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Abstract: The dependence of the RegCM3 (Regional Climate Model version 3) downscaling skill on initial conditions 

(ICs) and lateral boundary conditions (LBCs) are investigated for the 1998 summer flood along the Yangtze River Basin 

in China. The effect of IC uncertainties is depicted by 15 realizations starting on each consecutive day from April 1 to 15 

while all ending on September 1, 1998 with identical driving LBCs, analyses are based on June, July and August 

simulations. The result reveals certain IC effect on precipitation for daily evolution but little for summer mean 

geographical distribution. In contrast, the effect of LBCs uncertainties as represented by four different reanalyses are 

notably larger in both daily evolution and summer mean distribution. The ensemble average among either 15 IC 

realizations or 4 LBC runs does not show important skill improvement over the individuals. None of the RegCM3 

simulations (including the ensemble means) captured the observed main rain band along the Yangtze River Basin. This 

general failure suggests the need for further model physics improvement. 
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1. INTRODUCTION 

 Since Lorenz [1] first found that the atmosphere is a 
highly nonlinear system causing numerical solutions to be 
sensitive to small perturbations in initial conditions (ICs), 
and as computational capability is rapidly increasing, 
ensemble weather forecasts are becoming a common 
operational practice (Toth and Kalnay [2]; Mullen et al. [3]). 
A similar procedure has now also been taken in the general 
circulation model (GCM) community to construct ensemble 
climate predictions. 

 A Regional Climate Model (RCM) not only requires ICs 
at the initial step, but also time-dependent lateral boundary 
conditions (LBCs) which provide large-scale atmospheric 
circulation through buffer zones that drive the development 
of mesoscale systems inside the RCM domain. Both ICs and 
LBCs can be provided by GCM simulations. Since LBCs are 
required throughout the integration period, LBC-related 
errors can have long-term and damaging effects on RCM 
results (Warner et al. [6]). Effective LBC data assimilation 
techniques that accurately integrate LBCs across the buffer 
zones and a physically-based domain design critically 
determine the RCM performance (Liang et al. [4]). On the  
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other hand, certain RCM skill sensitivities to ICs, causing 
internal variability that may modulate or even mask 
physically forced signals (Giorgi and Bi [5]). LBC plays a 
critical role in RCM simulations, while IC impacts generally 
decreases with the simulation length (Wu et al. [7]). This 
study compares the relative contributions from uncertainties 
in ICs and LBCs to the RCM climate simulations for the 
1998 summer China flood. 

 The study of ICs’ effects on RCM through internal 
variability conducted by Giorgi and Bi [5] constructed 
different ICs and LBCs by adding random perturbations on 
the European Center for Medium-Range Weather Forecast 
(ECMWF) observational reanalysis (ERA; Gibson et al. [8]). 
In contrast, the present study uses 15 consecutive days 
during April 1-15 to initialize the RCM from the National 
Centers for Environmental Prediction Department of Energy 
(NCEP/DOE) Atmospheric Model Intercomparison Project 
(AMIP) II reanalysis (R-2; Kanamitsu et al. [9]) to depict the 
IC uncertainties. LBCs uncertainties are specified by 
differences among R-2, ERA, ERA Interim reanalysis (ERI, 
Dee et al. [10]) and Japanese 25-year reanalysis (JRA, Onogi 
et al. [11]). The RCM sensitivities to these ICs and LBCs 
uncertainties are investigated for the summer of 1998 when 
severe flooding occurred along the Yangtze River Basin. 
This case has been identified with active convection at 
regional to local scales under strong anomalous planetary 
forcings (Samel and Liang [12]) and thus is ideal for 
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evaluation of RCM performance (Wang et al. [13]; Liu et al. 
[14, 15]). 

 Section 2 describes the model configuration and 
experiment design. Section 3 and 4 depict the RCM result 
dependence on ICs and LBCs focusing on precipitation and 
surface air temperature. Section 5 gives the conclusion. 

2. MODEL CONFIGURATION AND EXPERIMENT 
DESIGN 

 The RCM for this study is the RegCM3 (Elguindi et al. 
[16], available from http://users.ictp.it/~pubregcm/RegCM3/), 
which is widely used for regional climate downscaling over 
China (Wang et al. [13]; Liu et al. [14, 15]). It was 
developed from the fifth-generation Pennsylvania State 
University-National Center for Atmospheric Prediction 
(PSU-NCAR) Mesoscale Model (MM5) hydrostatic dynamic 
core coupled with physics parameterization schemes suitable 
for climate applications (Dudhia et al. [17]). 

