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Abstract: The problem of designing an improved nonlinear robust controller is addressed adopting three perspectives for 
static synchronous compensator (STATCOM) system in the presence of time-delay, uncertainty parameter and external 
disturbances. At first, in order to reduce high degree coupling between system state variables and estimation errors, uncer-
tain parameter is estimated by using the system immersion and manifold invariant (I&I) control which can ensure that the 
estimation errors converge to zero without using certainty equivalence principle. Secondly, since STATCOM system in 
practice almost contains time-delay nonlinearity and external disturbances, backstepping sliding mode control are adopted 
to design the control law recursively. At last, to solve the problem of robustness cannot be guaranteed before the motion 
orbit reaches sliding mode surface. The dissipation inequalities with external disturbances are constructed in each subsys-
tem, which can ensure that nonlinear robust controller has a good stability and strong robustness in real time. Compared 
with adaptive backstepping sliding mode and adaptive backstepping, the contrastive simulations result show that the time 
of reaching steady state is shortened by at least 31%, and the oscillation amplitudes of transient responses are reduced by 
nearly half. 
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1. INTRODUCTION 

As one of flexible alternate current transmission system 
(FACTS), static synchronous compensator (STATCOM) are 
being widely used by several utilities to compensate their 
systems, such as providing voltage support; damping the 
power oscillation; reducing net loss and scheduling power 
flow [1-3]. But, in the practical systems, time-delay nonline-
arity, parameter uncertainty and external disturbances can 
deteriorate the control performance of STATCOM system, 
which should not be neglected [4]. To solve these problems 
of nonlinearities, parameters and non-parameters uncertain-
ties, the conventional nonlinear proportion integral differen-
tial (PID) technologies have been developed for nonlinear 
STATCOM system on the basis of feedback linearization. 
PID technology has been used in STATCOM controller de-
sign for projects where nonlinear characteristic influences 
were not seen as important [5]. However, it is inaccessible to 
acquire accurate system models which are the indispensable 
premise in PID controller design. Moreover, some useful 
nonlinearity can be canceled by feedback linearization. 

The adaptive backstepping control has been applied to 
nonlinear controller by considering some of the state  
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variables as “virtual control” and designing them for inter-
mediate control laws [6-8]. The STATCOM controller has 
been designed effectively by using adaptive backstepping 
control, when parametric and non- parametric uncertainties 
are taken into consideration [9]. However, there are still 
some problems worth noting for estimating uncertain param-
eters. The main problem, there is no involved, is only the 
boundedness of estimation errors can be ensured, but it is not 
clearly explained whether the dynamics of transient response 
are unacceptable or not [10]. That is, the dynamics of estima-
tion errors are a key factor which influence control system 
performance largely. If estimators are fixed, the estimation 
errors and coupling errors will be accumulated in construct-
ing a (Control-Lyapunov function) CLF. As a consequence, 
stability and robustness cannot be guaranteed. 

A new method named system immersion and manifold 
invariant (I&I) adaptive control has been presented to ad-
dress the problems of the coupling between state variables 
and estimation errors [11, 12]. Based on the notions of sys-
tem immersion and manifold invariance, I&I adaptive does 
not require the knowledge of constructing CLF. Moreover, a 
designed smooth function is introduced by this method, 
which can offset estimation errors as much as possible. Thus, 
the estimation errors would not be accumulated and transient 
stability can be guaranteed even if estimators reach a certain 
limit [13, 14]. It has been proved that I&I adaptive is used to 
estimate adaptive law of uncertain parameter effectively, and 
then the transient stability in closed-loop system is im-
proved. 



