always 
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much less than Pm  and PH . For example, even for the 

maximum values of the ionospheric plasma consentration 

  N ~ 10
7

 sm
3

 and temperature of electrons 
  
T

e
2000

0
K 

the plasma pressure - 
  
P

pl
= 10

5

 
dyne sm

2
. Therefore, 

excluding diffusion processes, the effect of plasma pressure 

on the ionosphere can be neglected at the interval of latitudes 

80–600 km [18]. Consequantly, dynamic processes in the 

ionosphere, depending on the altitude, will be determined 

either by pressure of the neutral gas Pm  (region of altitudes 

80–130 km) or by magnetic pressure (region of altitudes 

above 130 km). The intensity of the influence of some or 

other factor essentially depends on the ionization degree of 

the medium 
  

= N / N
m

, as well as on the values of the 

gyrofrequencies of the electrons e = eH0 / mc , ion’s 

  i
= eH

0
/ M c , frequencies of collision of charged 

particles with each other ei  and with neutral molecules 

em , im . Here e  - elementary charge, m  and M  - masses 

of electrons and ions respectively, c  - light speed, Nm  - 

concentration of neutral molecules. In the ionosphere, in the 

region of altitudes 80–600km:
  å

10
7

 s
1

, 

  i
(1.5 3) 10

2

 s
1

. Maximum value of collision 

frequencies in the lower  E  region (80–130 km) equal 

respectively:
  ei

10
4

 s
1

, 
  em

10
5

 s
1

, 

  im
10

3
10

4

 s
1

. Therefore, here are the following 

inequalities: 

e >> e , i << im ,          (1.1) 

where e = ei + em . Consequently, in this region of the 

upper atmosphere the electrons are magnetized (geomagnetic 

force lines are frozen-in the electronic component), however 

ions are not. Ions, as passive impurities, are completely 

entrained by neutral particles [12,17]. As frequencies of 

collisions very rapidly decrease with altitude, beginning 

from 120 km and above, the second inequality (1.1) is 

violated and takes the following form: 

i > im .           (1.2) 

 As a result, plasma component in the upper  E - and  F  

regions will be completely magnetized. Taking into account 

the above inequalities, the general expressions are simplified 

for the coefficients of Hall’s H  and Pedersen’s  

conductivities (transversal conductivity) and in the lower  E  

region (80–130 km), (Hall’s region), and take the following 

form [12]: 

  
H

=
eNc

H
0

, 

  

=
e

2
N

M
im

, 

  

H
=

im

i

>> 1 ,       (1.3) 

 For low frequency, slow planetary waves 

(   L 10
3

10
4

km) in this region of atmosphere the 

inequalities always are as follows << i < im , i.e. 

frequency of collisions im  is more than characteristic wave 

frequencies  and ions cyclotron frequency i . However, 

wave equation in this region of the upper atmosphere does 

not contain frequency of collisions due to the Hall’s effect 

(see Eq. (1.3)) and the decisive role of collisions manifests in 

the form of wave equation allowing for the gyroscopic effect 

conditioned by geomagnetic field. 

 Correspondingly, for the upper  E  and  F regions (130–

600 km) we have: 

  

H
= e

2
N

1

m
e

1

M
i

= 0 , 

  

=
NMc

2

im

H
0

2
.        (1.4) 

 From equation (1.3) it follows that in the lower  E  region 

transversal conductivity  can be neglected in comparison 

with Hall’s conductivity 
 H

. The latter, as follows from 

equation (1.3) does not depend on collision frequency of 

particles and does not contribute to dissipation of motion 

energy. Electromagnetic Ampere force 
   
F

A
= [j H

0
] / c  per 

unit mass caused by Hall current has gyrotropic nature and 

acts on medium like Coriolis force
   
F

A
= N [V

i
] / N

m
. In 

the upper  E  and  F  regions ampere force caused by 

Pedersen conductivity has dissipative nature and takes form 

of Rayleigh friction 
   
F = N

im
V / N

m
= V , where 

   
V = V (VH

0
)H

0
/ H

0

2
,  V  - velocity of neutrals. In the 

region of altitudes of 80–115 km turbulent mixing is also a 

substantial factor of motion dissipation [13,14]. The reason 

of turbulence in this region of atmosphere is destruction of 

the internal gravity and planetary waves. Turbulent motions 

transform into laminar motions in the region above 115 km. 

 Taking into account the above equation, the medium 

motion equation for lower  E  region can be presented in the 

following form [17]: 

   

d V

dt
= P + g + [V 2

0
] +

i
[V

i
] +

2
V

z
2

.   (1.5) 

 As equation (1.5) does not contain magnetic field h  

induced by motion, equation (1.5) together with continuity 

equation: 

   t
+ ( V) = 0           (1.6) 

and the heat influx: 

  

dP

dt
+ P V = .         (1.7) 

with a given heat influx  forms a closed system. Here P  

and = MNm  - pressure and density of neutals, 
 
g  - 

acceleration vector of gravity force, 
 0

 - angular velocity 

vector of the earth rotation (always directed from the south 

to the north),  - turbulent mixing coefficient, 
 i

= M
i
N

i
 - 
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ions density,  z - vertical coordinate,  - polytropic index. 

