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Abstract: In this paper we discuss the meaning of feedback parameter, greenhouse effect and transient climate response 
usually related to the globally averaged energy balance model of Schneider and Mass. After scrutinizing this model and 
the corresponding planetary radiation balance we state that (a) this globally averaged energy balance model is flawed by 
unsuitable physical considerations, (b) the planetary radiation balance for the Earth in the absence of an atmosphere is 
fraught by the inappropriate assumption of a uniform surface temperature, the so-called radiative equilibrium temperature 
of about 255 K, and (c) the effect of the radiative anthropogenic forcing, considered as a perturbation to the natural 
system, is much smaller than the uncertainty involved in the solution of the model of Schneider and Mass. This 
uncertainty is mainly related to the empirical constants suggested by various authors and used for predicting the emission 
of infrared radiation by the Earth’s skin. Furthermore, after inserting the absorption of solar radiation by atmospheric 
constituents and the exchange of sensible and latent heat between the Earth and the atmosphere into the model of 
Schneider and Mass the surface temperatures become appreciably lesser than the radiative equilibrium temperature. 
Moreover, both the model of Schneider and Mass and the Dines-type two-layer energy balance model for the Earth-
atmosphere system, containing the planetary radiation balance for the Earth in the absence of an atmosphere as an 
asymptotic solution, do not provide evidence for the existence of the so-called atmospheric greenhouse effect if realistic 
empirical data are used. 
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1. INTRODUCTION 

 Recently, Manabe and Stouffer [1] discussed the role of 
ocean in global warming on the basis of results obtained 
from coupled ocean-atmosphere models of various 
complexities. By adopting the globally averaged energy 
balance model of Schneider and Mass [2] that reads 

C
Ts
t
= Q Ts , (1) 

they also discuss the sensitivity of a global climate system. 
Here, C  is the heat capacity of the system, t  is time, Ts  is 

the deviation of the surface temperature from the initial 
value, Q  is a thermal forcing, and  is the so-called 

feedback parameter [1, 3, 4]. It is stated that the term on the 
left-hand side describes the change in the heat content of the 
global climate system expressed by [5] 

H

t
= C

Ts
t

 (2) 

so that Eq. (1) becomes 
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H

t
= Q Ts   (3) 

 Equations (1) and (3) are well-known in the literature and 
may be used to predict the time required for the surface 
temperature to approach its new equilibrium value in 
response to a change in climate forcing (e.g., [3-6]). 
According to Dickinson [7], this equation may be considered 
as a very simple global energy balance climate model. It 
seems, however, that even this simple climate model requires 
a physical clarification. In addition it is indispensable to 
point out its limitations. 

 Recently, the National Research Council (NRC) report 
provided a definition for the global average surface 
temperature [8]: 

 According to the radiative-convective equilibrium 
concept, the equation for determining global average surface 
temperature of the planet is 

H

t
= f

T

*
 (1-1)  

where 

H = Cp T dz
zb

 (1-2)  
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is the heat content of the land-ocean-atmosphere system with 
 the density, Cp  the specific heat, T  the temperature, and 

zb  the depth to which the heating penetrates. Equation 1-1 

describes the change in the heat content, where f  is the 

radiative forcing at the tropopause, T  is the change in 
surface temperature in response to a change in heat content, 
and *  is the climate feedback parameter (Schneider and 
Dickinson, 1974 [9]), also known as the climate sensitivity 
parameter, which denotes the rate at which the climate 
system returns the added forcing to space as infrared 
radiation or as reflected solar radiation (by changes in 
clouds, ice and snow, etc.). In essence, *  accounts for how 
feedbacks modify the surface temperature response to the 
forcing. In principle, T  should account for changes in the 
temperature of the surface and the troposphere, and since the 
lapse rate is assumed to be known or is assumed to be a 
function of the surface temperature, T  can be approximated 
by the surface temperature. For steady state, the solution 
yields 

T = f *  (1-3)  

 Recently, Pielke et al. [10] thoroughly discussed what a 
global average surface temperature does really mean. The 
authors, for instance, stated that, as a climate metric to 
diagnose climate system heat changes (i.e., “global 
warming”), the surface temperature trend, especially if it 
includes the trend in nighttime temperature, is not the most 
suitable climate metric. 

 On the other hand, an excerpt from the Chapter 2 of the 
4th report of the Working Group I to the Intergovernmental 
Panel on Climate Change (IPCC), “Climate Change 2007 – 
The Physical Science Basis” [11] reads: 

 The definition of RF  from the TAR and earlier IPCC 
assessment reports is retained. Ramaswamy et al. (2001) 
define it as ‘the change in net (down minus up) irradiance 

(solar plus longwave; in W m 2 ) at the tropopause after 

allowing for stratospheric temperatures to readjust to 
radiative equilibrium, but with surface and tropospheric 
temperatures and state held fixed at the unperturbed values’. 
….. Radiative forcing can be related through a linear 
relationship to the global mean equilibrium temperature 

change at the surface Ts( ) : Ts = * RF , where *  is 

the climate sensitivity parameter (e.g., Ramaswamy et al., 
2001 [12]). 

 Obviously, from both excerpts we may conclude that 
f = RF , i.e., the anthropogenic radiative forcing, and 

T = TS . Unfortunately, the notion “climate feedback 

parameter” used in the NRC report is incorrect. As already 
explained by Dickinson [7] and Kiehl [13], the reciprocal of 
the (global) feedback parameter  gives the change of 
global temperature for a given radiative perturbation. This 
reciprocal, * = 1 , can be called the (global) sensitivity 

parameter. The physical units of this sensitivity parameter 

are, therefore, m2 K W  as required by equation 1-1 of the 

NRC report. Ramanathan et al. [14] used the formula 

TS = RF / , where they called  the climate feedback 

parameter. The authors also stated that  estimated by the 
hierarchy of simple and sophisticated climate models lies in 

the range of 1 < < 4W m 2 K 1 . In the case of a 

blackbody Dickinson [7] and Ramanathan et al. [14] 
estimated  for a radiating temperature of about 255 K  by 

e = 4 Te
3 3.7W m 2 K 1 . Note that Te  is the 

temperature inferred from the so-called planetary radiative 
equilibrium of the Earth in the absence of the atmosphere 
(see formula (46) in section 3). Here, it is called the radiative 
equilibrium temperature. Furthermore,  is also used to 

define the so-called gain factor by g = 1 e  [6]. 

 The simple climate model (1) or (3) requires not only a 
physical clarification, but also recognition of its 
uncertainties. Scrutinizing the uncertainties involved is 
indispensable when empirical quantities are used to quantify 
physical processes. Thus, in the following Eq. (1) and its 
solution are discussed, where especially the effect of the 
linearization of the power law of Stefan [15] and Boltzmann 
[16] and the role of the feedback parameter are debated (see 
section 2). In section 3 the common quantification of the 
greenhouse effect related to the radiative equilibrium 
temperature is scrutinized and the uncertainties involved are 
assessed using Gaussian error principles. In section 4 the 
correct solution of the global energy balance model is 
presented and its results are compared with the radiative 
equilibrium temperature. In section 5 we discuss the surface 
temperatures obtained when the down-welling infrared 
radiation is parameterized using either Ångström-type or 
Brunt-type formulae. A Dines-type two-layer energy balance 
model for the Earth-atmosphere system that contains the 
planetary radiation balance for the Earth in the absence of an 
atmosphere as an asymptotic solution is presented in section 
6 and its results are briefly, but thoroughly discussed. 

2. THE GLOBAL ENERGY BALANCE MODEL OF 
SCHNEIDER AND MASS 

2.1. Basic Considerations 

 The global energy balance model of Schneider and Mass 
[2] for an aqua planet reads (see Appendix A) 

R
dTs
dt

= 1 E( )
S

4
+ E FIR F

IR
Ts( ) , (4) 

where S  is the solar constant, E  and E 1  are the 

planetary integral albedo and the planetary integral 
emissivity of the Earth, respectively, and R  is called the 
planetary inertia coefficient [17]. The factor 4 is called the 
geometry factor; it is based on the planetary radiation 
balance (see section 3). Usually, a value for the solar 

constant close to S 1367W m 2  is recommended (e.g., 

[18-20]), but the value provided by recent satellite 
observations using TIM (Total Irradiance Monitoring; 

satellite launched in 2003) is close to S 1361W m 2  (see 

Fig. 1). This value is 4W m 2  higher than the 30-year mean 

reported by the Smithsonian Institution [21], but completely 
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agrees with that of Laue and Drummond [22] which is based 
on direct observations at an altitude of 82 km. 

 The quantity F
IR

 is the flux density (hereafter simply 

called a flux) of down-welling infrared (IR) radiation. 
Estimates for this IR flux may be obtained using either 
Ångström-type or Brunt-type formulae that are related to the 
power law of Stefan [15] and Boltzmann [16] using near 
surface observations of temperature, humidity, and 
normalized cloud cover (see section 5). Furthermore, 

F
IR

Ts( )  is the terrestrial radiation emitted by the Earth’s 

surface. This IR flux is calculated using the Stefan-
Boltzmann law, too. It is given by 

F
IR

Ts( ) = E Ts
4 , (5) 

where = 5.67 10 8 W m 2 K 4  is Stefan’s constant. 

Schneider and Mass [2], however, did not use this power 

law, neither for F
IR

 nor for F
IR

Ts( ) . Instead, Budyko’s 

[23, 24] empirical formula given by 

FIR = F
IR

Ts( ) E FIR = a + b Ts Tr( ) a1 + b1 Ts Tr( ){ } n  (6) 

was considered with the empirical coefficients 

a = 226.0W m 2 , b = 2.26W m 2 K 1 , a1 = 48.4W m 2 , 

b1 = 1.61W m 2 K 1 , the reference temperature 

Tr = 273.15 K , and the normalized cloud cover n . As 

already mentioned by Budyko [24], this formula completely 
agrees with that of Manabe and Wetherald [25], 

FIR = a + b Ts Tr( ) a2 n  (7) 

with a2 = 25.8W m 2 , if clear-sky conditions (i.e., in the 

 

Fig. (1). Satellite observations of total solar irradiance. It comprises of the observations of seven independent experiments: (a) 
Nimbus7/Earth Radiation Budget experiment (1978 - 1993), (b) Solar Maximum Mission/Active Cavity Radiometer Irradiance Monitor 1 
(1980 - 1989), (c) Earth Radiation Budget Satellite/Earth Radiation Budget Experiment (1984 - 1999), (d) Upper Atmosphere Research 
Satellite/Active cavity Radiometer Irradiance Monitor 2 (1991 - 2001), (e) Solar and Heliospheric Observer/Variability of solar Irradiance 
and Gravity Oscillations (launched in 1996), (f) ACRIM Satellite/Active cavity Radiometer Irradiance Monitor 3 (launched in 2000), and (g) 
Solar Radiation and Climate Experiment/Total Irradiance Monitor (launched in 2003). The figure is based on Dr. Richard C. Willson’s 
earth_obs_fig1, updated on November 22, 2008 (see http://www.acrim.com/). 



