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Abstract: We examine the problem of transionospheric sounding with satellite radio signals at frequencies that are close 

to the edge of the radio transparency frequency range of the ionosphere. We derive asymptotic formulas for the group 

delay time of the transionospheric radio signal and present an example of how they are implemented if there is a localized 

large-scale electron density inhomogeneity in the ionosphere. Finally, we suggest techniques for detecting large-scale 

ionospheric inhomogeneities, which are based on numerical-asymptotic synthesis of disturbed distance-frequency 

characteristics of decametric signals radiated from a low-orbiting or geostationary satellite. 
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1. INTRODUCTION 

 Recent investigations reveal that not only do plasma 
inhomogeneities in the Earth’s upper atmosphere influence 
characteristics of radio wave propagation paths, but they can 
also serve as an indicator of coming geophysical or seismic 
events [1, 2]. Therefore, observations of the inhomogeneities 
dynamics and structure through the use of radio sounding of 
the ionosphere over a given geographical region are of 
utmost current importance. 

 A method for diagnosing the inhomogeneous near-Earth 
plasma structure, which involves multifrequency radio sounding 
from a spacecraft in geostationary or highly elliptical orbit, was 
suggested in [3,4]. In this method, pulsed transionospheric radio 
signals in the decametric wavelength range, recorded at several 
ground-based receiving sites, are analyzed. By studying the 
signal characteristics at different receiving sites, it is possible to 
monitor the ionosphere dynamics in the sounded region. An 
alternative method for diagnosing ionospheric inhomogeneities 
was discussed in [5-8]. It suggests sounding of the ionosphere 
with decametric signals from rapidly moving low-orbiting 
spacecraft. In this case, it is often enough to have just one 
ground-based observation site. It is significant to note that it is 
radio waves of the decametric range that are used in the two 
aforementioned diagnostic techniques. This is a highly 
important advantage over the other wavelength ranges, because 
ionospheric sounding is performed at the opacity threshold in 
this case, i.e. at frequencies approaching the critical frequencies 
of the F2 layer. This assures high sensitivity of the methods to 
near-Earth plasma inhomogeneities and furnishes a means of 
more accurately reconstructing the medium fine structure. 
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 Amongst the ionospheric inhomogeneities, isolated large-
scale electron density inhomogeneities have been of specific 
recent interest. In particular, such inhomogeneities can arise 
in the neighborhood of the main electron density maximum 
of the ionosphere, over epicenters of coming seismic events 
[9-11]. In this context, analysis of transionospheric radio 
signals at operating frequencies approaching the limiting (the 
lowest possible) sounding frequency is of crucial importance. 
Specifically, the dynamics of a large-scale inhomogeneity can 
be monitored by recording and processing the distance-
frequency characteristics (DFCs) of transionospheric signals in 
the range of operating frequencies adjacent to the limiting 
sounding frequency [7]. 

 It should be pointed out that common to the aforementioned 
diagnostic methods is the fact that to determine parameters of a 
large-scale inhomogeneity requires direct numerical synthesis of 
disturbed DFCs along spacecraft-Earth paths. In real conditions, 
however, numerical modeling of DF s for diagnosing the 
inhomogeneities represents a rather long, complicated 
procedure. This is especially true in regard to the procedure 
of tracing of radio rays to the observation site at different 
frequencies if there is a localized inhomogeneity in the 
ionosphere. Besides, direct numerical modeling of disturbed 
DFCs gives no way of determining analytical relationships 
between the DFC characteristics and inhomogeneity 
parameters. These difficulties can be obviated by using the 
numerical-asymptotic computing method when solving the 
problem of synthesizing disturbed DFCs. 

2. METHOD FOR CALCULATING DISTURBED 
DISTANCE-FREQUENCY CHARACTERSTICS OF 

THE TRANSIONOSPHERIC SIGNAL 

 Let us consider a radio signal radiated from a spacecraft 

and propagating through an isotropic ionosphere. Let the 

electron density of the ionosphere be a function of distance 
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R  and angle , where R is counted off from the Earth’s 

center and  - from the straight line passing through the 

observer point (Fig. 1). 

 

Fig. (1). Scheme illustrating transionospheric radio sounding: K 

and T correspond to the spacecraft and Earth-based observer, 

respectively. 

 We will model a DFC within the geometrical optics 

approximation. According to [12], the group delay time  of 

the radio signal along the spacecraft-Earth radio path in the 

two-dimensionally inhomogeneous ionosphere represents a 

path integral: 
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where S is the radio signal propagation path, ),(R  is 

dielectric permittivity of the ionosphere, 
K

 is the angular 

coordinate of the spacecraft,  is the refraction angle, and 

c  is the speed of light. 