The system (1.5)-(1.7) represents equations of atmospheric 

hydrodynamics, in which additional Coriolis-type 

mechanical force of magnetic nature is caused by existence 

of geomagnetic field 
 
H

0
 and Hall’s electroconductivity. In 

this approximation, in the ionosphere  E  region generation 

of large-scale waves of electromagnetic nature (due to the 

full entrainment V Vi ) is impossible. Velocity of electrons 

in the ionosphere  E  region, taking into account Ve >>V Vi  

[17], is directly determined by current density
 
j : 

   

V
e

1

eN
j =

c

4 eN
h .         (1.8) 

 In this case induced magnetic field  h  is determined from 

the Maxwell’s equation: 

   

h

t
= [V

e
H

0
] =

c

4 eN
[ h H

0
] ,      (1.9) 

here 
 
H

0
 - geomagnetic field vector (always directed from 

the north to the south),  h  - its perturbation (deviation from 

 
H

0
). Equation (1.9) for the middle-scale processes 

(  L 10
3

km) in the  E  region, as an exact solution, contains 

oscillating branch of helicons (“atmospheric whistles”); for 

large-scale processes (  L ~ 10
3

10
4

km) when 

inhomogeneous geomagnetic field effect can not be 

neglected, (
  

H
0

0 ), as shown below, this equation 

describes electromagnetic planetary waves (new branch of 

electromagnetic oscillations of the ionospheric resonator). 

 In the  F region, plasma component of atmosphere is 

completely magnetized and Ampere force takes form of 

elastic electromagnetic force: 

  
F

A
=

1

4
[ h H

0
] .       (1.10) 

 As a result, a closed system of equations of single-

component magnetic hydrodynamics with given heat influx 

, taking into account equations (1.6) and (1.7), can be 

presented in the following form [12]: 

   

d V

dt
= P + g + [V 2

0
] +

1

4
[ h H

0
] ,   (1.11) 

   

h

t
= [V H

0
] + H

0

1

i im

1

4
[ h H

0
] .    (1.12) 

 For the lower  E  region, taking rot  from both parts of 

equation (1.5) on condition of the absence of dissipative 

forces, we will find condition of conservation of the new 

invariant [19,20]: 

   

helm V + 2
0

+
N

N
m

e

M c
H

0
= 0 .      (1.13) 

 Here operator helm  for any vector field a  has the 

following form [21]: 

   
helm a =

a

t
[V a] + V a .      (1.14) 

 Equality 
   
helma = 0  means conservation (“freezing-in”) 

of both, force lines of vector  a  and intensity of vector tubes 

[21]. 

 In the absence of magnetic field 
  
( H

0
= 0)  from equation 

(1.13) we get a well-known condition of conservation 

(“freezing-in”) of absolute vortex 
  

V + 2
0

 [22] which, 

as a particular case, contains slow weather-forming planetary 

Rossby waves caused by inhomogeneous angular velocity of 

the earth rotation 0 0 . In the minimums and maximums 

of planetary waves always are located tropospheric cyclones 

and anticyclones, which together with the wave propagate 

with the velocity of a medium zonal wind
  
( 10  m s

1
) and 

actually determine regional weather in the lower atmosphere 

of the Earth. From equation (1.13) it follows that in the 

lower part of the  E  region must exist slow planetary waves, 

caused by inhomogeneities of 0  and H0 . From (1.11) 

and (1.12) for the incompressible dissipativeless of 

ionosphere, we get: 

   

helm ( V + 2
0

) =
1

4
[ h H

0
] ,     (1.15) 

   
helmH = 0 ,         (1.16) 

where
 
H = H

0
+ h . Equation (1.15) shows partial freezing-in 

of the absolute vortex, and equation (1.16) – complete 

freezing-in of magnetic field  H  in the  F  region. The 

equations (1.13) and (1.15) are generalized Fridman–

Helmholtz equations for the ionospheric medium. When 

H0 0  they change to Fridman’s equation for the absolute 

vortex 
  

V + 2
0

, and when H0 0  and 
 0

0  - to 

classical Helmholtz equation for vorticity
  
rot V . These 

equations have remarkable feature, in particular, for large-

scale processes time derivative from vorticity 
   
d V / dt  is 

one of the main members (this property is absent in the Euler 

equation of motion (1.5) and (1.11), in which inertial 

member 
   

d V / dt  is negligibly small in comparison with 

the other members). In the absence of certain information 

about the main forces (pressure gradient, gravity force), it 

allows composing prognostic equations and carry out their 

numerical integration. Another important feature of the 

Fridman–Helmholtz equation in comparison with the Euler 

equation is natural accounting of inhomogeneous effects of 

angular velocity of the earth rotation 
 0

 and geomagnetic 

field 
 
H

0
. Finally, Fridman–Helmholtz equation is a basic 

condition of motion, in which 
 

V  is always nonzero.  
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Equations (1.13), (1.15) and (1.16) contain full information 

about evolution of vortices and planetary waves caused by 

nonconservative forces (
   
rot F 0 ) in the fluid. In the 

ionosphere, these are Coriolis forces 
  
F

K
= [V 2

0
]  and 

the Ampere force 
  
F

A
= [ h H

0
] / 4 . 