140    The Open Atmospheric Science Journal, 2010, Volume 4 Kramm and Dlugi 

absence of clouds) are assumed. This means that the 
empirical formulae (6)  and (7)  imply all radiative effects in 
the IR range, i.e., even the absorption and emission of IR 
radiation by the so-called greenhouse gases having either 
natural or anthropogenic origin. Furthermore, even though 
the planetary albedo also implies the effect of clouds in the 
solar range, Schneider and Mass [2] did not discuss the cloud 
effects in the IR range. Moreover, these authors lowered 

Budyko’s values to a = 201.5W m 2  and 

b = 1.45W m 2 K 1 . Based on the linearization of Sellers’ 

[26] radiation formula, North [27] and Kiehl [13] 

recommended a = 211.2W m 2  and b = 1.55W m 2 K 1 . 

Even though Eq. (4) is considered as a global energy balance 
model, the fact is that this model is only based on a radiation 
balance because the exchange of energy between the Earth’s 
skin and the atmosphere by the fluxes of sensible and latent 
heat is completely ignored. Unfortunately, this radiation 
balance is rather imperfect because the absorption of solar 
radiation by atmospheric constituents is ignored, too. 

 Nevertheless, inserting formula (6) into Eq. (4) and 
considering clear-sky conditions provides 

R
dTs
dt

= Q Ts  (8) 

with 

Q = 1 E( )
S

4
a + b Tr  (9) 

and = b . If we interpret Ts  as a generalized coordinate 

and dTs dt  as the corresponding generalized velocity and 

assume that Q  is independent of time, we may transfer Eq. 

(8)  into the phase space, where it is considered as a one-
dimensional model because it has only one degree of 
freedom [28]. As the feedback parameter, , is positive, the 

solution of Eq. (8) tends to an attractor given by dTs dt = 0 , 

the condition of the fixed point. 

 Apparently, there is a notable difference between Eq. (1) 
used by various authors (e.g., [1, 5, 7]) and Eq. (8), namely 
the difference between C = c  and R , where  is, again, 

the density of the material under study, and c  is the 
corresponding specific heat. As shown in the Appendix A, 
this difference can be expressed by 

R = C , (10) 

i.e., the planetary inertia coefficient is equal to the heat 
capacity of the system times a length scale, here the 
thickness  of the water layer of an aqua planet as 
considered by Schneider and Mass [2]. Note that the physical 

units of the heat capacity are J m 3 K 1 , while those of the 

planetary inertia coefficient are J m 2 K 1  as requested by 

equations (8)  and 1-1 of the NRC report. 

 The linearization of an IR term as reflected by formula 
(6) can simply be explained, for instance, in the case of the 

emitted IR radiation by expressing the surface temperature as 
Ts = Tr + Ts . Thus, we may write 

F
IR

Ts( ) = E Ts
4
= E Tr

4 1 +
Ts
Tr

4

.  (11) 

 Since usually Ts Tr << 1 , we may write 

1 + Ts Tr( )
4
1 + 4 Ts Tr . This approximation leads to 

F
IR

Ts( ) = 4 E Tr
3 Ts 3 E Tr

4  (12) 

 Inserting this equation into Eq. (4)  yields (e.g., [6])  

R
dTs
dt

= 1 E( )
S

4
+ 3 E Tr

4 4 E Tr
3 Ts .       (13) 

for the Earth in the absence of its atmosphere. Now, with 
respect to Eq. (8)  the quantities Q  and  may be identified 

by 

Q = 1 E( )
S

4
+ 3 E Tr

4  (14) 

and 

= 4 E Tr
3 , (15) 

respectively. Thus, in such a case Q  and  depend on the 

reference temperature Tr  (see Fig. 2). Obviously, for 

Tr 260 K  the feedback parameter  exceeds 

4W m 2 K 1 . Consequently, the statement of Ramanathan 

et al. [14] that  lies in the range of 1 < < 4W m 2 K 1  

is only valid for reference temperatures less than 260 K  if 

the Earth in the absence of its atmosphere is considered. 

 

Fig. (2). Thermal forcing Q  and feedback parameter  versus 

reference temperature Tr  used by the linearization of the power 

law of Stefan [15] and Boltzmann [16] (see formulae (13)  to (15)). 

 Since Schneider and Mass [2] expressed the solar 
constant in Eq. (9)  as a function of time due to the time-
dependent influence of solar activity (characterized by 
sunspot numbers) and atmospheric dust (provided, for 
instance, by volcano eruptions), they presented results from 
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numerical solutions of Eq. (8). If we, however, assume that 

E , E , and S , and hence, Q  are independent of time as 

assumed by various authors (e.g., [1, 5, 6]), the exact 
solution of Eq. (8)  is given by 

Ts t( ) = Ts0 exp R
t +

Q
1 exp

R
t , (16) 

where Ts0 = Ts t = 0( )  is the initial temperature. If time tends 

to infinity, we will obtain: Ts ( ) = Ts t( ) = Q  also 

called the radiative equilibrium temperature [1] or the fixed 
point temperature that is based on the condition: dTs dt = 0 . 

Thus, for any initial temperature Ts t( )  tends to Ts ( ) , i.e., 

as aforementioned, the radiative equilibrium temperature is 
an attractor. Defining the so-called e-folding time of the 
response, = R , yields finally 

Ts t( ) = Ts0 exp
t

+ T ( ) 1 exp
t

.  (17) 

 Note that this equation completely agrees with formula 
(21) of Hansen et al. [6]. 

 Several authors assumed that the initial temperature Ts0  

is equal to zero (e.g., [1, 5]) so that Eq. (17)  results in 

Ts t( ) = T ( ) 1 exp
t

.  (18) 

 Since Ts ( )  is an attractor, this assumption does not 

affect the result for the radiative equilibrium temperature. 

2.2. The Inclusion of the Absorption of Solar Radiation 
and the Exchange of Sensible and Latent Heat 

 As mentioned before, the global energy balance model of 
Schneider and Mass [2] does not include the absorption of 
solar radiation by atmospheric constituents and the exchange 
of sensible and latent heat between the water layer of the 
aqua planet and the atmosphere. If the globally averaged 
atmospheric absorption, Aa S 4 , and the (vertical 

components of the) globally averaged fluxes of sensible heat, 

H , and latent heat, E = Lv TS( )W , at the surface of the 

water layer are inserted into Eq. (4), where Aa  is the integral 

absorptivity with respect to the range of solar radiation, 

Lv TS( )  is the specific heat of phase transition (e.g., 

vaporization, sublimation), considered as dependent on the 
surface temperature, Ts , and W  is the water vapor flux, we 

will obtain (see Appendix A) 

R
dTs
dt

= 1 E Aa( )
S

4
H E FIR .  (19) 

 Using Eq. (6)  for clear-sky conditions leads to Eq. (8)  
again, but the forcing term (9)  becomes 

 

 

Q = 1 E Aa( )
S

4
H E a + b Tr .  (20) 

 Recent estimates for the fluxes of sensible and latent heat 

result in H 17W m 2  and E 80W m 2  if the global 

Bowen ratio of Bo = 0.21  is considered [29] (see also Fig. 

3). These values, however, differ from those of Schneider 
[17] and Liou [18] showing that even in this case a notably 
degree of uncertainty exists. Based on the accuracy of direct 
measurements of turbulent fluxes and related 
parameterization schemes [30] we have to assume that an 
uncertainty of more than 15 percent in both fluxes exists. 
Following Liou [18] a value of Aa = 0.23  is chosen to 

predict the atmospheric absorption of solar radiation. This 
value completely agrees with that of Trenberth et al. [29], 
but is slightly lower than that of Schneider [17]. Taking 

E = 0.30  and Aa = 0.23  into account, the solar radiation 

absorbed by the Earth’s skin results in 

1 E Aa( ) S 4 = 160.6W m 2  (see Fig. 3). 

2.3. The Effects of Clouds in the Infrared Range 

 Obviously, formulae (6) and (7)  independently obtained 
by Budyko [23, 24] and Manabe and Wetherald [25] 
coincide in the case of a clear sky. Since the planetary albedo 
also implies the albedo of clouds, it is indispensable to 
consider the effect of clouds in the IR range. Thus, in the 
case of a cloudy sky the quantities Q  and  occurring in 

Eq. (8) read 

Q =

1 E Aa( )
S

4
H E a + a1 n + b b1 n( ) Tr if [23, 24]

1 E Aa( )
S

4
H E a + a2 n + b Tr if [25]

      (21) 

and 

=

b 1
b1
b
n if [23, 24]

b if [25]

.  (22) 

 Assuming a stationary state (i.e., dTs dt = 0 ) yields for 

Budyko’s formula (see also Eq. (2.8) by Budyko [24]) 

Ts ( ) =
Q

= Tr +
1

b 1
b1
b
n

1 E Aa( )
S

4
H E a 1

a1
a
n    (23) 

and for the formula of Manabe and Wetherald [25] 

Ts ( ) =
Q

= Tr +
1

b
1 E Aa( )

S

4
H E a 1

a2
a
n .    (24) 

2.4. The Anthropogenic Radiative Forcing 

 According to Forster et al. [11], the RF  represents the 
stratospherically adjusted radiative flux change evaluated at  
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the tropopause, as defined by Ramaswamy et al. [12]. 
Positive RF -values lead to a global mean surface warming 
and negative RF -values to a global mean surface cooling. 

 If we insert the radiative forcing, RF , due to 
anthropogenic activities into Eq. (20), relevant for clear-sky 
conditions, we will obtain 

Q = 1 E Aa( )
S

4
H E a + b Tr + RF .      (25) 

 As illustrated in Fig. (4), the globally averaged net 
anthropogenic radiative forcing in 2005 corresponds to 

RF = 1.6 0.6 to 2.4( )W m 2  relative to pre-industrial 

conditions defined at 1750 [11]. This value may be 
considered as a perturbation to the natural system [12]. 
However, we have to recognize that (1) a portion of this RF  
is already covered by empirical constants a  and b  
(depending on the period of observation of IR radiation from 
which a  and b  are deduced) completely ignored by the 
Working Group I of the IPCC [11], and (2) the value of RF 
is much smaller than the uncertainty with which the 
atmospheric absorption of solar radiation, the coefficient a , 
and the fluxes of sensible and latent heat are fraught. 