 The physics configuration chosen in this study is as 
follows. Cumulus convection is parameterized by the Grell 
[18] scheme. Non-convective precipitation and clouds are 
resolved by the explicit microphysics scheme of Pal et al. 
[19]. The longwave and shortwave radiative transfer is 
represented by the National Center for Atmospheric 
Research (NCAR) Community Climate Model (CCM3) 
scheme (Kiehl et al. [20]). The planetary boundary layer is 
treated by the nonlocal diffusion scheme of Holtslag and 
Boville [21]. The land surface processes are modeled by the 
Biosphere-Atmosphere Transfer Scheme version 1e (BATS; 
Dickinson et al. [22]). The U.S. Geological Survey (USGS) 
10-min topographic data, and the BATS 20 vegetation 

classifications are used to define, respectively, the 
representative terrain height and the dominant land cover for 
each grid box. 

 The RCM has 18 vertical layers with the model top at 
100 hPa (~16.3 km above the sea level). Its computational 
domain is centered at (35.18 °N, 110 °E) and covers China 
by a 30-km horizontal grid distance using the Lambert 
conformal map projection. Fig. (1) illustrates the domain 
design. The buffer zones are located across 12 grids along 
each of the 4 domain edges, where LBCs are specified 
throughout the integration period using a dynamic relaxation 
technique (Giorgi et al. [23]). This domain has been shown 
to produce the most skillful simulation of the 1998 summer 
precipitation distribution over China (Liu et al. [14, 15]). 
Outlined in Fig. (1) are also four key regions (South, 
Yangtze River Basin, North, and Northeast) that have been 
identified as having distinct climate regimes and 
precipitation characteristics relating to the China summer 
monsoon precipitation (Mei-yu) (Ding [24]). Generally, the 
Mei-yu rainband arrives in the South during late May and 
early June, advances to the Yangtze River Basin in middle 
and late June, and then to the North in July, and to the 
Northeast in August (Samel et al. [25]). This study will 
elaborate model result sensitivities over these representative 
regions. 

 To depict the effect of IC uncertainties, 15 RCM runs 
were conducted for continuous integrations starting 
consecutively from April 1 to 15 while all ending on 
September 1, 1998. These ICs are provided by the same R-2 
that constructs the LBCs during the entire integration period. 
Thus, a set of 15 realizations that differ only by their initial 

 

Fig. (1). Computational domain and 4 sub-regions (Northeast, North, Yangtze River Basin and South). Hatched lines denote the buffer zones 

where LBCs are specified. 
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conditions can be used to determine the RCM skill 
dependence on ICs. To study the effect of LBC uncertainties, 
additional experiments were conducted using R-2, ERA, ERI 
and JRA, all starting on April 1 and ending on September 1, 
1998. The temporal interval is 6 hour for all the four 
reanalyses. The spatial grid varies while all using equal 
longitude  latitude, 2.5° for R-2 and ERA, 1.5° for ERI, and 
1.25° for JRA. These simulations are compared to determine 
the RCM skill dependence on the uncertainties induced by 
LBCs. All the analyses are based on the RCM simulations of 
June, July and August. 

3. RCM SKILL DEPENDENCE ON ICs 

 Precipitation and surface air temperature are the key 
variables generally used for RCM skill evaluation. The 
simulation started from April 1 is referred to as the control 
experiment (case 01), all other 14 realizations initialized 
from April 2 to 15 are compared with case 01 to depict the 
effect of ICs since they all are driven by identical LBCs. Fig. 
(2) illustrates the correlation coefficients (CC) and root mean 
square errors (RMS) for daily mean precipitation variations 
between case 01 and each of the 14 runs during June, July 
and August averaged over the Northeast, North, Yangtze 
River basin, and South (Fig. 1). 

 As compared with case 01, the South has the highest CC 
for all runs, between 0.89 (case 07) and 0.97 (case 02). In 
contrast, Northeast has the lowest CC, between 0.64 (case 
10) and 0.87 (case 09), both of which are much lower than 
those for South. Consistently, South generally has the lowest 
RMS between 1.26 (case 02) – 2.23 (case 07) mm day

-1
, 

while the Northeast has highest RMS between 1.79 (case 09) 
– 3.06 (case 10) mm day

-1
. There exists no obvious 

relationship of either CC scores or RMS errors with starting 
dates for all the four regions. 