 Thus, we can conclude that the  E  region (80–150 km) 

behaves as a neutral medium. Here ion component of plasma 

is present as passive admixure and moves together with the 

neutal component ( Vi V ) [12,17]. Dynamic processes in 

this region of the upper atmosphere are mainly caused by 

pressure  P  of the neutral gas. The electron component, 

which is completely magnetized here, considerably depends 

on the geomagnetic field
  
(P

H
/ P

e
>> 1) . Regardless of the 

neutrals, it moves with the drift velocity 

   
V

e
= c [E H

0
] / H

0

2
= V

d
 caused by the vortical electric 

field, the value of which for large-scale processes 

substantially exceeds ionospheric dynamo field generated in 

the ionosphere by the wind mechanism 
   
E

d
= [V H

0
] / c  

[23]. Generation and evolution of large-scale vortical and 

wave motions in this region of the upper atmopshere should 

be investigated on the bases of three-fluid model of 

hydrodynamics: applying equations (1.5)-(1.7) for the 

neutrals and ions 
  
(V = V

i
) , and for the electrons - equations 

(1.8) - (1.9). Physical processes in the neutral component 

will have hydrodynamical character. The large-scale low-

frequency processes preceed quite slowly – with the velocity 

of ionospheric winds (10–100 m s
1

). For the electrons 

large-scale processes are faster (800–900  m s
1

– 

10 km s
1

) and wavy motions have electromagnetic nature. 

 In the  F  region (150 – 600km) electrons and ions are 

completely magnetized, e >> e , 
 i

>>
im

. They are 

tightly connected with the geomagnetic lines of force and 

their motion is mainly determined by geomagnetic field 

pressure
  
((P

H
/ P) >> 1) . Due to equality of the masses of 

molecules and ions, the neutrals will be effectively involved 

in the motion. As a result, perturbation in a neutral 

component will propagate with the characteristic 

velocity
  
U

A
= H

0
/ 4 , which in this sphere of the upper 

atmosphere varies from 800–900  m s
1

 to 1–5 

 km s
1

[5,6]. Dynamic processes in the  F  region must be 

investigated on the bases of the single-fluid model of 

magnetic hydrodynamics of the ionosphere (equations 

(1.11), (1.12), (1.15), (1.16)). Here dynamic processes have 

magnetohydrodynamic character and proceed much faster 

than in the  E  region. Besides, from equation (1.12) follows 

that here the motion is kinematically possible only if 

velocities comply with Maxwell’s induction equation (1.16). 

Firstly, this fact substantially limits kinematic arbitrariness 

of motion in the  F  region; secondly, it shows that 

dynamically possible motions can occur only with the 

velocities satisfying the equation (1.16). Induction equation 

like Helmholtz–Fridman equation (1.15), naturally contains 

inhomogeneity of the geomagnetic field. Below, large-scale 

vortical structures of the type of moving cyclones 

(anticyclones) will be investigated on the bases of dynamic 

equations of the ionosphere. 

3. EXCITATION, INTENSIFICATION AND 
PROPAGATION OF LARGE-SCALE VORTICES AND 
PLANETARY WAVES IN THE IONOSPHERE 

 As it was mentioned beginning from the altitude of 80 

km and higher, the upper atmosphere of the Earth is strongly 

dissipative medium. The vertical coefficient of turbulent 

mixing in the lower ionosphere (70–125 km) according to all 

existent estimations is of the order of  10
6

 m
2

s
1

. Often 

when modelling large-scale processes for this region of the 

upper atmosphere, effective coefficient of Rayleigh friction 

between ionospheric layers is introduced instead of turbulent 

mixing coefficient, which at the altitudes of about 100 km 

amounts to 10
5

 s
1

. The role of the “ion” friction 

rapidly increases at the altitudes above 120 km and its 

analytical expression coinsides with Rayleigh friction 

formula. Therefore, often during study of large-scale 

( 10
3

10
4

km) vortex structures and low-frequency 

( 10
4

10
6

 s
1

) planetary waves in the ionosphere we will 

apply the well-known Rayleigh formula 
  
F =

Ra
V  

assuming that for the altitudes 80–130km 
  Ra

10
5

 s
1

, 

and for the altitudes above 130 km 
  Ra

= N
im

/ N
m

. 

Dissipative force  F  has an accumulative nature and its 

action becomes perceptible only after a certain time interval 

(
   
t 1 /

Ra
). Real mechanism of dissipation in the 

atmosphere against the background of baroclinic, nonlinear 

and dispersive effects generates in the ionosphere moving 

spatial structures representing the equilibrium stationary 

solutions of equations of magnetic hydrodynamics. In the 

ionosphere against the background of such stationary 

solutions (quasi-statics, quasy-geostrophicity, magneto-

vortex rings, cyclone (anticyclone), solitons and so on) 

always appear weather-forming large-scale ( 10
3

10
4

km), 

small and average-scale ( 10
3

10
3

km) nonstationary 

processes. 

 For example, simplified Helmholtz-Fridman equation: 

  

V

t
= A            (2.1) 

describes generation of nonzero vorticity 
 

V  in the 

atmosphere under the action of barocline vector  A  taking 

into account temperature contrasts in the form of advection 

of warm and cold. According to the observations [24] vector 

 A  is a slowly-varying function of time and equation of 

vortex (2.1), with the initial conditions of Cauchy 

   
V

t=0
= 0  (at the initial moment in the atmosphere there 

were no vortices) has an unreal solution as under the action 

of barocline vector  A  the generating vortex will be growing 
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unlimitidly in time 
  

V = A t . If a dissipation 

mechanism in the ionosphere is a Rayleigh friction, equation 

for the vorticity will take the following form: 

  

V

t
= A

Ra
V          (2.2) 

which with the same Cauchy conditions has the bounded 

solution: 

   

V =
A

Ra

1 e Ra t

( ) .        (2.3) 