2.5. Estimates 

 First, Eqs. (9) and (20) were alternatively used to 
estimate the radiative equilibrium temperature 

Ts ( ) = Q , where E = 0.30 . In the case of Eq. (20)  

Aa = 0.23  was assumed in an additional sensitivity study. 

The estimates are listed in Table 1. For the purpose of 
comparison: the globally averaged near-surface temperature 
that is based on routine observations using the stations of the 
global meteorological network and weather satellites 

amounts to Tns 288 K . Thus, ignoring the fluxes of 

sensible and latent heat (Eq. (9)) leads to Ts ( )  results that 

are ranging from 278.9 K to 299 K, i.e., these temperature 
values are much higher than the temperature Te 255 K  

inferred from the planetary radiative equilibrium of the Earth 
in the absence of an atmosphere (see Eq. (46)  in section 3) 

even though they notably disagree with Tns . However, 

they become appreciably lower than Te  when H  and E  are 

included (see Eq. (20)). They become still lower if the 
absorption of solar radiation by atmospheric constituents is 
included additionally (see Table 1). Since the special case of 
the planetary radiative equilibrium of the Earth in the 
absence of an atmosphere is an asymptotic solution of either 
formula (23)  or formula (24), the global energy balance 
model of Schneider and Mass [2] does not support the 
existence of the so-called atmospheric greenhouse effect, as 
explained, for instance, by the American Meteorological 
Society (see section 3). 

 The results provided by formulae (23) and (24) for 
different values of the normalized cloud cover are illustrated 
in Fig. (5). The effect of the cloud cover on the surface 
temperature is notable. Budyko’s [24] empirical formula 
predicts a decrease in the surface temperature when the cloud 

 

Fig. (3). The global annual mean Earth’s energy budget for the March 2000 to May 2004 period (W m–2). The broad arrows indicate the 
schematic flow of energy in proportion to their importance (adopted from Trenberth et al. [29]). 
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cover rises. The opposite is true in the case of the empirical 
formula of Manabe and Wetherald [25]. 

 These facts document that the entire concept of the global 
energy balance model of Schneider and Mass [2] expressed 
by Eq. (4) is highly inconsistent because the fluxes of 
sensible and latent heat and the absorption of solar radiation 
by atmospheric constituents are not negligible. As already 
mentioned, this global energy balance model is only a global 
radiation balance model that does not exist in the case of the 
real Earth-atmosphere system. Consequently, all of these 
values for the empirical constants especially a  and b  are 
unreasonable. 

 The effect of the net anthropogenic radiative forcing in 

2005 of RF = 1.6W m 2 , on average, was also estimated 

using RF . These estimates are listed in Table 1, too. 

Obviously, this net anthropogenic radiative forcing causes a 

slight increase in the surface temperature ranging from 
Ts = 0.71K  to Ts = 1.11K . Also these Ts -values 

underline that the effect of RF , the perturbation to the 
natural system, is much smaller than the uncertainty 
involved in the solution of Eq. (8) using formulae (9) and 
(20) as well as the empirical constants a  and b . 
Furthermore, rearranging Eq. (23) (or Eq. (24)) yields 

=
1

Ts ( ) Tr
1 E Aa( )

S

4
H E a 1

a1
a
n , (26) 

i.e., for a 1
a1
a
n 1 E Aa( )

S

4
H E , as 

expected on the basis of the empirical values mentioned 

above, and any positive temperature difference, Ts ( ) Tr , 

the feedback parameter would be either equal to zero or 

 

Fig. (4). Global-average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic carbon dioxide (CO2), methane (CH4), nitrous 
oxide (N2O) and other important agents and mechanisms, together with the typical geographical extent (spatial scale) of the forcing and the 
assessed level of scientific understanding (LOSU). The net anthropogenic radiative forcing and its range are also shown. These require 
summing asymmetric uncertainty estimates from the component terms, and cannot be obtained by simple addition. Additional forcing factors 
not included here are considered to have a very low LOSU. Volcanic aerosols contribute an additional natural forcing but are not included in 
this figure due to their episodic nature. Range for linear contrails does not include other possible effects of aviation on cloudiness (Adopted 
from the Intergovernmental Panel on Climate Change, Climate Change 2007 – Summary for Policymakers, with respect to Forster et al. 
[11]). 
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negative. Since the effect of the anthropogenic radiative 
forcing is given by RF , the latter would cause a decrease 

of the surface temperature. This example shows how useless 
the feedback equation (8) is. Moreover, either Eq. (17) or 
formula (18) provide radiative equilibrium temperatures for 
the Earth in the absence of its atmosphere, which notably 
differ from the true solution of Eq. (4), when Eq. (5) is 
considered. This can be demonstrated the best on the basis of 
the Earth’s radiation balance in the case of the absence of its 
atmosphere. 

 

Fig. (5). Surface temperature vs normalized cloud cover for the 
empirical formulae of Budyko [24] and Manabe and Wetherald 
[25]. 

3. THE PLANETARY RADIATION BALANCE IN THE 
ABSENCE OF AN ATMOSPHERE AND THE 
GREENHOUSE EFFECT 

 The so-called greenhouse effect of the atmosphere is 
commonly explained as followed (see Glossary of 
Meteorology, American Meteorological Society, http://amsgl 
ossary.allenpress.com/glossary/search?id=greenhouse-
effect1): 

“The heating effect exerted by the atmosphere 
upon the Earth because certain trace gases in 
the atmosphere (water vapor, carbon dioxide, 
etc.) absorb and reemit infrared radiation. 

Most of the sunlight incident on the Earth is 
transmitted through the atmosphere and 
absorbed at the Earth's surface. The surface 
tries to maintain energy balance in part by 

emitting its own radiation, which is primarily 
at the infrared wavelengths characteristic of 
the Earth's temperature. Most of the heat 
radiated by the surface is absorbed by trace 
gases in the overlying atmosphere and 
reemitted in all directions. The component that 
is radiated downward warms the Earth's 
surface more than would occur if only the 
direct sunlight were absorbed. The magnitude 
of this enhanced warming is the greenhouse 
effect. Earth's annual mean surface 
temperature of 15°C is 33°C higher as a result 
of the greenhouse effect than the mean 
temperature resulting from radiative 
equilibrium of a blackbody at the Earth's mean 
distance from the sun. The term “greenhouse 
effect” is something of a misnomer. It is an 
analogy to the trapping of heat by the glass 
panes of a greenhouse, which let sunlight in. In 
the atmosphere, however, heat is trapped 
radiatively, while in an actual greenhouse, heat 
is mechanically prevented from escaping (via 
convection) by the glass enclosure.” 

 According to this explanation we may carry out the 
following “thought experiment” of a planetary radiation 
equilibrium also called a zero-dimensional model, where we 
assume the Earth in the absence of its atmosphere. A 
consequence of this assumption is that atmospheric 
phenomena like (a) absorption of solar and terrestrial (IR) 
radiation, (b) scattering of solar radiation by molecules and 
particulate matter, (c) radiative emission of energy in the IR 
range, (d) convection and advection of heat, and (e) phase 
transition processes related to the formation and depletion of 
clouds can be ignored. This thought experiment is carried in 
detail to point out that several assumptions and 
simplifications are necessary to obtain the formula of the 
planetary radiative equilibrium. This formula serves to 
predict the radiative equilibrium temperature Te . 

3.1. Solar Radiation 

 The total flux (also called the radiant power) of solar 
radiation, E

S
, reaching the surface of the Earth in the 

absence of its atmosphere is given by 

E
S

= F n r( ) dA r( )
A

.  (27) 

 Here, F  is the flux of solar radiation also called the solar 
irradiance and F  is its magnitude, A  is the radiation-

Table 1. Earth’s Surface Temperatures Provided by Eqs. (9) and (20). In the Case of Eq. (20) the Calculations were Performed 
without and with the Absorption of Solar Radiation by Atmospheric Constituents 

 

a 
(W m 2) 

b 
(W m 2

 K
1)  

Eq. (9)  
Ts ( )  

(K)  

Eq. (20) 1 
Ts ( )  

(K) 

Eq. (20)  
Ts ( )  

(K) 

Ts  
(K) 

Author(s) 

226.0 2.26 279.0 236.1 201.3 0.71 [23-25] 

201.5 1.45 299.2 232.3 178.1 1.1 [2] 

211.2 1.55 291.2 228.7 177.9 1.0 [13, 27] 
1No absorption of solar radiation by atmospheric constituents (Aa = 0). 
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exposed surface of the Earth, dA r( )  is the corresponding 

differential surface element, and n r( )  is the inward pointing 

unit vector perpendicular to dA r( ) , where the direction of 

n r( )  is chosen in such a sense that F n r( ) 0  is counted 

positive. This unit vector is also called the unit normal. Its 
origin is the tip of the position vector r  with which the 

location of dA r( )  on the Earth’s surface is described. The 

angle between F  and n r( )  is the local zenith angle of the 

Sun’s center, 0 r( ) . The scalar product F n r( )  that 

describes the solar radiation reaching the horizontal surface 

element, is given by F n r( ) = F cos 0 r( ) . 

 From now on we consider the Earth as a sphere; and its 
center as the origin of the position vector so that r = rE , 

where rE = 6371 km  is its magnitude. Thus, n rE( )  and rE  

are collinear vectors having opposite directions. 

Furthermore, A = rE
2  with = 2  is the solid angle of a 

half sphere, and dA = rE
2 d , where d = sin d d  is 

the differential solid angle (see Fig. 6). The quantities  and 
 are the zenith and azimuthal angles, respectively, of a 

spherical coordinate frame (see Fig. 6). Thus, the radiant 
power can be written as 

E
S

= rE
2 F cos 0 d = rE

2 F cos 0 sin d d
0

2

0

2

.  (28) 

 

Fig. (6). Mathematical representation of the solid angle. Here, 
d = sin d d  is the differential solid angle, where  and  

are the zenith and azimuthal angles, respectively (adopted from 
Kasten and Raschke [31]). 