 The 1998 summer flood was induced by severe rainfall 
events which were mainly determined by convective 
processes in the South. On the other hand, precipitation in 
the Northeast is largely generated through synoptic weather 
processes, such as front passages and cyclone activities. As a 
result, the precipitation simulation in the South is less 
sensitive to ICs producing much higher CC than the 
Northeast. 

 Fig. (3) shows the same statistics for surface air 
temperature as that for precipitation. The Northeast has the 
highest CC for all 14 runs while the Yangtze River Basin has 
the lowest CC for most runs. The CC ranges among the 14 
runs for the four regions, however, are generally very small, 
indicating that the sensitivity of surface air temperature 
simulation to ICs is weak. As for RMS, the South has the 

 

Fig. (2). The correlation coefficient (a) and root mean square error (mm day
-1

, b) daily mean precipitation variations between observation 

and each of the 15 cases during June, July and August averaged over the Northeast, North, Yangtze River Basin and South. 
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smallest values for all 14 runs, while the North has the 
largest values for all the cases except 07. The RMS ranges 
are also very small among the 14 runs for the four regions. 
The smaller CC and RMS ranges showed in Fig. (3) than 
those in Fig. (2) suggest that ICs have much less effect on 
surface air temperature than precipitation, which are 
consistent with previous studies (Giorgi and Bi [5]; 
Christensen et al. [26]). 

 A question is whether the ensemble mean of all runs with 
perturbed ICs improves the RCM performance over the 
individual realizations. Fig. (4) compares with observations 
the geographical distributions of 1998 summer (June, July 
and August) mean precipitation and surface air temperature 
for case 01 (R-2, hereafter), and the ensemble average 
(IC_ENS) of all 15 runs. The patterns for the R-2 and 
IC_ENS closely resemble each other for both precipitation 
and surface air temperature. Both fail to reproduce the 
southwest-northeast main rainbelt along the Yangtze River 
Basin, but successfully simulate the South and Northeast 
centers. Both can depict the general temperature pattern 
(e.g., the warm center over the Yangtze River Basin and 
North China, Sichun Basin), but produce systematic cold 
biases of 4°C. A comparison of the spatial frequency 
distribution for summer mean biases in precipitation and  
 

surface air temperature over all grids east of 100°E, where 
observations are abundant, shows no overall difference 
between IC_ENS and R-2 and all other IC runs. These 
results indicate that the ensemble mean has little 
improvement than individual realizations as far as the 1998 
summer seasonal averages concerned. 

 Fig. (5) compares daily mean precipitation variations 
during June 1 – August 30 averaged over the four regions 
between the R-2 and IC_ENS with observations. Again, the 
R-2 and ENS closely resemble each other over all regions. 
The correlations with observations over the Northeast, 
North, Yangtze River Basin, South are 0.01, 0.34, 0.37, 0.39 
for the R-2 and 0.02, 0.37, 0.45, 0.39 for the IC_ENS. Thus 
the IC effect is small even for daily precipitation evolution. 
This is more so for surface air temperature. 

 All of the above statistical measures demonstrate that the 
effect of perturbed ICs is trivial, and thus their ensemble 
mean shows little improvement in the RCM downscaling 
skill. This results from the dominant control by the driving 
LBCs throughout the entire integration period. The effect 
from IC perturbations quickly dissipates and plays minor 
role after the spin-up period, typically of ~10 days (Giorgi 
and Mearns [27]; Wu et al. [7]). 