748    The Open Automation and Control Systems Journal, 2015, Volume 7 Zhang et al. 

For STATCOM controller design with time-delay non-
linearity and external disturbances, backstepping control can 
together with sliding mode, control to design control law. 
The sliding mode is insensitive to parameter perturbation and 
external disturbances with matching condition [15]. In the 
process of the sliding mode motion, the robustness of control 
system can be guaranteed, when the orbit being in sliding 
mode is achieved. However, in the process of motion orbit 
reaching sliding mode surface, the robustness of control sys-
tem cannot be guaranteed in real time [16]. To solve the 
problem, robust sliding control method was developed by 
[17-19], combining the advantages of both robust control 
and sliding control. Based on dissipation inequality, robust 
sliding control method can guarantee the robustness of 
STATCOM controller throughout the design process. A non-
linear STATCOM controller has been designed by robust 
sliding mode control, and a better performance of transient 
and steady state has been guaranteed [20].  

In this paper, an improved nonlinear robust controller of 
STATCOM is designed to address the problems of the time-
delay nonlinearity, uncertain parameter and external disturb-
ances. Improvements are achieved in three aspects. First, the 
adaptive law of uncertain parameter is estimated by I&I 
adaptive control. The estimation errors converge to zero in 
finite time, which can solve the problem of the coupling be-
tween estimation errors and state variables. Second, for solv-
ing the problem of time-delay nonlinearity and external dis-
turbances in STATCOM, backstepping sliding mode control 
is adopted to design control law recursively. The designed 
control law can improve the performance of transient and 
steady state for STATCOM. Third, in order to guarantee the 
robustness of nonlinear robust controller in real time, dissi-
pation inequalities are constructed in each step. The simula-
tions prove that all the state variables are globally bounded 
and converge to new stable equilibriums. Moreover, contras-
tive simulations show that our proposed controller gives bet-
ter performance than other traditional controller under the 
same initial condition. 

2. SYSTEM MODEL AND CONTROL OBJECTIVE 

By generating or absorbing reactive power continuously, 
the STATCOM has been applied to compensate the reactive 
power in a power system, which can reduce the equivalent 
electric distances, improve the power system capacity, and 
enhance the transient stability with long transmission lines. 
The system structure drawing is shown in Fig. (1). 

In Fig. (1), dynamic model of mathematical equivalent 
system can be constructed in the form of third-order differ-
ential equations. 
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where generator rotor angle ! , generator rotor angular speed 
!  and reactive current 

 
I

q
 are three state variables. 

  
[!

0
, "

0
, I

q0
]

T  are the initial operating points. 

The parameters in model (1) are explained as follows. 
 H  is inertia constant; 

 
P

m
 is mechanical power on the gen-

erator shaft;  D  is unit damping coefficient and it is an un-
certain parameter; 

 
u

B  is equivalence input of the STAT-

COM regulator; 
  
E

q
'  is transient electromotive force of the 

generator on the quadrature axis; qT  is inertial time constant 

of STATCOM; 
  
X

1
 is total impedance from the generator to 

the injection of the STATCOM device. 
  
X

2
 is total imped-

ance from the injection of the STATCOM device to the infi-
nite bus. 

 
!

1
 and 

 
!

2
 stands for the uncertain functions which 

model the uncertain disturbances imposed on the rotor and 
system susceptance. Damping coefficient  D  is viewed as 
the uncertain parameter, so 

 
! = "D H  is also an uncertain 

parameter. 
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Fig. (1). STATCOM single machine infinite system model. 
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The simplified model can be rewritten as 
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where  d  is delay time.  

The regulated output can be expressed as 

  
y = q
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x
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2
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, where 
  
q

1  and 
  
q

2
are non-negative 

weighted coefficients whose proportional values are de-
signed by the system controller designers.  

The purpose of designing nonlinear robust controller is to 
guarantee that all the state variables are globally bounded 
and converge to new stable equilibriums. In addition, the 
improvement of robustness and enhancement of transient 
stability are achieved, when compared with other traditional 
controller. 

3. DESIGN OF STATCOM NONLINEAR ROBUST 
CONTROLLER 

The nonlinear robust controller contains an adaptive law 
(
  
!̂
! ) and a control law (

 
u

B
). 