 Since, however, a portion of F cos 0 rE( )  is not 

absorbed by the Earth’s skin because it is diffusely reflected 

we have to insert the local albedo, 0 , ,( ) , into this 

equation. Note that the local albedo not only depends on  

and , but also on 0 rE( ) . The total flux of solar radiation 

that is absorbed by the Earth’s skin, F
S

, is then given by 

F
S

= rE
2 F 1 0 , ,( )( ) cos 0 d

= rE
2 F 1 0 , ,( )( ) cos 0 sin d d

0

2

0

2  (29) 

 The solar irradiance reaching the Earth’s surface is given 
by 

F =
rS
d

2

FS , (30) 

where rS = 6.96 10
5 km  is the visible radius of the Sun, d  

is the actual distance between the Sun’s center and the orbit 
of the Earth, and FS  denotes the solar emittance [18]. 

Formula (30) is based on the fact that the radiant power 

( = 4 rS
2 FS ) of the Sun is kept constant when the solar 

radiation is propagating through the space because of energy 
conservation principles in the absence of an intervening 
medium [18, 32, 33]. For the mean distance (1 Astronomic 

Unit = AU) of d0 = 1.496 10
8 km  (e.g., [34, 35]), F  

becomes the solar constant S  so that we may write (e.g., 
[18, 34, 36]) 

F =
d 0

d

2

S .  (31) 

 The quantity d0 d( )
2

 is denoted here as the orbital 

effect. Since d0 d( )
2

 does not vary more than 3.5 percent 

[18, 36], this orbital effect is usually ignored. Note, however, 
that the temperature difference between perihelion and 
aphelion amounts to 4.2 K . This temperature difference is 

much larger than the increase of the globally averaged near-
surface temperature during the last 160 years (see the 
temperature anomaly with respect to the period 1961-1990 
illustrated in Fig. 7). 

 The local zenith angle of the Sun’s center can be 
determined using the rules of spherical trigonometry. In 
doing so, one obtains 

cos 0 = sin sin + cos cos cos h , (32) 

where  is the latitude,  is the solar declination angle, and 

h  is the hour angle from the local meridian (e.g., [18, 34, 
36]). The solar declination angle can be determined using 
sin = sin sin , where = 23° 27 '  is the oblique angle 

of the Earth’s axis, and  is the true longitude of the Earth 

counted counterclockwise from the vernal equinox (e.g., [18, 
34]). The latitude is related to the zenith angle by 
= 2  so that formula (32) may be written as 

cos 0 = cos sin + sin cos cos h . Note that  is 

ranging from zero to ,  from 23° 27 ' S  (Tropic of 

Capricorn) to 23° 27 ' N  (Tropic of Cancer), and h  from 
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H  to H , where H  represents the half-day, i.e., from 

sunrise to solar noon or solar noon to sunset. It can be 
deduced from Eq. (32) by setting 0 = 2  (invalid at the 

poles) leading to cos H = tan tan  (e.g., [18, 34, 36]). 

 

Fig. (7). The increase of the globally averaged near-surface 
temperature (annual mean) expressed by the temperature anomaly 
with respect to the period 1961-1990. These temperature anomaly 
data were adopted from the Hadley Centre for Climate Prediction 
and Research, MetOffice, UK. The fit of the atmospheric carbon 
dioxide (CO2) concentration adopted from Kramm et al. [37] is also 
shown. 

 By considering these issues Eq. (29) may be written as 

F
S

= rE
2 d 0

d

2

S

cos 0 sin d d
0

2

0

2

0 , ,( ) cos 0 sin d d
0

2

0

2
.  (33) 

 The equation cannot generally be solved in an analytical 
manner. Two special solutions, however, are possible. 

 If we assume, for instance, that = 2  we will obtain 

cos 0 = cos , i.e., the rotation axis of the Earth would 

always be parallel to the incoming solar radiation. Note that 
(1) the value of  exceeds the Tropic of Cancer by far and 
(2) the rotation of the planet plays no role. Obviously, this 
choice of  results in 

F
S

= rE
2 d 0

d

2

S

cos sin d d
0

2

0

2

,( ) cos sin d d
0

2

0

2

= rE
2 d 0

d

2

S ,( ) cos sin d d
0

2

0

2

, (34) 

 Considering d0 d( )
2
1  and assuming a constant albedo 

for the entire planet, i.e., ,( ) = E , yield [2, 6, 17-19, 

33-35, 38] 

F
S

= rE
2 S 1 E( ) .                  (35) 

 This formula can also be derived for a rotating Earth in 
the absence of its atmosphere when = 0  is assumed. This 

assumption is only fulfilled biyearly, namely at the vernal 
equinox and the autumnal equinox. In doing so, we consider 
the solar insolation that is defined as the flux of solar 
radiation per unit of horizontal area for a given location [18]. 
Thus, the daily solar insolation absorbed by the Earth’s skin 
is given by (e.g., [18, 32, 36, 39]) 

f
S

=
d0
d

2

S 1 0 , ,( )( ) cos 0 dt
tr

ts

.  (36) 

 Here, t  is time, where tr  and ts  correspond to sunrise 

and sunset, respectively. Assuming, again, a constant albedo 

for the entire planet, i.e., 0 , ,( ) = E  and recognizing 

that the variation of the actual distance, d , between the Sun 
and the Earth in one day can be neglected yield 

f
S

=
d0
d

2

S 1 E( ) cos 0 dt
tr

ts

=
d0
d

2

S 1 E( ) cos sin + sin cos cos h( ) dt
tr

ts
.    (37) 

 Defining the angular velocity of the Earth by 
= dh dt = 2 rad day , Eq. (37) may be written as 

f
S

=
d0
d

2
S
1 E( ) cos sin + sin cos cos h( ) dh

H

H

=
d0
d

2
S
1 E( ) H cos sin + sin cos sin H( )

,    (38) 

where H  is, again, the half-day. This equation described the 
daily solar insolation absorbed at a given location. Thus, the 
total amount of solar radiation that is absorbed by the planet 
during one of its rotations, F

S
, is given by 

F
S

= rE
2 f

S
d

= rE
2 d0

d

2
S
1 E( ) H cos sin + sin cos sin H( ) sin d d

00

2
.    (39) 

 If we assume that the oblique angle of the planet’s axis is 
zero which means that the axis is perpendicular to the plane 
of the ecliptic, we will obtain = 0 . Thus, the half-day will 

amount to H = 2 , i.e., the length of the solar day is 12 

hours. In doing so, Eq. (39) becomes 

F
S

= rE
2 d0

d

2
S
1 E( ) sin2 d d

00

2

= rE
2 d0

d

2

S 1 E( ) .     (40) 

 As mentioned before, d0 d( )
2

 does not vary more than 

3.5 percent. Thus, ignoring the orbital effect again leads to 
formula (35). 

 Even though some drastic assumptions and 
simplifications were introduced, formula (35) is customarily 
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used to quantify the incoming solar radiation that is absorbed 
at the Earth’s surface [2, 6, 17-19, 33-35, 38]. 

3.2. Terrestrial Radiation 

 The total flux of IR radiation emitted by the Earth’s 
surface is given by 

F
IR

= E rE( ) n rE( ) dA rE( )
A

.  (41) 

 Here, E rE( ) = rE( ) T 4 rE( ) er  is the flux density of 

IR radiation at the location rE , and E rE( ) = rE( ) T 4 rE( )  

is its magnitude. The emission of radiant energy by a small 
surface element into the adjacent half space is considered as 
isotropic, as required by the derivation of the power law of 
Stefan [15] and Boltzmann [16]. The unit vector 

er = rE rE  points to the zenith of this adjacent half space. 

Note that er  and n rE( )  are collinear unit vectors having 

opposite directions. Thus, we have er n rE( ) = 1 . This 

only means that F
S

 is counted positive, and F
IR

 is counted 

negative. In the case of the planetary radiative equilibrium 
this convention results in 

F
S

F
IR

= 0 F
S

= F
IR

.  (42) 

 The radiant power in the IR range is then given by 

F
IR

= rE
2 E ,( ) d = rE

2 E ,( ) sin d d
00

2

,      (43) 

where now = 4  is the solid angle for the entire planet, 

and E ,( ) = ,( ) T 4 ,( ) . The surface emissivity, 

,( ) , and the surface temperature, T ,( ) , depend on 

both  and . Usually, it is assumed that E ,( )  is 

uniformly distributed and may be substituted by 

EE = E Te
4 , where, again, E  denotes the planetary 

emissivity. We obtain 

F
IR

= rE
2

E Te
4 sin d d

00

2

= 4 rE
2

E Te
4 .  (44) 

 This equation is customarily used to quantify the radiant 
power in the IR range [2, 6, 17-19, 33-35, 38]. Note that the 

drastic assumption that E ,( )  is uniformly distributed is 

not in agreement with our experience because even in the 
case of the real Earth-atmosphere system there is a variation 
of the Earth’s surface temperature, at least, from the equator 
to the poles. Our Moon, for instance, nearly satisfies the 
requirement of a planet without an atmosphere; and formula 
(35) may similarly be applied to determine the solar 
radiation absorbed by its skin using a planetary albedo of 

M = 0.12 . It is well known that the Moon has no uniform 

temperature, and, hence, no uniform distribution of E ,( ) . 

There is not only a strong variation of the Moon’s surface 
temperature from the lunar day to the lunar night, but also 
from the Moon equator to its poles (e.g., [40-42]). Gerlich 

and Tscheuschner [43] disputed this drastic assumption in 
detail. 

3.3. The Temperature of the Radiative Equilibrium 

 The planetary radiative equilibrium, Eq. (42), leads to 
(e.g., [2, 6, 17-19, 33-35, 38, 44]) 

S 1 E( ) = 4 E Te
4  (45) 

and in a further step to 

Te =
1 E( ) S
4 E

1

4

,  (46) 

where Te  is, again, the radiative equilibrium temperature, 

i.e., the temperature inferred from the planetary radiative 
equilibrium. Note, however, that (1) the assumption that 

E ,( )  is uniformly distributed is entirely unrealistic as 

debated before, and (2) the transfer of heat into the layer of 
the thickness  beneath the Earth’s surface is ignored. The 
latter is in contradiction to the formulation of Schneider and 
Mass [2] for the aqua planet. However, in the case of a 
planetary radiative equilibrium the left-hand side of Eq. (4) 
becomes equal to zero because dTs dt 0  if 

Ts t( ) Ts ( )  so that this contradiction has no effect under 

such conditions. 