 

 

Fig. (3). The correlation coefficient (a) and root mean square error (°C, b) daily mean surface air temperature variations between observation 

and each of the 15 cases during June, July and August averaged over the Northeast, North, Yangtze River Basin and South. 
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4. RCM SKILL DEPENDENCE ON LBCs 

 The RCM downscaling results are constrained by the 
large-scale atmospheric circulation forcings through dynamic 
relaxation of the LBCs. The RCM domain has been 
objectively chosen to correctly represent the internal 
mesoscale physical processes while minimizing the impact 
of LBC errors such that the observed spatial distributions 

and temporal variations of near surface climate can be 
realistically simulated at regional-local scales (Liang et al. 
[4]; Liu et al. [14]). The LBC errors which are from large-
scale reanalyses uncertainties, however, can still be 
transferred into the RCM domain to affect the downscaling 
skill. Fig. (6) shows 925 hPa relative humidity correlation 
coefficients between R-2 and ERA, ERI, JRA based on daily 
averages during June 1 – August 30, the values for 

 

Fig. (4). Geographical distributions of summer mean precipitation (mm day
-1

, left) and surface air temperature (°C right). Simulated in case 

01 (R-2, top), as the ensemble mean of 15 runs (IC_ENS, middle) and observed (OBS, bottom). 
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confidence level 95% and 99% by Student’s one-sided t-test 
are 0.21 and 0.27 respectively. The three correlation 
coefficient fields showed similar geographical distribution 
patterns. Correlation coefficient that passed the 99% 
confidence level mainly occurred over land except Tibet 
Plateau. Most of the east China where observations are 
abundant has high values that are over 0.8 or even 0.9. Very 
low even negative correlation coefficient values are occurred 
over tropical oceans and failed to pass the 95% confidence 
level. These substantial differences indicate inconsistency 
between the large-scale reanalyses, typically over the areas 
where observational data are lacking. LBCs constructed from 
these large-scale reanalyses within the problematic areas 
resulted in LBC errors which are integrated into the RCM 
domain and impact the RCM performance. 

 Fig. (7) compares daily mean precipitation variations 
during June 1 – August 30 averaged over the four regions as 
observed and downscaled by the RCM from the R-2, ERA, 
ERI, JRA as well as the ensemble averages (LBC_ENS) of 
the four runs. Over the Northeast, large discrepancies 
between the RCM simulations mainly occurred during the 
end of June and early July, where all runs and the ensemble 
average failed to reproduce the observation. On the other 
hand, over the North, the differences between individual runs 
and LBC_ENS are small in June and July, but larger in 
August. Over the Yangtze River Basin, the discrepancies  

between the runs are large in June, while relatively small in 
July and August. Over the South, large spreads between the 
runs occurred throughout the whole summer. 

 Table 1 lists the CC and RMS scores of the regional 
mean daily precipitation and surface air temperature 
downscaled by the RCM form 4 reanalyses as compared 
with observations. For precipitation, all runs has poor 
performance over the Northeast and North (failed to pass the 
Student’s one-sided t-test 95% confidence level), while over 
the Yangtze River Basin and South, the simulation driven by 
the R-2 is the best (passed the 99% confidence level). 
Especially over the South, the R-2 driven run has CC of 
0.45, much higher than other runs and the ensemble average. 
For surface air temperature, both the CC and RMS measures 
indicate substantially better skill scores (all passed 99% 
confidence level) and smaller spreads among runs than 
precipitation. For both precipitation and temperature, the 
ensemble mean does not improve the RCM skill over the 
individual runs driven by R-2, ERA, ERI or JRA. 

 The effect of LBC uncertainties on precipitation is the 
largest over the Northeast and smallest over the South, which 
is similar to that of IC uncertainties. This regional contract 
occurs because precipitation is mainly produced by local 
convective processes in the South rather than by synoptic 
weather systems in the Northeast as controlled by large-scale 
circulations. 

 

Fig. (5). Daily mean precipitation variations during June 1 to August 30 averaged over the four key regions for observations (OBS), 

ensemble mean (IC_ENS) and case 01 (R-2). 
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Fig. (6). Geographical distribution of correlation coefficient (CC) 

for relative humidity (RH) on 925 hPa between R-2 and ERA (a), 

ERI (b) and JRA (c). 

 Fig. (8) shows the geographical distributions of summer 
mean precipitation downscaled by the RCM from ERA, ERI, 
JRA reanalyses and the ensemble average of the four RCM 
runs (LBC_ENS). They can be compared with the R-2 and 
observations in Fig. (4). In contrast to the IC perturbations 
that generate little sensitivity, the LBCs from the R-2, ERA, 

ERI and JRA produce notable differences in precipitation  
geographic distributions. In particular, the R-2 run has less 
precipitation than all other runs over the Northeast, North 
and South. All runs driven and their ensemble average fail to 
reproduce the observed main rainbelt oriented from the 
southwest to northeast over the Yangtze River Basin. The R-
2 LBCs drive the RCM to result in more realistic 
downscaling over the South where the other three forcings 
(especially ERA) lead to excessive precipitation. Again, the 
ensemble average of the four runs does not improve the 
overall RCM downscaling performance. 