3.1. Adaptive Law Design 

Based on the notions of system immersion and manifold 
invariance, a new method named I&I adaptive control can be 
adopted for designing the adaptive law of uncertain parame-
ter [12]. 

Define estimation errors 
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For offsetting the parameter-independent terms,  !̂  is se-
lected as: 
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By substituting (5) into (4), (4) is rewritten as  
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In order to guarantee the dynamics of 
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designed as: 
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Theorem 1: Suppose that derivative of (7) is negative 
semi-definite, and then the stability and convergence of (3) is 
achieved on the basis of Lyapunov's theorem of stability. 

Proof: Theoretically, there are a number of 1 2( , )x xβ  that 
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. This can be the most simplified form 

which can meet the requirement.  
As defined above, we obtain the dynamics of eθ  that 
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which implies 
  
lim
t!"

e
#
(t) = 0  and Theorem 1 hold. 

Remark 1: The proposed control law 
  
!̂
!  can offset the re-

sidual estimation errors  !̂ "!  effectively. Based on system 
immersion and manifold invariant theory, a suitable smooth 
function 
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)  can not only ensure that the parametric 

form manifold 
  
I

e
= (x,!̂ )"R

3 # R
1 !̂ $! +%(x

1
,x

2
) = 0{ }  is 

invariant and attractive, but also guarantee eZ  converges to 
zero. As a result, the closed-loop system consisting of (2) 
and (6) has a globally stable equilibrium when 
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(t) = 0 . 

Moreover, the system (12) can be globally stable for arbi-
trary 

 
u

B
,  x  and 

 
!

1
. 

3.2. Control Law Design 

In this section, three steps can be taken to design the con-
trol law for STATCOM with time-delay and external dis-
turbances. 

Step 1: Define error state variables 
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where 
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Design the first CLF 
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The relationship between energy storage and energy sup-
ply is constructed on the basis of dissipation theory in [14]. 
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Remark 2: The dissipation inequality with external dis-
turbances is introduced to guarantee the robustness of the 
nonlinear STATCOM. The dissipation inequality with exter-
nal disturbances can be expressed as:  
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This implies that if the 2L  gain between the output and 
the input is equal to or less than a certain constant (disturb-
ance attenuation constant ! ), the energy is dissipated and 
the robustness of control system with regard to the input sig-
nal can be guaranteed. 
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where 2c  is a positive constant. By selecting ! , we can 
guarantee  ! > 0 . And then, substituting (19) to (18), we get 
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By Remark 1, we know
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Step 3: Define sliding mode surface 
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Defined the relationship between energy storage and en-
ergy supply as: 
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Substituting the regulated output and (22) into (23), the 
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(27) 

the control law is then designed as: 

   

u
B
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1
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x
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2
z

2
)

!.#
1
f (x

1
)! µ k
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3
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(28) 

where !  is a non-negative sliding mode observer gain, and 
µ  is a sign function, which is defined as 

 
µ = !1  when   s > 0  

and 
 
µ = 1  when   s < 0 . 

Substituting the (28) into (27), (27) is rewritten as: 
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 .  (29) 

By Remark 1 and  ! > 0 , we can obtain 
  
M

2
! 0 . The 

dissipation inequality is guaranteed. 

3.3. Proof of System Stability 

From (24) and (30), we can get 

   

M
2
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3
+

1

2
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2
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1

2
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. (30) 

Define 
  
V = 2V

3
, (30) is rewritten as: 

   
!V = 2 !V

3
! " 2 #

1

2

+ " 2 #
2

2

$ y
2

.  (31) 

Integrating both sides of (31), we obtain 
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V (x(t))!V (x(0)) " (# 2 $

1

2

+ # 2 $
2

2

! y
2

)
0

T

% dt   (32)  

The dissipation inequality holds. This implies that the 
proposed nonlinear robust controller involving adaptive law 

  
!̂
!  and control law 

 
u

B  can guarantee the stability and ro-
bustness of STATCOM control system. 