 Assuming that the Earth acts like a black body ( E = 1 ) 

and choosing E = 0.30  as obtained for the Earth-

atmosphere system from satellite observations (e.g., [33, 35]) 
yield Te 254.86 K . This value is well known and the 

difference between the globally averaged near-surface 

temperature of nearly Tns 288 K  and this value of Te  is 

customarily used to quantify the so-called greenhouse effect 

of about Tns Te 33 K  (e.g., [6, 24, 33, 35]). However, 

as illustrated in Fig. (8), Eq. (17) provides 

Ts ( ) = 256.62 K , when a reference temperature 

Tr = 273.15 K  is chosen as suggested by Budyko [23, 24] 

and Manabe and Wetherald [25]. This means that the 
radiative equilibrium temperature provided by Eq. (17) is 
1.76 K  higher than the true radiative equilibrium 

temperature, or in other words: Eq. (17) provides a 
“temperature increase” which is based on an inaccurate 
solution of Eq. (4) due to the linearization of the power law 
of Stefan and Boltzmann (see formulae (11) and (12)). This 
systematic error of a temperature increase of 1.76 K  

corresponds to 6.7W m 2  which is four times larger than 

the net anthropogenic radiative forcing of RF = 1.6W m 2 , 

on average, in 2005 (see Fig. 4). Only reference temperatures 
in close vicinity to the radiative equilibrium temperature 
provide appreciably better results (see Fig. 8). Note that 
Budyko [24] also calculated an radiative equilibrium 

temperature by assuming S 1360W m 2 , E = 0.95  and 

E 0.33 . He obtained Te 255 K . It seems that the 

assumptions have been made in such a sense that the amount 



148    The Open Atmospheric Science Journal, 2010, Volume 4 Kramm and Dlugi 

of the greenhouse effect of about 33 K  can be kept. He 

noted, however, that in the absence of an atmosphere the 
planetary albedo cannot be equal to the actual value of 

E 0.33  (today E = 0.30 ). He assumed that prior to the 

origin of the atmosphere, the Earth’s albedo was lower and 
probably differed very little from the Moon’s albedo, which 
is equal to M 0.07  (today M 0.12 ). 

 

Fig. (8). Error T = Ts ( ) Te  versus reference temperature Tr  

used by the linearization of the power law of Stefan [15] and 
Boltzmann [16] (see Eqs. (11) and (12)). Also shown is the 

corresponding energy difference FIR . For the purpose of 

comparison: The total net anthropogenic radiative forcing 
illustrated in Fig. (4) amounts 1.6 W m 2. 

 It is well known that the Earth is a gray body emitter, 
rather than a blackbody emitter. Therefore, we have to 
consider a planetary emissivity less than unity. In doing so, 
formula (46) should be expressed for the purpose of 
convenience by 

 

Te = E

1

4
1 E( ) S
4

1

4

Tb,e

= E

1

4 Tb,e ,  (47) 

where Tb,e  is the blackbody equilibrium temperature. As 

illustrated in Fig. (9), if we assume, for instance, E = 0.30  

and E = 0.90  we will obtain Te 261.8 K  and, hence, 

T = Tns Te 26.2 K . For E = 0.75  we would obtain 

Te 274 K  and, hence, T 14 K . Assuming T = 0  

yields E 0.614 , i.e., to guarantee that a greenhouse effect 

can be identified the planetary emissivity has to satisfy the 
requirement E > 0.614  (see Fig. 9). Our estimates are not 

surprising because a decreasing planetary emissivity would 
lead to a decreasing emission of radiative energy, which 
means that the cooling effect due to the loss of energy by 
emission becomes weaker and weaker. These estimates 
underline that within the framework of this thought 
experiment of radiative equilibrium the amount of the 
greenhouse effect strongly depends on the planetary 

emissivity E > 0.614 , when the planetary albedo is kept 

fixed. 

 

Fig. (9). Temperature Te  of the radiative equilibrium as a function 
of the planetary emissivity (solid line). Also shown is the mean 
global near-surface temperature (dotted line) and the range of 
uncertainty with which Te  is fraught. The uncertainty was obtained 
using E = 0.02 , S = 1.5W m 2 , E = 0.025  and, alternatively, 

E = 0.05 . 

 To express the uncertainty of Te  due to the uncertainties 

with which empirical quantities like the planetary albedo and 
the planetary emissivity are fraught by random errors, we use 
Gaussian error propagation principles. Thus, the absolute 
error of temperature Te  is given by 

Te = ±
Te

E

2

E( )
2
+

Te
S

2

S( )
2
+

Te

E

2

E( )
2

1

2

,  (48) 

where the E  and E  are the absolute errors (usually the 

standard deviations) of the planetary albedo and the 
planetary emissivity, respectively. From this equation we can 
deduce the relative error given by 

Te
Te

= ±
1

4
E

1 E

2

+
S

S

2

+
E

E

2
1

2

.  (49) 

 Fig. (9) also illustrates this uncertainty estimated with 

E = 0.30 , E = 0.02  (taken from Fig. 10), 

S = 1367W m 2 , S = 1.5W m 2 , E = 0.025 , and, 

alternatively, E = 0.05 . Thus, in the case of E = 0.90 , for 

instance, the greenhouse effect of T 26.2 K  is fraught 

with an uncertainty of ± 2.6 K  for E = 0.025  and 

± 4.1K  for E = 0.05 , respectively. This temperature 

difference of T 26.2 K  corresponds to a difference in 

the radiative energy of FIR = 111.3W m 2  with an 

uncertainty of about ± 9.5W m 2  for E = 0.025  and 

± 15W m 2  for E = 0.05 , respectively (see Fig. 11). This 
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means that the uncertainty in the amount of the so-called 
greenhouse effect is much larger than the net anthropogenic 

radiative forcing of RF = 1.6W m 2 , on average, in 2005 

(see Fig. 4). 

 

Fig. (10). Long-term (1984-1997) time series of monthly averaged 
planetary albedo (adopted from Vardavas and Taylor [35]). 

 

Fig. (11). Energy difference FIR  as a function of the planetary 

emissivity e  (solid line). Also shown is the range of uncertainty 

with which FIR  is fraught. For the purpose of comparison: The 

total net anthropogenic radiative forcing as illustrated in Fig. (4) 

amounts 1.6W m 2 . 

 On the other hand, if a planetary albedo of E = 0.07  as 

suggested by Trenberth et al. [29] and a planetary emissivity 
of E = 1  are chosen, Eq. (46) will provide Te = 273.6 K . 

Replacing E = 0.07  by E = 0.12  would yield 

Te = 269.9 K . Furthermore, for any planetary emissivity less 

than unity we would obtain still higher temperature values. A 
planetary emissivity of E = 0.95 , for instance, would 

provide Te = 277.1K  for E = 0.07  and Te = 273.4 K  for 

E = 0.12 . 

4. CORRECT SOLUTIONS OF THE CONVENT-
IONAL GLOBAL ENERGY BALANCE MODEL OF 
SCHNEIDER AND MASS FOR THE EARTH IN THE 
ABSENCE OF AN ATMOSPHERE 

4.1. Analytical and Numerical Solutions 

 Now, it is indispensable to document that the true 
solution of Eq. (4) with Eq. (5) leading to 

R
dTs
dt

= 1 E( )
S

4 E Ts
4  (50) 

provides an radiative equilibrium temperature Ts ( )  which 

completely agrees with Te 254.86 K  as obtained with 

formula (46). Equation (50) may also be written as 

R

E

dTs
dt

=
1 E( ) S
4 E

Ts
4
= Te

4 Ts
4 ,  (51) 

where the first term of the right-hand-side of this equation is 
expressed by the radiative equilibrium temperature given by 
formula (46). We may do that because, as done before, we 
again assume that E , E , and S  are independent of time. 

Separating the variables and integrating from t = 0 , for 

which we again have Ts0 = Ts t = 0( ) , and t  yields 

dTs
Te
4 Ts

4Ts 0

Ts t( )
= E

R
t .  (52) 

 Since the exact solution of the integral on the left-hand 
side of this equation reads 

dTs
Te
4 Ts

4Ts 0

Ts t( )
=

1

4 Te
3

ln

Te + Ts t( )
Te Ts t( )
Te + Ts0
Te Ts0

+ 2 arctan
Te Ts t( ) Ts0( )
Te
2
+ Ts t( ) Ts0

,  (53) 

we finally obtain 

1

4 Te
3

ln

Te + Ts t( )
Te Ts t( )
Te + Ts0
Te Ts0

+ 2 arctan
Te Ts t( ) Ts0( )
Te
2
+ Ts t( ) Ts0

= E

R
t .  (54) 

 Unfortunately, this transcendental equation has to be 
solved for any time t  iteratively. Therefore, it is 
advantageous and convenient to directly solve Eq. (50) using 
a numerical algorithm like Gear’s [45] DIFSUB for which 
we may express Eq. (50) in the following manner: 

 
Ts = A B Ts

4  with A = 1 E( ) S 4 R( )  and 

B = E R . 
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4.2. Estimates 

 Results of the numerical solution of Eq. (50) for the aqua 
planet considering four different values of the water layer 
thickness  (25 m, 50 m, 75 m, and 150 m) are illustrated in 

Fig. (12), where, for instance, Ts0 = 222 K  and Ts0 = 288 K  

were chosen as initial values. In all instances the results tend 

to a value of Ts ( ) = 254.86 K , i.e., this value of the 

numerical solution completely agrees with Te . As expected, 

the fastest response is obtained for = 25 m  with 

t 14 years  (considered as the time for which the numerical 

solution equals Te  with a sufficient degree of accuracy), 

followed by those of = 50 m  ( t 28 years ), = 75 m  

( t 42 years ), and = 150 m  ( t 84 years ). Note that the 

values of the e-folding time of response are much smaller, 
namely = 0.717 years  for = 25 m , = 1.43 years  for 

= 50 m , = 2.15 years  for = 75 m , and 

= 4.30 years  for = 150 m . However, these values are 

related to the exponential function (18) only. 

 

Fig. (12). Convergence behavior of the numerical solution of Eq. 
(50) for four different values of the water layer thickness . The 

initial conditions were assumed as Ts0 = 222 K  and Ts0 = 288 K . 