 Let ),(R  be represented as the sum of two terms: 
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where )(0 R  is a regular component of the medium, and 

),(1 R  is a small perturbation characterizing the 

ionospheric inhomogeneity: 

)(),( 01 RR << . 

 For asymptotic calculation of the group delay time 

variation associated with the inhomogeneity influence, we 

introduce in Eq. (1) small corrections )(1R ,  and 

)(1  to the characteristics of the undisturbed 

transionospheric ray, namely the trajectory )(0R , the group 

delay time 
0
, and the refraction angle )(0 , respectively: 
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 On taking a Taylor series expansion of the functions 
under the integral sign in Eq. (1), to a first approximation we 
obtain 
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 Substituting Eqs. (2)-(4) into Eq. (1), for the group delay 

time variation  we have 
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where integration is performed over the unperturbed path 

)(0R  in a medium with dielectric permittivity )(0 R . 

 To simplify Eq. (5), we make use of the system of ray 

equations in a medium with dielectric permittivity ),(R  

[13]: 
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 By expanding the functions in system (6) into series in 
terms of a small parameter, it is possible to divide the initial 
system of equation into two systems, in accordance with the 
order of approximation: 
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 By taking the function )(1  from the first equation of 

system (8) and substituting it into Eq. (5), we obtain 
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 Integrating the first term in Eq. (9) by parts yields 
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and substituting Eq.(10) into Eq. (9), we finally obtain 
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 Here it is taken into consideration that the variation of the 

trajectory )(1R  along the spacecraft-Earth path satisfies the 

condition: 
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 As is evident from Eq. (11), for calculating the group 

delay time variation of the transionospheric radio signal, it is 

necessary to know the correction )(1R  along the entire 

undisturbed trajectory. To determine )(1R , we formulate 

the system of equations (8) in a general form: 
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 According to [14], the solution of the linear system (13) 
with variable coefficients is equivalent to the solution of the 
following inhomogeneous second-order differential 
equation: 
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where the prime sign denotes differentiation with respect to 

the variable . 

 The solution to Eq. (15) in a general form is well known 
[15]: 
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and the functions )(),( 21 YY  are the solutions of the 

following homogeneous equation: 
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 On differentiating the Wronski determinant W and taking 

into consideration that )(),( 21 YY are the solutions of Eq. 

(19), we obtain 
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whence 
012
RaBW = , with B  the unknown constant. Then 

from Eq. (17) we have 
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 According to the theory of ordinary differential equations 

[14], the derivatives of the solutions for the system of 

unperturbed equations (7) with respect to the initial 

parameters of the problem represent the fundamental 

solutions for the homogeneous equation (19). Therefore we 

can choose the functions )(),( 21 YY  in the following 

form: 
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where 
H

 is the initial angle of incidence of a radio wave 

from the source on the ionosphere. 

 Using the solutions to equation (19) with the conditions: 
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with A the Earth’s radius and 
K
R  the spacecraft orbit height, 

it is possible to determine the constant B:
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 On substituting Eq. (21) into Eq. (16) and taking into 
account the reciprocity of the transionospheric trajectory, we 
finally have: 
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 Using Eq. (24), one can calculate from Eq. (11) the group 

delay time variation of the radio signal at a specific sounding 

frequency. At the same time, a practical calculation of 

)(1R  and  by directly using Eq. (24) and Eq. (11) is 

rather complicated, because to integrate these expressions 

one needs to know the values of the integrands along the 
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unperturbed trajectory )(0R . This is particularly true in the 

case of modeling of DFCs where calculation of )(1R  and 

 is required for a set of sounding frequencies. Therefore, 

a preliminary transformation of the Eqs. (24) and (11) is 

needed for numerical-asymptotic synthesis of DFCs. 

 First we consider Eq. (24). As follows from Eq. (24), to 

calculate the variation of the transionospheric trajectory 

along the transmitter-receiver path, it is necessary to 

determine, first of all, the value of the fundamental solution 

)(1 K
Y . The system of equations for determining the 

function )(1Y  can be obtained by differentiating the system 

of unperturbed ray equations (7) with respect to the initial 

parameter 
H

: 
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where 
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1

H

L = . 