Furthermore, we will prove that all the state variables are 
globally bounded and converge to new stable equilibriums. 

By (28), we have: 

   

!V
3
+

1

2
y

2

= !" z
1

2 !
1

2
(#$

1
!

z
2

#
)2 !

1

4
# 2$

1

2 ! z
2
x

2
e
%

!c
2
z

2

2 !
s

2

2# 2
!

1

2
(#$

2
!

s

#
)2 !& s

2 ' 0

.  (33) 

We can obtain 
   
!V
3
! 0 , so, 

  
V

3
(t) !V

3
(0) , where   t ! 0 . 

Obviously, the boundness of 
  
V

3
(0)  is guaranteed, and then 

  
z

1
, 

  
z

2
,  s , 

  
x

1
 and 

  
x

2
 are also bounded. Define 

   
U = ! !V

3
, 

and integrate both sides: 

  
U (! )

0

t

" d! =V
3
(0)#V

3
(t)

 
(34) 

 As 
  
V

3
(0)  is bounded and 

  
V

3
(t)  is non-increasing 

bounded, so  U  is bounded, we have
   
lim
t!"

U (# )
0

t

$ < 0 . Based 

on Barbalat’s lemma, we can obtain 
  
lim
t!"

U (t) = 0 . Thus, if 

 t !" , we have 
  
z

1
! 0 , 

  
z

2
! 0 , 

  
x

1
! 0 , 

  
x

2
! 0  and 

  s! 0 . Substituting these states into 3 1 1 2 2z s z zλ λ= − − , we 
can prove that 

  
z

3
! 0 . This implies that all the states 1x , 2x   

 

and 3x  are strictly bounded and converge to *
1x , 

  
x

2

*  and 

  
x

3

* . All the states are globally bounded and asymptotically 
stable. The boundness of STATCOM holds. 

4. SIMULATIONS 

In this section, simulation analysis and discussion of the 
nonlinear robust controller are given by considering a single-
machine infinite bus system with STATCOM as an applica-
tion example. The modeled STATCOM system involves 
time-delay nonlinearity, uncertain parameter and external 
disturbances. The following parameters in (1) are given: 

  H = 8 , 
  
E

q
' = 1.108 , 

  
P

m
= 1.0 , 

  
X

1
= 0.84 , 

  
X

2
= 0.52 , 

  
T

q
= 0.03 , 

  
K

c
= 1 , 

  
q

1
= 0.4 , 

  
q

2
= 0.6 , 

 
!

1
= 1 , 

 
!

2
= 1 ,  

 ! = 1 ,   d = 0.02,0.04 , 
 
! = 1,5 . The tracked system state 

variables involve generator rotor angle ! , generator rotor 
angular speed !  and reactive current 

 
I

q
. The initial points 

are given as:
  
!

0
= 57.1

! ,   !0 = 314.159 rad / s ,
  
I

0
= 0 . The 

external disturbances are designed as:
  
!

1
= e

"2t sin(5t) , 

  
!

2
= e

"2t cos(5t)  respectively. Three different cases are dis-
cussed as follows. 

4.1. Different Control Methods  
The dynamic responses trajectories of the state variables 

are simulated by using the proposed method (PM), adaptive 
backstepping sliding mode (ABSM) and adaptive backstep-
ping (AB) respectively. 

Figs. (2-4) show the transient trajectories of the state var-
iables involving rotor angle, rotor angular speed and reactive 
current respectively. The comparison between the proposed 
method and the two methods are investigated, when 

 
! = 1   

 
 

 

Fig. (2). Transient trajectories of rotor angle when 
 
!