5. DISCUSSION AND CONCLUSION 

 The RegCM3 downscaling skill dependence on initial 
conditions is examined by comparing summer simulations 
driven by R-2 starting from consecutive dates from April 1 – 
15, 1998. The results showed that the IC perturbations have 
certain influences on daily variations of precipitation and 
surface air temperature, but little effect on seasonal mean 
geographical distributions. The ensemble mean of the 15 
runs does not produce overall superior RCM skill to 
individual realizations. Simulation of precipitation is more 
sensitive to ICs than surface air temperature. 

 On the other hand, the RegCM3 exhibits stronger 
dependence on LBC forcings than IC perturbations. Four 
simulations driven by R-2, ERA, ERI and JRA, all starting 
on April 1, contain large discrepancies in both daily 
variations and summer mean geographical distributions of 
precipitation. The RegCM3 driven by the ERA generally 
produces more precipitation than that by the R-2, ERI and 
JRA over most of the domain. The ensemble mean of the 
four runs has little skill enhancement to the individuals. 

 The above conclusion has two important limitations. 
First, our results on both IC and LBC ensemble means were 
based on simple averaging (with an equal weight) of all 
realizations. They did not produce significant skill 
enhancement to individual realizations. On the other hand, 
the optimized physics ensemble is likely an effective 
approach to achieve significant skill improvement, especially 
for precipitation as demonstrated by Liang et al. [28] and Liu 
et al. [15]. Second, the RCM downscaling skill also strongly 
depends on model physics, especially the parameterizations 
of subgrid processes like cumulus convection (Liang et al. 
[28]). For short-range synoptic-scale precipitation forecasts, 
Clark et al. [29] found that model errors due to physics 
representations are greater than those from IC or LBC 
uncertainties. The sensitivity of RCM physics configuration 
and the optimization of ensemble weighting require further 
investigation. While improve RCM skill through initial and 
lateral boundary conditions and their ensemble are not 
recommended. 
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Fig. (7). Daily mean precipitation variations during June 1 to August 30 averaged over the four key regions for observations (OBS), RCM 

simulates driven by the R-2, ERA, ERI and JRA as well as their ensemble mean (LBC_ENS). 

Table 1. Statistics of Precipitation and Surface Air Temperature Downscaled by the RCM from the R-2, ERA, ERI and JRA as 

well as the Ensemble Mean of the Four Runs (LBC_ENS). Shown are Correlation Coefficients (CC) and Root Mean 

Square Error (RMS) of Simulated with Observed Daily Means Averaged Over the Four Key Regions 

 

Precipitation Surface Air Temperature 
 

CC RMS (mm day
-1

) CC RMS (°C) 

R-2 0.01* 5.56 0.80 2.62 

ERA 0.15 4.90 0.82 2.53 

ERI 0.15 4.87 0.84 2.16 

JRA 0.14 4.98 0.82 2.30 

Northeast 

LBC_ENS 0.13 4.68 0.83 2.37 

R-2 0.12 4.19 0.70 2.21 

ERA 0.09 4.18 0.71 2.21 

ERI 0.03 4.44 0.72 2.30 

JRA 0.13 4.14 0.68 2.17 

North 

LBC_ENS 0.11 3.98 0.73 2.14 

R-2 0.28 5.44 0.68 2.85 

ERA 0.18 5.94 0.66 2.70 

ERI 0.26
** 5.55 0.56 2.87 

JRA 0.14 6.29 0.68 2.73 

Yangtze 

River 

Basin 

LBC_ENS 0.25 5.39 0.67 2.75 

R-2 0.45 6.13 0.67 3.33 

ERA 0.15 7.48 0.62 3.03 

ERI 0.30 6.72 0.66 3.14 

JRA 0.34 6.20 0.70 3.04 

South 

LBC_ENS 0.38 6.17 0.70 3.12 

*Italic numbers indicate the correlation coefficient failed to pass the Student’s one-sided t-test 95% confidence level. 

** Bold numbers indicate the correlation coefficient failed to pass the Student’s one-sided t-test 99% confidence level. 
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