 Indeed, from equation (3.3) follows that vorticity will 

increase linearly with time only at small time intervals 

(
  
t << 1 /

Ra
) under the action of baroclinicity. After a 

certain time, when the dissipation effect reaches a specific 

value, the vortex starts to decrease and for the large intervals 

of time (
  
t >> 1 /

Ra
) tends to constant (equilibrium) value 

   
A /

Ra
. The value 

  
T = 1 /

Ra
 can be called a time of 

relaxation of nonstationary vortex. For the  E  region  T  is of 

the order of twenty-four hours, and for the  F  region - of the 

order of one hour [12,15]. Stationary solution describes the 

equilibrium between baroclinicity and dissipation effects 

(
   
A =

Ra
( V)

st
). As a result, dissipative structure of 

movement is formed in the ionosphere in the form of 

stationary cyclones and anticyclones. In the troposphere such 

immovable cyclones (anticyclones) are called as “centres of 

action of atmosphere” [24]. For example, to them are related 

Icelandic and Aleutian cyclones, Siberian and Canadian 

anticyclones, etc. 

 In the geostrophyc approximation, in the presence of heat 

(cold) source  and dissipative force 
  
F =

Ra
V  the 

following formulae have been obtained [12] describing the 

structure of stationary cyclone (anticyclone): 

   

z
= ( V)

z
=

2
0z

Ra
2

+ 4
0z
2

1
P ,        (2.4) 

   

V =
Ra

Ra
2

+ 4
0z
2

( V)
z

,         (2.5) 

   

V
z

= Div V dz

z
0

z

,          (2.6) 

  

V
z

=
c

p
(

a
)

,          (2.7) 

here  P  and  - pressure and density of medium, 
  0z

 - 

vertical component of the angular velocity of the earth 

rotation,  and 
 a

 - vertical and adiabatic gradients of 

temperature, 
 
c

p
 - heat capacity at a constent pressure, 

  

Div V =
V

x

x
+

V
y

y
 - two-dimensional divergence, 

  

=

2

x
2

+

2

y
2

 - Laplace operator. From (2.4)-(2.7) follows, 

that when  > 0  in the medium appear vertical currents 

  
V

z
> 0 . Then from (2.6) we have 

   
Div V < 0  i.e. inflow to 

the center from the periphery (convergent region). For this 

case from (2.5) follows that vortex 
   
( V)

z
 will be positive 

and then, according to the right-hand screw rule, particles in 

this vortex will be rotating counter-clockwise. From (2.4) 

when 
   
( V)

z
> 0  follows that   P > 0 , i.e. minimum 

pressure will be in the vortex center. Thus, when  > 0  all 

structural elements of a stationary cyclone are defined 

sequentially. When  > 0 formulae (2.4)-(2.7) define 

ctructural, elements of stationary anticyclone (see Fig. 1). As 

it will be shown below, stationary vortical formations 

generate also in the planetary Rossby wave when convective 

term of vorticity taking into account zonal dominant current 

   
u ( ( V)

z
/ x)  is exactly balanced by -effect (

 
V

y
, 

where 
  

= 2
0z

/ y  - Rossby parameter). In other words, 

when nonlinear term of vortex equation increases with time, 

it will be balanced by dispersive spread, etc. Generalizing all 

the above we can assert that stationary vorticity structures in 

the ionosphere is a consequence of invariants of Helmholtz-

Fridman equations and Maxwell induction equation, taking 

into account Hall’s effect. These equations naturally include 

internal, self-consistent and opposite processes. In case of 

preservation of invariant, increase of one process is 

compensated by decrease of another and vice-versa. Let’s 

illustrate this from condition of invariance preservation 

(1.13). When 
 0

= 0 , equation (1.13) for a plane motion is 

reduced to the following formula: 

   

d

dt
( V)

z
+

N

N
n

e

Mc
H

0z
= 0 . 

 

Fig. (1). Kinematic picture of a stationary cyclone motion. 

 Partial solution of this equation has the following form 

   

( V)
z

+
N

N
n

e

Mc
H

0z
= A = const .        (2.8) 
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 Geomagnetic field 
  
H

0z
 in the meridional direction has a 

maximum on a pole and decreases to zero on the equator. 

Now let’s consider the case when at the initial point of time a 

movement is counter-clockwise, i.e.   A > 0  (Fig. 2). Here x  

is directed along latitude from the west to the east, and 
 
y – 

along meridian form the south to the north. In the plane
 
xy , 

to the left of the instant centre of rotation, and in case of the 

motion of particles from the north to the south 
  
H

0z
 will 

decrease towards negative
 
y . Consequantly 

   
( V)

z
 must 

increase by equal value so that  A  remains constant. To the 

right of the instant centre of rotation, when the particles 

move towards positive
 
y , 

  
H

0z
 will increase and 

   
( V)

z
 - 

decrease. Thus, presence of inhomogeneous magnetic field 

  
H

0z
 along meridian leads to the intensification of vortex to 

the left from the instant centre of rotation, i.e. particles on a 

left-hand side will be rotating faster, than to the right of the 

rotation centre. In case of clockwise rotation, constant  A  

will be negative and taking this into consideration 

intensification of vortex will occur again on a left-hand side 

from the instant centre. Intensification mechanism of such 

vortex is similar to the amplification of currents at the 

western ocean coasts caused by the Coriolis force [22]. 