 By combining Eq. (7) and Eq. (25) we obtain a system of 

equations for simultaneous calculation of the function )(1Y  

and the unperturbed trajectory )(0R : 
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 To model DFC, it is necessary to solve system (26) with 

the following initial conditions: R0 (0, f ) = A , 

0 (0, f ) = H
0 f( ) , Y1 0, f( ) = 0  and L1 0, f( ) = 1  for a 

number of sounding frequencies f. The quantity 
0

H
 (which 

may be different at different frequencies) is the initial angle 

of incidence on the ionosphere of the ray coming out from 

the radio source and arriving at the receiver point. This 

quantity should be determined by means of tracing of rays in 

the undisturbed ionosphere. Let us note that to get a ray 

trajectory connecting the source and receiver points is much 

easier in the case of the undisturbed ionosphere than in the 

case of an ionosphere with localized inhomogeneities. 

Regarding the direct calculations of )(1R  and  based on 

Eqs. (24) and (11), it is convenient to transform them into 

appropriate differential equations. 

 To do this, let Eq. (24) be represented as the sum of two 
terms: 
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 By introducing the functions 
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into Eqs. (28) and (29), respectively, and substituting them 
into Eq. (27), we have: 
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 Differential equations for the functions 
1
P  and 

2
P  can 

be obtained by taking the derivatives of the integrals in Eqs. 

(28) and (29) with respect to the variable lower or upper 

limit, respectively: 
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 Then the full system of equations for calculating the 
variation of the transionospheric trajectory can be written as: 
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where )(02 = K

H

L . In this case, the initial conditions 

have the form: AR =)0(0 , 
0

0 )0(
H

= , 0)0(1 =Y , 
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1)0(1 =L , 0)(2 =
K

Y , 1)(2 =
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L , 0)(1 =
K

P , 0)0(2 =P . 

By transforming the integral in Eq. (11) into the differential 

equation, in view of Eq. (32), we obtain 
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 The corresponding initial condition for Eq. (36) is 

0)0( = . By combining Eq. (35) and Eq. (36), we obtain a 

system of equations for joint calculation of transionospheric 

trajectories and group delay time variations of the radio 

signal along the spacecraft-Earth path. We can use Eqs. (35) 

and (36), based on the unperturbed ray tracing for 

determining values of 
0

H
 at various sounding frequencies, 

for computing disturbance introduced into a DFC by the 

ionospheric inhomogeneity. 

 For the particular case of a low-orbiting spacecraft being 

within the field of vision of the ground-based observer, Eqs. 

(35) and (36) can be simplified. By introducing new 

variables Addx =  and 
00
zAR += , then letting A  

and making use of the Snell law, we get the following 

system of equations for the plane case: 
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 The corresponding initial conditions have the form: 
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following designations are introduced: 
K
x  is the horizontal 

distance of the spacecraft and 
K
z  is its altitude, 

KK
zxz =)( . 

The observer is at the point with the coordinates 

0,0 == xz . When calculating a DFC with the use of Eq. 

(37), one should apply the results of the preliminary ray 

tracing for determining the quantity 
0

H
 in the undisturbed 

medium, which is performed when solving system (26). In 

the plane case, system (26) has the following form: 
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3. EXAMPLE OF NUMERICAL-ASYMPTOTIC 
SYNTHESIS OF A DISTURBED DFC FOR 

DETECTING A LARGE-SCALE INHOMOGENEITY 

 Based on asymptotically derived Eqs. (37) and (38), we 
have carried out preliminary modeling of the disturbance 
introduced by the inhomogeneity into the DFC for different 
parameters of the inhomogeneity as well as for several 
positions of the low-orbiting spacecraft with respect to the 
ground-based observation site. 

 To model the undisturbed ionospheric electron density 
profile, we used the two-layer Gaussian model [1]. In this 
case, dielectric permittivity of the undisturbed ionosphere is 
a function of height and has the form: 
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where 
m
z  and 

mE
z  are the F2 and E electron density 

maximum heights, respectively, 
m
h  and 

mE
h  characterize the 

thicknesses of the layers, and the quantities êf  and ê Åf  

characterize their critical frequencies. 

 We specified the model characterizing a localized 
inhomogeneity in the following form: 
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where 
c
x  and 

c
z  are the coordinates of the disturbance 

center, and parameters a , b  and r  are related to the scales 

and contrast of the inhomogeneity, and the parameter  

specifies its intensity. 

 As an example, Fig. (2) presents the results from 

calculating the disturbed portions of the DFC for two 

positions of the spacecraft with respect to the observer 

position: 
K
x = 1000 km (Fig. 2a), and 

K
x = 1200 km (Fig. 

2b). We took the following values for the undisturbed 

ionosphere parameters: 
m
z  = 300 km, 

mE
z  = 125 km, 

m
h  = 

100 km, 
mE
h  = 25 km, êf  = 8 MHz, and ê Åf  = 3 MHz. 