5. THE FORMULAE OF ÅNGSTRÖM AND BRUNT 

5.1. Analytical Solutions 

 If the down-welling IR radiation is parameterized using 
either Ångström-type [46, 47] or Brunt-type formulae [47, 
48] such a numerical method can be applied to solve Eq. 
(19). These formulae are given by 

F
IR

= TL
4

a3 b3 10
eL( ) if Ångström type formulae [46, 47]

a4 + b4 eL

1

2 if Brunt type formulae [47, 48]

.  (55) 

 Here, TL  is the air temperature close to the surface (at 

the height of 1.5 to 2 m), eL  is the water vapor pressure at 

the same height either in mm Hg (Ångström) or in hPa 

(Brunt), and a3 , b3 , , a4 , and b4 , are empirical constants 

listed in Table 2 (see also Kondratyev [36] for additional 
empirical values). As already shown by Raman [49], Brunt’s 
formula is only a variation of Ångström’s formula because 

 

F
IR

= TL
4 a3 b3 10

eL( ) = TL
4 a3 b3

a4

+ b3 1 10 eL( ) .  (56) 

 In Eq. (55) the quantities in the parentheses are notably 
smaller than unity. This can be explained as follows: The 
absorption bands of the so-called greenhouse gases have 
limited ranges of frequencies. The formula for such a limited 
range also called the filtered spectrum is given by [43, 54, 
55] 

FF T( ) = eF 1, 2( ) T 4 ,  (57) 

where eF 1, 2( )  is defined by 

eF 1, 2( ) =
15
4

3

exp ( ) 1
d

1

2

< 1  (58) 

with = h k T( ) . Here, the subscript F characterized the 

filtered or finite spectrum. Formula (57) describes the 
fractional emission of a black body due to a finite or filtered 
spectrum. Note that Eq. (58) provides a result even though 
an emitter/absorber does not exist. 

 According to Bolz [56], these empirical formulae may be 
multiplied by a weighting function for both the cloud cover 
and the cloud type given by 

f n( ) = 1 + K n2.5 ,  (59) 

where K  is a weighting factor that depends on the cloud 
type. It is ranging from 0.04 for cirrus clouds to 0.24 for 
stratus clouds; an average value is given by K 0.22  [56]. 

Inserting this formula into Eq. (55) yields 

F
IR

= TL
4

a3 b3 10
eL( ) 1 + K n2.5( ) if [46, 47, 56]

a4 + b4 eL

1

2 1 + K n2.5( ) if [47, 48, 56]

.  (60) 

 Since the temperatures TL  and Ts  can notably differ 

from each other; we may express the former by the latter 
according to 

TL = Ts T ,  (61) 

where the deviation T  may be either positive or negative. 

Thus, the term FIR = F
IR

Ts( ) E FIR  in Eq. (19) results 

in 

FIR = Ts
4

E 1 1 4 T( ) a3 b3 10
eL( ) 1 + K n2.5( ){ } if [46, 47, 56]

E 1 1 4 T( ) a4 + b4 eL

1

2 1 + K n2.5( ) if [47, 48, 56]

,     (62) 
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where T = T Ts  is considered as a relative deviation. 

Since, however, this relative deviation only slightly affects 
the results it is not further considered, i.e., TL  is 

approximated by Ts . For steady-state conditions (i.e., 

dTs dt = 0 ) Eq. (19) provides 

Ts ( ) =
1

1 E Aa( )
S

4
H E

1

4

E 1 a3 b3 10
eL( ) 1 + K n2.5( ){ }{ }

1

4 if [46, 47, 56]

E 1 a4 + b4 eL

1

2 1 + K n2.5( )

1

4

if [47, 48, 56]

.    (63) 

5.2. Estimates 

 The surface temperatures provided by formula (63) for 

E = 1 , E = 0.30 , Aa = 0.23 , H 17W m 2 , 

E 80W m 2  and various values of the water vapor 

pressure are listed in Table 3. Obviously, these results are 
ranging from 267.8 K (number II) to 298.7 K (number VIII) 
when the effect of water vapor is ignored. With exception of 
numbers IV, VI, and IX they notably disagree with 

Tns 288 K . For increasing values of the water vapor 

pressure the surface temperatures become irrelevant because 

they are much higher than Tns . Including the effect of 

clouds in the IR range would still increase these surface 
temperatures because the function (59) becomes larger than 
unity for n > 1 . On the other hand, if we ignore the fluxes of 

sensible and latent heat and the absorption of solar radiation 
by the atmosphere the surface temperatures are still higher 
and, of course, senseless. 

6. TWO-LAYER ENERGY BALANCE MODELS 

6.1. Analytical Solutions 

 Recently, Smith [57] discussed the IR absorption by the 
atmosphere to illustrate the so-called greenhouse effect, 

where he used a two-layer model of radiative equilibrium. 
Similar models were already discussed, for instance, by 
Hantel [58] and Kump et al. [59]. In contrast to these models 
in which the absorption of solar radiation by the atmosphere 
is not included we consider the more advanced one of Dines 
[60] (see Fig. 13) and Liou [18]. Inserting uniform 
temperatures for the atmosphere, Ta , and the Earth’s surface, 

TE  provides (see [62] and Eq. (A22) of the Appendix A). 

Table 3. Earth’s Surface Temperatures Provided by 
Ångström-Type and Brunt-Type Formulae for 
Different Water Vapor Pressures 

 

eL (hPa) 
Number 

0 5 10 15 20 

I 281.0 301.8 317.3 327.9 334.5 

II 267.8 287.9 303.1 313.5 320.0 

III 272.7 298.5 313.8 328.7 344.5 

IV 287.3 308.4 324.1 334.7 341.4 

V 275.3 297.0 312.7 322.7 328.7 

VI 287.3 301.6 308.7 314.8 320.4 

VII 279.5 305.9 321.4 336.6 352.7 

VIII 298.7 313.8 324.1 330.6 334.5 

IX 287.3 324.5 344.4 352.6 355.6 

 

Top of the Atmosphere 

1 E( )
S

4 a Ta
4 1 a( ) E TE

4
= 0 ,  (64) 

Earth’s Surface 

1 E Aa( )
S

4
+ E a Ta

4
E TE

4
= 0 .  (65) 

 Here, the subscript a  characterizes the values for the 
atmosphere, and, again, the subscript E  the values for the 
Earth’s surface. Note that the quantity 1 E Aa  is the 

integral transmissivity; the  solar  radiation  absorbed  by  the  

Table 2. Constants of the Ångström-Type and Brunt-Type Formulae (Adopted from Bolz and Falckenberg [47]) 
 

Number a3 b3  a4 b4 Year Author Remarks 

I 0.79 0.26 0.069 - - 1916 [46] Nighttime values 

II 0.75 0.32 0.069 - - 1929 [50] Nighttime values 

III - - - 0.47 0.072 1932 [47] Nighttime values 

IV 0.806 0.236 0.069 - - 1933 [51] Nighttime values 

V 0.77 0.28 0.075 - - 1935 [49] Nighttime values 

VI - - - 0.57 0.034 1935 [49] Nighttime values 

VII - - - 0.52 0.065  [52] Nighttime values 

VIII 0.78 0.148 0.068 - - 1940 [53] Nighttime values 

IX 0.820 0.250 0.126 - - 1948 [47] Daytime and nighttime values 
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Earth’s skin is, therefore, given by 1 E Aa( ) S 4 . 

Furthermore, the term 1 a( ) E TE
4  is the terrestrial 

radiation that is propagating through the atmosphere (it also 
includes the terrestrial radiation that is passing through the 
atmospheric window). Moreover, the reflection of IR 
radiation at the Earth’s surface is included here, but  
scattering of IR radiation in the atmosphere is ignored, in  
accord with Möller [61]. The latter substantially agrees with 
the fact that in the radiative transfer equation the Planck 
function is considered as the only source function when a 
non-scattering medium is in local thermodynamic 
equilibrium so that a beam of monochromatic intensity 
passing trough the medium will undergo absorption and 
emission processes simultaneously, as described by 
Schwarzschild’s equation [18, 63-65]. As before, all 
properties are considered as uniform, too. The solution of 
this two-layer model of radiative equilibrium is given by 
[62]. 

 

Fig. (13). Dines’ [60] sketch of the radiation balance of the 
atmosphere. The author described his sketch as follows: Radiant 
energy, denoted by A, reaches the atmosphere; of this a part (D) is 
reflected unchanged by the earth or air, a part (C) is absorbed by 
the air, and a part (B) is absorbed by the Earth. Meanwhile the 
Earth is radiating its heat (G) outwards; of this let M be reflected 
back, let H be absorbed and K transmitted. The air is also radiating 
downwards and upwards; let us call the amounts E and F, and if 
any part of E is reflected away by the earth it may be included in F. 
Also heat may pass from the earth to the air or in the opposite 
direction otherwise than by radiation; let us call this L, earth to air 
being the positive direction. According to Möller [61] the quantity 
M is based on Dines’ mistake. 

Ta =
Aa + a 1 E Aa( )( ) S
4 a 1 + E 1 a( )( )

1

4

 (66) 

and 

TE =
1 + E( ) 1 E( ) Aa( ) S
4 E 1 + E 1 a( )( )

1

4

.  (67) 

 This pair of equations is non-linear with some coupling 
terms [18]. It will completely agree with that of Liou [18] if 

E = 1  is chosen. In the absence of an atmosphere as 

discussed in sections 3 and 4 the quantities E  and Aa  are 

equal to zero, and Eq. (67) will completely agree with Eq. 
(46). 

 The opposite is true in the case of Budyko’s [24] heat 
balance of the Earth presented in his Fig. (1). Budyko even 
assumed that the solar radiation at the top of the atmosphere 

is given by 1 E( ) S 4  with E 0.33 . Then, he argued 

that the solar radiation reaching the Earth’s surface is 
reduced by atmospheric absorption so that an amount of 

solar radiation given by 1 E( ) 1 Aa( ) S 4  is reaching 

the Earth’s surface, where Aa 0.25 . He further argued that 

at the Earth’s surface a portion of this incident solar radiation 
is reflected due to a short-wave albedo of the Earth’s surface 
of about S = 0.14 , i.e., he distinguished between the albedo 

at the top of the atmosphere, E , that is also affected by the 

Earth’s surface, and the surface albedo S . Thus, following 

Budyko [24] the solar radiation absorbed at the Earth’s skin 

would be given by 1 E( ) 1 Aa( ) 1 S( ) S 4 . Taking 

his value of S 1000 kcal cm 2 yr 1  and his values for 

S = 0.14 , E = 0.33 , and Aa 0.25  into account leads to 

108 kcal cm 2 yr 1  [24]. In the absence of the atmosphere 

the incident solar radiation absorbed by the Earth’s skin 

would be 1 E( ) 1 S( ) S 4 , where E = S , leading  to 

TE =
1 S( )

2
S

4 E

1

4

.  (68) 

 This formula disagrees with Eq. (46), i.e., Budyko’s 
consideration is notably inconsistent. 