 The problem of possible generation of vortical motions in 

the ionosphere is not less important, when at the initial point 

of time the motion is vortex-free and rectilinear along 

meridian (from the north to the south). At the initial moment 

from the condition of retaining the equation (2.8) we will 

have (Fig. 3) 
  
(e N H

0z
/ N

n
M c) = A = const . When 

particles move towards negative
 
y , 

  
H

0z
 will decrease. 

Consequantly positive vortex should generate 
   
( V)

z
 

which will compensate the decrease of 
  
H

0z
, so that  A  

remains constant. Thus, appears rotational counter-clockwise 

motion further result of which will be intensification of the 

positive vortex to the left from the instant centre of rotation 

and weakening to the right. If we have irregular vorticity 

along 
 
y  axis, 

   
( V)

z
= y + ( V)

z0
, where  and 

   
( V)

z0
 are constants, similar to above considered case, 

geomagnetic field will intensify 
  
H

0z
+ h  to the left from the 

rotation centre and weaken to the right from the centre of 

rotation 
  
H

0z
h . Thus, simple hydrodynamic mechanism of 

generation of geomagnetic perturbations is revealed in the 

ionosphere caused by non-uniform vortical structures along 

meridian. 

 When studying nonstationary processes in the 

ionosphere, consideration must be given to the fact that 

atmosphere density at ionospheric altitudes is nearly million 

times less than in the troposphere, and the wind velocity 

exceeds the wind velocity in the troposphere by an order of 

magnitude. Therefore, ionosphere (beginning from 120 km 

and higher) becomes nonstationary and nonlinear medium. 

As a rule, considering nonlinearity, steepness of the wave 

front increases leading to its breaking or formation of shock 

wave. However, as it is well known, shock waves do not 

arise spontaneously in the ionosphere. This indicates to the 

fact that in the real ionosphere for the planetary-scale 

motions when dissipative forces can be neglected, dispersive 

effects of the medium must be essential. As a result before 

breaking the wave must disintegrate either into separate 

nonlinear waves or into the vortex formations. If nonlinear 

increase of the steepness of wave front will be exactly 

compensated by dispersion spreading, then stationary waves 

may appear in the ionosphere, i.e. all values describing 

waves, which propagate without changing their shapes will 

depend on  x ct , where  c  - wave phase velocity. It has 

been shown for the first time [20] that planetary waves are 

partial exact solutions of nonlinear Helmholtz-Fridman 

vorticity equation (1.13) describing slow weather-forming 

processes in the atmosphere. By applying simplification of 

the theory of long waves and neglecting electromagnetic and 

viscous forces for barotropic, nondivergent atmosphere, after 

introduction of flow function  by formulae 

 

Fig. (2). Vortex intensification in the ionosphere. The dependence of inhomogeneous magnetic field 
 
Hoz  versus 

 
y . 

 

Fig. (3). Vortex generation in the ionosphere. The dependence of inhomogeneous magnetic field 
 
Hoz  versus

 
y . 
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V

x
= / y , 

  
V

y
= / x , from equation (1.13) we get 

nonlinear equation for vorticity 

  

( + f )

t y x
( + f ) +

x y
( + f ) = 0 , (2.10) 

where 
  
f = 2

0
sin  - Coriolis parameter, 

  z
= ( V

y
/ x) ( V

x
/ y) =  - vortex. Below linear 

and nonlinear planetary waves on the bases of equation 

(2.10) are investigated. 

 Partial solutions of equations (2.10) containing 

nonlinearity and dispersion can be nonlinear waves either of 

solitary (solitons) or periodical (knoidal) type. To show this, 

let’s suppose that
  

= ( , y) ;  = x ct . Then equation 

(2.10) will take the following form: 

  
J ( + cy; + f ) = 0 ,        (2.11) 

where 
  
J (a,b) = ( a / )( b / y) ( a / y)( b / )  

Jacobian. 

 General solution of equation (2.11) has the following 

form 

  
+ f = G( + cy) ,        (2.12) 

where  G  - arbitrary differentiable function of its own 

argument. It was shown [26,27] that in the presence of zonal 

flow with small inhomogeneity along meridian 

  
u = u

0
[1+ sin (æ y

0
)]  and weak nonlinearity for the value 

  
= y

0
y  from equation (2.12) the following nonlinear 

equation can be obtained 

  

+
1

u c

du

dy
0

y

2

+
x

2

+ 2
y

+
u c

= 0 . (2.13) 

with homogeneous zonal flow ( u = const ) equation (2.13) 

becomes linear and coincides with the well known wave 

equations of Rossby [25] 

  

2

0

2
+

h
2

u c
0

0
= 0 , 

where 
  0

= / a , 
  

= y / h , 
 

= /  - nondimensional 

parameters;  a  - wave amplitude,  h  - thickness of a zonal 

flow,  - wavelength. General solution of equation (2.13) 

with the boundary conditions 
 0

( ,0) =
0

( ,1) = 0  has the 

following form 

  0
( , ) = F( ) sin(n ) ,       (2.14) 

  

c
0

= u
0

m
2

, 
  
(n = 1,2,3) , 

where   m = n / h  - wavenumber, 
  
F( )  - arbitrary function. 