1
= 1  and 

  d = 0.02s . 
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and   d = 0.02s . Taking Fig. (4) for example, the transient 
responses trajectories fluctuate fast and tend to be stable af-
ter 1.6s or more under ABSM and AB. Instead, by using the 
proposed method, transient responses trajectory fluctuate 
more smoothly and converge to stable state after 0.6s, sug-
gesting that the proposed method results in better system 
performance. 

4.2. Different Disturbance Attenuation Constants 

Compared with Figs. (3-5), the simulations between the 
proposed method and the two methods ABSM and AB were 
investigated, when 

 
! = 5  and   d = 0.02s . 

Figs. (5-7) show the transient trajectories of the three 
state variables when 

 
! = 5  and   d = 0.02s . The transient 

trajectories depart from the initial state and fluctuate strongly  
 

without an appropriate control. From Figs. (2-4) and Figs. 
(5-7), the contrastive simulations show that all transient tra-
jectories fluctuate fast, and system reaches the stable state 
slowly, when 

 
! = 5 . Instead, it spends less time in converg-

ing to the stable state, when 
 
! = 1 . Especially, the transient 

trajectories fluctuate powerfully and cannot reach to steady 
state under AB. Consequently, the disturbance attenuation 
constant !  is a key factor impacting on the system perfor-
mance. A smaller !  can result in better stability and con-
vergence. 

4.3. Different Time-delay Terms 

To investigate the influence of time-delay term, the con-
trastive simulations under our proposed method are per-
formed at 

  
d

1
= 0.02  and 

  
d

1
= 0.04  respectively, when 

 
! = 1 .  

  

 

Fig. (3). Transient trajectories of rotor angular speed when 
 
!

1
= 1  and 

  d = 0.02s . 

 

 

Fig. (4). Transient trajectories of reactive current when 1 1γ =  and 0.02d s= . 
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Fig. (5). Transient trajectories of rotor angle when 5γ =  and 0.02d s= . 

 

 

Fig. (6). Transient trajectories of rotor angular speed when 5γ =  and 0.02d s= . 

 

 

Fig. (7). Transient trajectories of reactive current when 5γ =  and 0.02d s= . 
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Fig. (8). Transient trajectories of rotor angle in different time-delay. 

 

 
Fig. (9). Transient trajectories of rotor angular speed in different time-delay. 

 

 
Fig. (10). Transient trajectories of reactive current in in different time-delay. 
 

In Figs. (8-10), two different time-delay terms are simu-
lated to investigate its influences. The results of these Figs. 
reveal that the proposed method can ensure that the state 
variables of the nonlinear STATCOM are globally bounded 

and transient responses will eventually converge to a stable 
value regardless of what time-delay is considered. Moreover, 
it can be seen clearly from Fig. (10) that the transient trajec-
tories attain stability and eventually converge to equilibrium 
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points after a very short time (0.6s), when 
  
d

1
= 0.02 . Never-

theless, the response time of reactive current is 1.6s or more, 
when 

  
d

1
= 0.04 . Thus, the time-delay  d  is a crucial nonlin-

ear factor deteriorating the transient and steady performance 
of the STATCOM system. This result is consistent with the 
theoretical analysis. 

CONCLUSION 

In this paper, we propose an improved nonlinear robust 
controller for STATCOM. The proposed control strategy 
gives some advantages such as: (a) the design of the adaptive 
law and the control law are taken apart, which can reduce 
algorithm complexity significantly; (b) The proposed con-
troller avoids high degree coupling between system state 
variables and estimation errors by means of designing adap-
tive law of uncertain parameter; (c) For solving the problem 
of time-delay nonlinearity and external disturbances, the 
control law is designed by backstepping sliding mode con-
trol, guaranteeing transient stability and robustness of 
STATCOM control system; (d) In order to guarantee the 
robustness of control system throughout the controller design 
process, the dissipation inequalities are constructed in each 
subsystem. By comparing with the conventional control 
methods, the nonlinear robust controller has advantages in 
terms of the oscillation amplitude and convergence time re-
gardless of what delay time is considered. 
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