 Fig. (3) illustrates that the fluxes of sensible heat, H , 
and latent heat, E , are not negligible (see also Fig. 1 by 
Dines [60], here given by Fig. 13). Consequently, the 
radiation flux balance at the Earth’s surface has to be 
replaced by an energy flux balance (see [62] and Eq. (A21) 
of the Appendix A), 

1 E Aa( )
S

4
+ E a Ta

4
E TE

4 H E = 0 ,  (69) 

to include them, in accord with Trenberth et al. [29]. In 
doing so, one obtains [62]. 

Ta =
Aa + a 1 E Aa( )( )

S

4
+ 1 a( ) H + E( )

a 1 + E 1 a( )( )

1

4

 (70) 
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and 

TE =

1 + E( ) 1 E( ) Aa( )
S

4
H E

E 1 + E 1 a( )( )

1

4

.  (71) 

 In the absence of the Earth’s atmosphere formula Eq. 
(71) will completely agree with Eq. (46), too. Note that 
Arrhenius [66] considered a similar scheme for a column of 
the atmosphere, i.e., he already included the absorption of 
solar radiation by atmospheric constituents, and the 
exchange of heat between the Earth’s surface and the 
atmosphere, but he could not assumed radiative equilibrium 
at the top of this atmospheric column. Furthermore, 
Miskolczi [67] also used a Dines-type scheme. 

 Customarily, the fluxes of sensible and latent heat are 
expressed by (e.g., [68]): 

 

H = cp Ch uR us( ) R Ts( ) = const. ,  (72) 

and 

 

E = Lv Cq uR us( ) qR qs( ) = const. .  (73) 

 Here, Ch  and Cq  are the transfer coefficients for 

sensible heat and water vapor, respectively. Furthermore, 
 
uR  

and 
 
us  are the mean values of the wind speed at zR , the 

outer edge of the atmospheric surface layer (subscript R), 
and at the Earth’s surface (subscript s), where in the case of 

rigid walls the latter is equal to zero, 
 R  is the mean 

potential temperature at zR , 
 
Ts  is the mean absolute 

temperature at the surface, and 
 
qr  and 

 
qs  are the 

corresponding values of the specific humidity, respectively. 

Moreover,  is the mean air density, cp  is the specific heat 

at constant pressure, and Lv  is the mean specific heat of 

phase transition (e.g., vaporization, sublimation). As 
expressed by these equations, these fluxes are related to 
differences of temperature and humidity between a certain 
reference height, zR , and the Earth’s surface. If 

representative atmospheric values like a uniform temperature 
and a uniform water vapor pressure are considered, such 
formulations as given by formulae (72) and (73) become 
impracticable. Thus, we have to insert H  and E  into the 
energy flux balance equation (59) as recommended, for 
instance, by Trenberth et al. [29]. 

6.2. Estimates 

 It is obvious that TE  and Ta  are dependent on the 

emissivity values of the Earth and the atmosphere, the 
absorption and the planetary albedo. Results provided by 
Eqs. (66) and (67) using E 0.30  and some combinations 

of E  and a , where the absorptivity, Aa , is ranging from 

zero to 0.3, are illustrated in Fig. (14). Assuming, for 
instance, that the atmosphere acts as blackbody emitter leads 

to an atmospheric temperature of about Ta 255 K  which is 

independent of the absorptivity (see Eq. (66) for a = 1 ). 

Considering, in addition, the Earth as a blackbody emitter 
provides a surface temperature of about TE 303 K  if Aa  is 

assumed to be zero. This value completely agrees with those 
of Smith [57], Hantel [58], and Kump et al. [59]. Since the 
global average of temperatures observed in the close vicinity 

of the Earth’s surface corresponds to Tns 288 K , this 

value of TE 303 K  confirms that the absorption of solar 

radiation in the atmosphere causes a decrease of the Earth’s 
surface temperature (the atmospheric temperature increases 
concurrently). If we additionally assume that also the Earth 
acts as a blackbody emitter, we will obtain a temperature 
value for the Earth’s surface of TE = 288 K  for an 

absorptivity of Aa 0.26 . This value is close to those 

estimated by Budyko [24], Schneider [17], Liou [18], and 
Trenberth et al. [29] (see also Fig. 3). However, as shown in 
Fig. (14) other combinations of E  and a  provide different 

results. Even though that now Ta  grows with an increasing 

absorptivity, the decrease of TE  is nearly as strong as the 

increase of Ta . Thus, we may conclude that the two-layer 

model of radiative equilibrium is, in principle, able to 
provide any pair of results for TE  and Ta  we would like. 

 The results shown in Fig. (15) are based on Eqs. (70) and 
(71) illustrating the effects owing to the fluxes of sensible 

and latent heat, where H = 17W m 2  and E = 80W m 2  

are considered, in accord with Trenberth et al. [29]. This 
figure is based on the same combination of data as used in 
the case of Fig. (14). As illustrated, including these flux 
values leads to notably lower temperatures at the Earth’s 
surface. Note that in the case of E = 0.95  and a = 0.6  the 

Earth’s surface temperature would be lower than the 
temperature of the radiative equilibrium of Te 255 K  

(provided by Eq. (46)) for Aa 0.17 . For this case the 

Earth’s surface temperature would be lower than the 
temperature of the atmosphere. In such a case it has to be 
expected that, at least, the sensible heat flux should change 
its direction. For E = 1.0 , a = 0.8 , and Aa = 0.23  the 

Earth’s surface temperature would only be slightly higher 
than Te . In this case the temperature of the atmosphere 

would be Ta 255 K , i.e., it would correspond to the 

vertically averaged temperature of the troposphere. 

 Based on these results we may conclude that this two-
layer model of energy flux equilibrium does not support the 
existence of the so-called atmospheric greenhouse effect as 
defined, for instance, by the American Meteorological 
Society (see section 3). 

7. SUMMARY AND CONCLUSIONS 

 In this paper we discussed the global energy balance 
model of Schneider and Mass [2] customarily used to study 
feedback mechanisms and transient climate response. We 
pointed out that global heat capacity, C , and global inertia 
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coefficient, R , differ from each other by a length scale, here 
the thickness of the water layer of an aqua planet as 
considered by these authors. Also the feedback parameter, 

, and the sensitivity parameter, * , differ from each 
other. We showed that the latter is the reciprocal of the 
former, but not identical as stated in the recent NRC report 
[8]. It is indispensable to pay attention to these issues to 
avoid the use of inconsistent physical units in the very same 
equation. 

 If the effects of absorption of solar radiation by 
atmospheric constituents and the exchange of sensible and 
latent heat between the Earth’s surface and the atmosphere is 
ignored the global energy balance model of Schneider and 
Mass [2] provides results that are ranging from 278.9 K to 

299 K for different empirical parameters a  and b  as 
suggested by various authors [2, 13, 23-25, 27] (see Table 1), 
i.e., these temperature values are much higher than the 
temperature Te 255 K  inferred from the planetary 

radiative equilibrium of the Earth in the absence of an 
atmosphere (see Eq. (46)) even though they notably disagree 

with Tns . As described in section 3, Te  is customarily used 

to quantify the so-called greenhouse effect by 

Tns Te 33 K . However, the results provided by the 

Schneider-Mass model become appreciably lower than Te  

when H  and E  are inserted (see Eq. (20)). They become 
still lower if the absorption of solar radiation by atmospheric 
constituents is included additionally (see Table 1). Since the 

 

Fig. (14). Uniform temperatures for the Earth’s surface and the atmosphere provided by the two-layer model of radiative equilibrium versus 

absorptivity Aa (adopted from Kramm et al. [62]). 

 

Fig. (15). As in Fig. (14), but the radiation flux balance at the Earth’s surface is replaced by an energy flux balance including the fluxes of 
sensible and latent heat as suggested by Trenberth et al. [29] (adopted from Kramm et al. [62]). 
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special case of the planetary radiative equilibrium of the 
Earth in the absence of an atmosphere is an asymptotic 
solution of either formula (23) or formula (24), the global 
energy balance model of Schneider and Mass [2] does not 
support the existence of the so-called atmospheric 
greenhouse effect, as defined, for instance, by the American 
Meteorological Society (see section 3). 

 The temperature difference of Tns Te 33 K  is 

mainly fraught by the inappropriate assumption that the 
Earth’s surface exhibits a uniform surface temperature, 
Te 255 K . Using Gaussian error propagation principles we 

showed that the inherent uncertainty is much larger than the 
effect of the net anthropogenic radiative forcing of 

RF = 1.6W m 2 , on average, in 2005 that is considered as 

a perturbation of the natural system. 

 On the other hand, if a planetary albedo of E = 0.07  

and a planetary emissivity of E = 1  are chosen, Eq. (46) 

will provide Te = 273.6 K . Replacing E = 0.07  by 

E = 0.12  would yield Te = 269.9 K . Furthermore, for any 

planetary emissivity less than unity we would obtain still 
higher temperature values. A planetary emissivity of 

E = 0.95 , for instance, would provide Te = 277.1K  for 

E = 0.07  and Te = 273.4 K  for E = 0.12 . These results 

document the great uncertainty inherent in such calculations. 

 We further analyzed this perturbation and found that its 
effect is much smaller than the uncertainty with which the 
global energy balance climate model of Schneider and Mass 
[2] is fraught due to the linearization of the power law of 
Stefan [15] and Boltzmann [16] and the use of an unsuitable 
reference temperature of Tr = 0 °C  and the empirical 

constants a  and = b , where the latter is identical with the 

feedback parameter. Since RF  is determined for 2005 and 
relative to pre-industrial conditions defined at 1750 [11] a 
portion of this RF  is already covered by empirical constants 
a  and b  (depending on the period of observation of IR 
radiation from which a  and b  are deduced) completely 
ignored by the Working Group I of the IPCC [11]. As we 
argued on the basis of Eq. (2.23), the anthropogenic radiative 
forcing may produce a decrease of the Earth’s surface 
temperature. Also this result gives evidence that the global 
energy balance climate model of Schneider and Mass [2] 
leads to inconsistent physical consequences. 

 To avoid the linearization of the Stefan-Boltzmann power 
law we discussed Earth’s surface temperature obtained when 
the down-welling IR radiation is parameterized using either 
Ångström-type or Brunt-type formulae and the exchange of 
sensible and latent heat between the Earth’s surface and the 
atmosphere and the absorption of solar radiation by 
atmospheric constituents are included. If the water vapor 
effect is ignored, three of these formulae provide results 

close to the value of Tns 288 K , otherwise the Earth’s 

surface temperatures become too high (see Table 3). 