Solving equation (2.13) by applying theory of perturbation, 

in the second approximation we will get nonlinear equation 

for the function 
  
F( )  

  

d
2

F

d
2

+ a
1
F

2
+ a

2
F = 0 .       (2.15) 

 Here the coefficients 
  
a

1
 and 

  
a

2
 are expressed with 

parameters , 
0

u , 
  
a, , , h , n  and we are not giving 

them here because of their bulkiness. Equation (2.15) 

investigated in detail in the above-mentioned papers is a 

stationary equation of Korteweg-de Vries, integrated once 

and describes structure of nonlinear waves. Depending on 

integration constants, the solution represents either solitary 

wave (soliton) or periodical (knoidal) wave. The solutions at 

infinity tending to zero are of interest in meteorology (since 

with , 
  
y y

0
) and therefore the solution for equation 

(2.15) has a form of solitary-type wave 

  
F( ) = A

1
sec h

2
( A

2
) ,        (2.16) 

where 
  
A

1
= 3a

2
/ 2a

1
, 

  
A

2

2
= a

2
/ 4 . By the use of 

equation (2.16) current lines are constructed in a moving 

coordinate system (
 

, ) for the cases 
 
| æ |<< 1  and 

 
| æ | =  

[23]. On examination of nonlinear wave process, depending 

on a thickness of zonal flow, large-scale closed vortices 

appear in the form of cyclons and anticyclons having 

diameters from 500 to 1000 km. Conditions of appearance of 

closed vortices in the disturbed flow have been derived. 

When 
 
| æ |<< 1  we have weak linear shift. Fig. (4) illustrates 

lines of flow for 
  
æu

0
> 0  and anticyclonic vortex formation 

in southern latitudes. When 
  
æu

0
< 0  i.e. in case of negative 

linear shift, cyclonic vortex appeares in the northern 

latitudes. When 
 
| æ | =  we have symmetrical wind shift. 

The Fig. (5), when 
  
æu

0
> 0 , shows lines of flow with cyclon 

and anticyclon formation, having common area of maximum 

velocities (jet flows). The Fig. (6), when 
  
æu

0
< 0 , where jet 

flows are absent, shows lines of flow of combined vortex 

pairs. Fig. (6) outwardly resembles the solution of two-

dimensional solitary wave constructed in the work [28,29]. 

Also it is shown that with the real atmospheric parameters 

the obtained solutions make sense only for  n  (
  n = 1,2 ) 

corresponding to large-scale perturbations
   
( 2h / n) . Such 

system of solitary waves and large-scale vortices of cyclon 

and anticyclone-type often are observed in the atmosphere 

[24]. Thus, in the presence of inhomogeneity of zonal flow 

in meridional direction (as well as inhomogeneous 

geomagnetic field 
  
H

0z
 in equation. (2.8)) leads to formation 

of large-scale vortices, solitary waves and jet flows, playing 

an important role in weather-forming processes. Taking into 

consideration that zonal gradient of the wind velocity along 

meridian always exists in the ionosphere due to non-uniform 

heating of the atmosphere from the pole to the equator, 

caused by large-latitudinal heating source [12], the above 

considered mechanism of formation of nonlinear waves 
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should play an important role in studying the large-scale 

dynamic processes in the ionosphere. Below is shown that 

the solution of dipole-type vortices (see Fig. 6) should play 

an important role in dynamic processes of the ionosphere, 

since such vortical structures, as shown below, are long-

living, having electromagnetic nature (this allows to register 

them through radio methods [16]) and can play essential role 

in the processes of heat and energy transfer and also in 

formation of strongly turbulent medium. 

 

Fig. (4). Generation of anticyclone in the ionosphere at positive 

linear shear of a zonal wind. 

 

Fig. (5). Generation of cyclone-anticyclone couple and jet flows in 

the ionosphere at positive symmetrical shear of a zonal flow. 

 

Fig. (6). Generation of cyclone-anticyclone couple (dipole vortex) 

in the ionosphere at negative symmetrical shear of a zonal flow. 

 Basic ionospheric equations of magnetic hydrodynamics 

for vorticity 
  
rot V  and magnetic field  H  can be presented 

in the following form: 

   
helm ( V + 2

0
) = + V , 

  

helm
H

= , (2.17) 

where: 
  

= F
a

, 
   
F

a
= [ H H] / 4  - electromagnetic 

Ampere force per mass unit, 
  
H = H

0
+ h , 

  
H

0
 - 

geomagnetic field,  h  - its perturbation. When  = 1  the the 

system equation. (2.17) describes dynamic processes in the 

 E  region of the ionosphere, and when  = 0  - in the  F  

region. 

 For the horizontal, incompressible, nondivergent flow in 

-plane approximation the system (2.17) takes on the 

following form: 

  t
+

x
+ c

H

h

x
+ = J ( , ) . 

  

h

t
+

H x
+ c

H

h

x
= J ( , h) .      (2.18) 

 Here are introduced the following designations: 

  
= 2

0z
/ y = (2

0z
) / / R = (2

0
sin

0
/ R) > 0  

- Rossby parameter, 

  H
= (eN / c)( H

0z
/ y) = (NeH

0
/ N

n
mc)(sin

0
/ R) < 0

 - “magnetic Rossby parameter”, 

  
c

H
= (c / 4 e N )( H

0z
/ y) = (cH

0
/ 4 e N )(sin / R)  - 

Phase velocity of fast electromagnetic planetary wave, 

  
h = (e N h

z
/ N

n
M c) - perturbation, 

 0
= 90

0

0
 - certain 

average value of co-latitude near which motion in the 

medium is considered, 
  

= (c / e N )  - Hall’s parameter, 
 
H

p
 

- magnetic field strength on the pole. From the system (2.18) 

follows law of evolution of energy  E  

  

E

t
=

t

1

2
dxdy

2
+

h
2

k
0

2
= dxdy ( )

2
,   (2.19) 

and potential enstrophy  K  

  

K

t
=

t

1

2
dxdy

2
+

( h)
2

k
0

2
= dxdy ( )

2
,  (2.20) 

of considered wavy structures. Here 
  
k

0

2
= N

pi
2

/ N
n

c
2

- 

square of characteristic wave number, wavelength of which 

substantially exceeds the earth radius R , 
  pi

2
= 4 e

2
N / M  

- ion plasma fequency. When 
  Ra

= 0 , the energy  E  and 

the enstrophy  K  of waves is retained. 