The inhomogeneity intensity was  = 0.02. The parameters 
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a = 25, b = 50 and r = 100 effectively characterize the 

inhomogeneity size along the vertical and horizontal, which 

were taken to be 100 km and 140 km, respectively. The 

coordinates of the inhomogeneity center were 
c
x = 330 km 

and 
c
z = 360 km. The spacecraft was placed at an altitude of 

=
k
z 1000 km. It is apparent from Fig. (2) that the group 

delay time variation decreases with the increasing operating 

frequency. This is due to the weakening of the 

inhomogeneity effect on the transionospheric trajectory of 

the wave in a high frequency range. Furthermore, one can 

see maxima of c  on the plots, which correspond to the 

trajectories passing near the ionospheric inhomogeneity 

edge. 

 

 

Fig. (2). Examples of numerical-asymptotic synthesis of the 

disturbance introduced into the distance-frequency characteristic by 

a large-scale plasma inhomogeneity. The plots correspond to 

different horizontal distances between the low-orbiting satellite and 
the ground-based observer: a) xK = 1000 km, b) xK = 1200 km. 

 Using the numerical-asymptotic method of modeling, it 
is possible to compute a series of disturbed DFCs for 
different positions of the spacecraft with respect to the 
ground-based observation site, thereby performing the 
multifrequency scanning of the inhomogeneity with many 
transionospheric rays. The large-scale inhomogeneity 
parameters can be reconstructed from the DFC disturbance 
in two stages. Initially, in order to determine the location and 
size of the inhomogeneity, the approach suggested in [5, 7] 
can be used. Namely, first we collect those DFCs 
(corresponding to various positions of the spacecraft with 
respect to the observer) that display significant variations of 
the signal group delay time within some limited frequency 
range. After that, based on analysis of the collected DFCs, 
we identify a disturbed region in the ionosphere where the 
inhomogeneity may reside. The boundary of this region is 
formed by the transionospheric rays with frequencies 
corresponding to the limiting frequencies of the DFC 

disturbance. These trajectories are calculated in the 
unperturbed ionosphere. Overlapping the disturbed regions, 
constructed for the set of DFCs corresponding to different 
positions of the spacecraft, makes it possible to determine 
the location and size of a large-scale solitary inhomogeneity. 
For a more accurate determination of the inhomogeneity 
localization region, additional receiving sites can be used. 
Overlapping disturbed regions, constructed for different 
ground-based stations, permits a more accurate identification 
of the ionospheric region where the disturbance is localized. 

 Considering now that the geometrical parameters of the 

inhomogeneity are known, Eqs. (37) and (38) can be used to 

calculate its intensity. In this case, we use, as , the value 

of the group delay time variation at a specific sounding 

frequency that we choose from the range of frequencies at 

which the DFC is disturbed. It is important to point out that 

the suggested approximate method of synthesizing disturbed 

DFCs for diagnosing large-scale localized inhomogeneities 

can also be used in the case where the ionosonde is aboard a 

geostationary satellite. By keeping track of deformations of 

the DFCs recorded at different receiving sites on the Earth, it 

is possible to monitor the parameters of the inhomogeneity 

through monitoring its movements in the transionospheric 

scanning cone [3,4]. 

 It should be noted that the suggested method of 
synthesizing DFCs for diagnosing the large-scale 
inhomogeneities fails to give satisfactory results if the 
transionospheric sounding is carried out at the lowest 
possible frequencies. In this case, large-scale plasma 
inhomogeneities can give rise to transionospheric trajectories 
sliding along the main ionospheric maximum, thereby 
producing a considerable increase in variations of the 
trajectory parameters. Under such conditions, the 
perturbation theory method in its simplest form is 
inapplicable for calculating deflections of the ray trajectory 
from its unperturbed path. This dictates a need for relevant 
generalizations of the asymptotic solution derived in this 
paper. 

4. CONCLUSIONS 

 We have obtained approximate analytical formulas for 
calculating the deformation of the distance-frequency 
characteristic of the transionospheric decametric radio signal 
under the influence of a localized large-scale plasma 
inhomogeneity. We have suggested techniques for detecting 
such a large-scale inhomogeneity, based on numerical-
asymptotic synthesis of disturbed DFCs of decametric radio 
signals radiated from a low-orbiting or geostationary 
spacecraft. Using numerical modeling, we have 
demonstrated the possibility of determining the size and 
intensity of the large-scale inhomogeneity from disturbed 
portions of a series of DFCs. 
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