 We also discussed the results provided by a Dines-type 
two-layer energy balance model, eventually adopted by 

Budyko [24] and others, that provides characteristic uniform 
temperatures not only for the Earth’s surface, but also for the 
atmosphere. However, for realistic empirical data, also these 
results do not support the existence of the so-called 
greenhouse effect. Nevertheless, with exception of the non-
existing effect of the IR radiation reflected back by the 
atmosphere, Dines-type two-layer energy balance models are 
still the basis for global annual mean Earth’s energy budgets 
as recently published by Trenberth et al. [29]. 

 Based on our findings we may conclude that it is time to 
acknowledge that the principles on which global energy 
balance climate models like that of Schneider and Mass [2] 
or that of Dines [60] are based have serious physical 
shortcomings and should not further be used to study 
feedback mechanisms, transient climate response, and the 
so-called atmospheric greenhouse effect. 

APPENDIX A: DERIVATION OF EQUATIONS (4), 
(64), AND (69) 

 To derive the global energy balance model of Schneider 
and Mass [2] for an aqua planet listed here as Eq. (4) we 
consider the upper layer of such an aqua planet. We assume 
that this planet can be considered as a sphere with the radius 
rE 6, 371 km  and the water layer under study as a spherical 

shell of the thickness . The volume of this shell is given 
by 

Vw =
4

3
rE
3 4

3
rE( )

3
=
4

3
rE
3 1 1

rE

3

.  (A1) 

 Since 
 

rE 1  the term 1 rE( )
3

 can be 

approximated by 1 3 rE , and, hence, the volume by 

Vw 4 rE
2 .  (A2) 

 For the purpose of simplification, we assume that Vw  is 

independent of time. The surface of this water shell is given 
by 

Aw = AO + AI = 4 rE
2
+ 4 rE( )

2
= 4 rE

2 1 + 1 rE( )
2{ } , 

where AO  is the outer surface that is congruent with the 

surface of the aqua planet, and AI  is the inner surface. 

 The temporal change of the energy, E , in this volume 
can be expressed by 

dE

dt
=
d

dt w e dV
Vw

.  (A3) 

 Here, t  is time, w  is the density of water, and e  is the 

specific internal energy. The latter may be expressed by 
e = cw Tw , where cw  is the specific heat of water, and Tw  is 

the water temperature. Multiplying w  and cw  with each 

other provides the heat capacity C = w cw . 

 The integral term of the right-hand side of Eq. (A3) is 
given by 
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d

dt
C Tw dV

Vw

= Fe,i n dA
Aw

+ e dV
Vw

,  (A4) 

where the Fe,i  are the various energy fluxes, n  is the unit 

normal (counted positive from inside to outside of the 
volume. The surface integral describes the exchange of 
energy between the volume of the water shell and its 
surroundings. The term e  characterizes a possible gain or 

loss of energy inside of the volume, for instance, owing to 
friction (only gain) and chemical processes. Equation (A4) is 
called the integral energy balance equation. 

 If we assume that e  is negligible, Eq. (A4) can be 

simplified. In doing so, we obtain 

d

dt
C Tw dV

Vw

= Fe,i n dA
Aw

.  (A5) 

 Since Vw  is assumed to be independent of time, the left-

hand side of this equation can be expressed by 

d

dt
C Tw dV

Vw

= Vw
d

dt

1

Vw
C Tw dV

Vw

= Vw
d

dt
C Tw V

,     (A6) 

where 

V
=
1

Vw
dV

Vw

 (A7) 

defines the volume average. Here,  is an arbitrary 
quantity. 

 Since we have only to consider the energy fluxes across 
the outer and the inner surface of the water shell, the surface 
integral in Eq. (A5) can be written as 

Fe,i n dA
Aw

= Fe,i n dA
AO

+ Fe,i n dA
AI

.  (A8) 

 In accord with Schneider and Mass [2] we first assume 
that (a) only the incoming solar radiation penetrating the 
water shell, the down-welling IR radiation and emitted IR 
radiation at the outer surface of the water layer have to be 
considered, i.e., any exchange of sensible and latent heat 
between the water layer and the atmosphere is ignored, (b) 
absorption of solar radiation by atmospheric constituents 
plays no role, and (c) no energy exchange between the water 
shell under study and the underlying water or the ocean floor 
does exist. Thus, Eq. (A8) may be written as 

Fe,i n dA
Aw

= Fe,i n dA
AO

= rE
2 1 0 , ,( )( ) F cos 0 + ,( ) FIR ,( ) F

IR
Ts ,( )( ){ } d

. (A9) 

 Here, F = d 0 d( )
2
S  is the solar irradiance reaching the 

top of the atmosphere approximated by the solar constant, S  

(see Eq. (31)), 0 , ,( )  is the albedo, ,( )  is the 

surface emissivity, F
IR

,( )  is the down-welling IR 

radiation, and F
IR

Ts ,( )( )  is the emitted IR radiation that 

depends on the temperature of the outer surface of the water 

shell, Ts ,( ) . Since the Earth’s surface is considered as a 

gray body emitter, it is able to reflect the down-welling IR 
radiation, where the reflectivity in that range is given by 

1 ,( )  [69]. Furthermore, = 4  is the solid angle of 

a sphere, d = sin d d  is the differential solid angle,  

and  are the zenith and azimuthal angles, respectively (see 

Fig. 6). Moreover, the local zenith angle of the Sun’s center, 

0 , can be determined using cos 0 = cos sin + sin cos cos h , 

where  is the solar declination angle, and h  is the hour 
angle from the local meridian (see also subsection 3.1). 
Using the surface average of the globe defined by 

A
=

rE
2 d

rE
2 d

=
1

4
d ,  (A10) 

where  is an arbitrary quantity, yields 

Fe,i n dA
Aw

=
1 0 , ,( )( ) S cos 0 A

+ ,( ) FIR ,( )
A

F
IR

Ts ,( )( )
A

AO . (A11) 

 Thus, combining Eqs. (A5), (A6), and (A7) provides 

d

dt
C Tw V

= 1 0 , ,( )( ) S cos 0 A

+ ,( ) FIR ,( )
A

F
IR

Ts ,( )( )
A

, (A12) 

where = Vw AO . 

 If we assume that the water is well-mixed so that its 
surface temperature Ts  equals the temperature Tw  for the 

entire water shell, i.e., Ts ,( ) = Ts = Tw , and C  is constant 

in space and time the right-hand side of Eq. (A12) can be 
written as 

d

dt
C Tw V

= C
dTs
dt

.  (A13) 

 The global average of the incoming solar radiation 
penetrating the water shell is given by (see also Eqs. (35) and 
(40)). 

1 0 , ,( )( ) S cos 0 A
= 1 E( )

S

4
,   (A14) 

where a constant albedo for the entire planet, i.e., 

0 , ,( ) = E  is assumed, and either = 2  (leading 

to Eq. (35)) or = 0  (leading to Eq. (40)) is chosen. To get 

an expression for the global average of the emitted IR 
radiation we again assume that the surface temperature is 

homogeneously distributed, i.e., Ts ,( ) = Ts . In doing so, 

we obtain (see also subsection 3.2) 

F
IR

Ts( )
A
= E Ts

4 ,  (A15) 

where ,( ) = E  denotes the planetary emissivity also 

considered as independent of the location. The down-welling 
IR radiation may be dealt with in a similar manner. 
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Fig. (16). Sketch for deriving Eq. (4). The symbols are explained in 
Appendix A. 

 Since all flux quantities are considered as globally 
averaged values, we may be ignoring the average sign, 

 
…

A
. In doing so, we obtain. 

R
dTs
dt

= 1 E( )
S

4
FIR ,  (A16) 

where FIR  is given by FIR = F
IR

Ts( ) E FIR , and the 

planetary thermal inertia coefficient is defined by R = C . 

Equation (4) is identical with Eq. (A16). For 

w = 1000 kg m 3 , cw = 4184 J kg 1 K 1 , and = 75 m  

we obtain R = 3.138 108 J m 2 K 1  which completely 

agrees with R = 7500 cal cm 2 K 1  used by Schneider and 

Mass [2]. 

 As mentioned before, no exchange of sensible and latent 
heat between the water layer of the aqua planet and the 
atmosphere is included in the global energy balance model 
of Schneider and Mass [2]. Furthermore, the absorption of 
solar radiation by atmospheric constituents is ignored. If the 
globally averaged atmospheric absorption, Aa S 4 , and the 

(vertical components of the) globally averaged fluxes of 

sensible heat, H , and latent heat, E = Lv TS( )W , at the 

surface of the water layer are inserted into Eq. (A16), where 
Aa  is the integral absorptivity with respect to the range of 

solar radiation, Lv TS( )  is the specific heat of phase 

transition (e.g., vaporization, sublimation), considered as 
dependent on the surface temperature, Ts , and W  is the 

water vapor flux, we will obtain (see Fig. 16). 

R
dTs
dt

= 1 E Aa( )
S

4
H E FIR .  (A17) 

 This expression is used in Section 2 as Eq. (19). 

 For the atmosphere also considered as a spherical shell 
one can derive in a similar manner (see also Fig. 13). 

Ra
dTa
dt

= 1 E( )
S

4 a Ta
4 1 a( ) E Ts

4

1 E Aa( )
S

4

E a Ta
4
+ E Ts

4
+ H + E

= Aa
S

4
1 + E( ) a Ta

4
+ a E Ts

4
+ H + E

,  (A18) 

where Ta  is the temperature of the atmospheric shell 

considered as homogeneously distributed. Furthermore, 
Ra = Ca a , Ca , and a  are the corresponding thermal 

inertia coefficient, the heat capacity and the thickness of the 
atmospheric shell, respectively. Expressing the term 
FIR = F

IR
Ts( ) E FIR  in Eq. (A17) by FIR = E Ts

4
E a Ta

4  

leads to 

R
dTs
dt

= 1 E Aa( )
S

4
H E + E a Ta

4
E Ts

4  (A19) 

 In the stationary state Eqs. (A18) and (A19) become 

0 = Aa
S

4
1 + E( ) a Ta

4
+ a E Ts

4
+ H + E    (A20) 

and 

0 = 1 E Aa( )
S

4
H E + E a Ta

4
E Ts

4  (A21) 

 Combining Eqs. (A18) and (A19) yields 

0 = 1 E( )
S

4
+ a Ta

4 1 a( ) E Ts
4  (A22) 

 These equations are used in the two-layer energy balance 
model described in section 6. 
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