 For small perturbations, when 
    

, h exp[i(k r t)  

(where  k  wave vector,  frequency of perturbation) and 

considering that
  

=
0

+ i , 
 
| | << |

0
| ; 

  
k >> k

0
, from 

the system (2.18) for the  E  region of ionosphere ( = 1 ), 

the following two branches of oscillations can be obtained 

[30,31]: for fast electromagnetic planetary wave we have 

  0

+
= k

x
c

H
, 

 
c

+
= c

H , 

  

+
=

Ra

k
0

2

k
2

,      (2.21) 
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and for slow planetary Rossby-type wave 

  
0

=
k

x

k
2

, 

  

c =

k
2

, 
 

=
Ra

.      (2.22) 

 Here 
  
k

2
= k

x
2

+ k
y
2

, 
 

= +
H

; 
  
c

±
=

0

±
/ k

x  and 
±

 

- phase velocities and dumping decrements of fast and slow 

planetary waves respectively. From (2.21) follows that fast 

electromagnetic planetary wave will propagate from the east 

to the west
  
(c

+
< 0 , since 

  
c

H
< 0 ) and practically does not 

attenuate, 
  
|

+
| <<

Ra
. Phase velocity of the fast waves 

 
c

H
 

is inversely proportional to the concentration of electrons  N  

and their phase velocity 
 
c

+
 on the night side exceeds phase 

velocity on the day side by one or two orders of magnitude, 

  
c

+
=| c

H
|= (1 7)

 
km s

1
. Period of fast waves 

  
T

+
= 2 /

0

+
 varies from 2 to 10 minutes at night and from 

10 minutes to 2 hours in the daytime, and the wavelength 

varies from 2000 to 10
4
km. The properties and parameters of 

these waves are in good agreement with mid-latitude long-

period oscillations observed by ionospheric and magnetic 

observatories [2,3,15,16]. From equations (2.22) it follows 

that slow Rossby-type wave propagates westwardly, as well 

as eastwardly depending on wavelength and velocity of the 

average zonal wind. In dispersion of this wave together with 

the Rossby parameter , magnetic Rossby parameter 
 H

 

(
 H

, 
 

> 0 , 
  H

< 0 ) plays an important role as well. 

Period of slow waves varies from 2 to 7 days, propagation 

velocity is of the order of 100-300 m s
1

. These waves 

strongly attenuate in the  E  region
   
| |=

Ra
10

5

 s
1

, 

however for very long waves ( 10
4

km and longer) 

attenuation will be weak. In the  F region, in the absence of 

rotation 
 0

= 0 , where Hall’s effect is absent and  = 0 , 

permanently acting factor – latitudinal gradient of 

geomagnetic field as in  E  region generates fast 

electromagnetic planetary waves having the following 

frequency 

   

on
= ±

1

4

H
0z

y
=

H
p

4

sin

R
, 

  

±
=

Ra

2
.   (2.23) 

 Estimations show that phase velocity of the fast waves 

  
c

on
=

0n
/ k

x
 at the altitudes (200-500km) varies from 5 to 

50  km s
1

, the period varies (3-105 s
1

). Perturbation of 

geomagnetic field at these altitudes varies from 10 to 80 nT . 

The waves weakly attenuate
  
| |= 0.5

Ra
10

6

 s
1

. In case 

of magneto-ionospheric wavy perturbations in the  F  region 

values of parameters of 
 
c

on
 waves well coincide with the 

observed parameters in the  F  region. It is shown for the 

first time [30,31] that new branches of planetary waves 
 0

+
, 

 0
 and 

  0n
 are self-oscillations of the ionospheric 

resonator. Phisically, the branch 
 0

+
 describes oscillations of 

magnetized electrons when the ions and neutrals are 

immovable, 
 0

 - oscillations of ions and neutral particles 

when the electrons are immovable (
 0

+
 and 

 0
 are defined 

from quasi-hydrodynamical equations using triple-fluid 

approximation), 
  0n

 - oscillations of neutrals in single-fluid 

approximation. The properties of electromagnetic planetary 

waves are considered in more detail in [23, 32-35]. From the 

system (2.18) nonlinear solution 
  

= ( , y) , 
  
h = h( , y)  

in the form of stationary nonlinear waves is found in 

nondissipative approximation [29,32]. These waves 

propagate with the velocity  u = const  along latitudinal 

circles x  without changing their shape 
 

= x ut . The 

solution of the system (2.18) along the polar coordinate 

system in the form of solitary waves has the following form: 

  

(r, , t) =
c

H
u

H

h(r, , t) = a u F(r) sin ,      (2.24) 

where 
  
r = (

2
+ y

2
)
1/2

, 
  
tg = y / ,  a  - circle radius, 

where the solution is being searched 

  

F(r) =

P

k

2
J

1
(kr)

J
1
(ka)

(k
2

p
2

)
r

a k
2

, at r < a

K
1
( pr)

K
1
( pa)

, at r a

. (2.25) 

  
J

1
(x)  - Bessel function of the first order, 

  
K

1
(x)  - 

Mcdonald function. Parameters  P  and  k  are connected by 

dispersion relation 

  
p J

2
(ka) K

1
( pa) = kJ

1
(kr) K

2
( pa) , 

  

p
2

=
c

H
u

u(c
H

u)
> 0 .       (2.26) 

 Taking into consideration dispersion equation (2.26), in 

the solution (2.24) remain only two free parameters u  and 

a . From equation (2.24) it follows that when  r  the 

solution has asymptotic form 
   

, h r
1/2

exp( pr) . 

Consiquantly the wave is localized along the surface of the 

Earth 
  
( , y) . Lines of flow function have dipole character 

(resembles Fig. 6) and represent a pair of oppositly rotating 

vortices (cyclon-anticyclon) of equal intensity moving along 

latitudinal circles against the background of the zonal 

wind u . Motion of particles of medium in nonlinear 

structures (2.24) has nonzero vorticity 
   

V = e
z

0 , 

i.e. particles inside vortex rotate with velocity 
 
u

c
u . At the 

same time vortex entrains group of particles and rotating 

together they move with the vortical structure. This is also 

facilitated by “freezing-in” of the geomagnetic field in these 



Planetary-Scale Vortical Structures in the Conducting Atmosphere The Open Atmospheric Science Journal, 2009, Volume 3    156 

structures. Characteristic size for the slow vortices is 

  d 10
3

km, and for the fast ones   d
+

10
4

km. 

 According to the equations of transfer (2.19) and (2.20), 

energy and enstrophy of large-scale vortices in the 

dissipative ionosphere considerably exceed dissipative term, 

and accordingly relaxation of such vortices occurs very 

slowly. As a result, in the ionosphere electromagnetic fast 

large-scale vortical structures are long-living (see equation 

(2.3)). Therefore, as it was mentioned above, they can play 

an important role in the processes of substance, heat and 

energy transfer and in formation of macro-turbulent 

horizontal transfer, where the above vortical structures can 

be considered as “turbulent particles”. Indeed, the above-

discussed vortical structures, playing role of “turbulent 

particles”, can be considered as the elements of horizontal 

turbulent macroexchange in the global circulation processes 

in the ionosphere. Besides, horizontal turbulent exchange 

coefficient can be estimated by Obukhov formula 

   
k
1

10
2

d
4/3

 m
2

s
1

. For vorticies of sizes    d 10
3

km 

(average size of cyclon and anticyclon) we get 

   
k
1

3 10
6

 m
2

s
1

. This value exceeds vertical turbulent 

exchange coefficient hundreds of thousands of times and 

shows, that during global interaction of high and low 

latitudes (in the ionospere pole is warmer than equator) 

meridional transfer (from the north to the south) must have 

macro-turbulent character. This extraordinary and interesting 

problem requires special examination and we will not 

discuss it here. Taking into consideration both components 

of geomagnetic field 
  
H

0z
, H

0 y
 obtained in the above-

mentioned formulae (3.21)-(3.23), a factor 
 

1+ 3sin
2

 

appeares for the natural frequencies, which shows that the 

considered large-scale waves have planetarywide character 

and they can be registered at all latitudes from the pole to the 

equator (their values double on the equator) [23,31]. Good 

agreement of theoretical results of the discussed 

electromagnetic planetary waves with experimentally 

observed data of large-scale mid-latitude long-period 

oscillations in the  E  region and magneto-ionospheric wavy 

perturbations in the  F  region indicate the existence of the 

sources of planetary wavy structures having electromagnetic 

nature at ionospheric altitudes. These sources are 

permanently acting factors in the upper atmosphere, 

latitudinal inhomogeneity of geomagnetic field and angular 

velocity of the earth rotation. The discussed wavy structures 

represent their own degrees of freedom of the ionospheric 

resonator [31], and the observed mid-latitude long-period 

oscillations and magneto-ionospheric wavy perturbations in 

the ionosphere can be considered as mainfestation of these 

self-oscillation in the upper atmosphere. When ionosphere is 

affected from above or from below (magnetic storm, 

earthquake, artificial explosions, etc) in the first place wavy 

structures will intensify at these modes [15,38]. With a 

specific power of external sources, solitary vortices will 

generate [26,27,34,36,37] which is confirmed by 

observations [1,15,16,39,40]. 

 

4. CONCLUSION 

 Summarizing all the above it should be noted that the 

main system of magnetic hydrodynamic equations of the 

ionosphere admits exact solutions constructed in the works 

[23,31,35] both, in linear as well as in nonlinear cases. It was 

shown that generation of linear planetary-scale vortical wavy 

structures having hydrodynamical and electromagnetic 

nature in the ionosphere is a result of constantly existing 

factors: latitudinal gradients of both angular velocity of the 

earth rotation and geomagnetic field. In nonlinear case, zonal 

shear flow factor is added to these fundamental factors, 

which is caused by inhomogeneous heating of the polar and 

equatorial regions. Thus, inhomogeneity of the earth rotation 

along meridian, geomagnetic field and zonal predominant 

flow can be considered among the real sources, generating 

plantary waves of hydrodynamic and electromagnetic nature 

in the ionosphere. 
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