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Abstract:

Background:

Some typologies of masonry constructions (e.g. towers or walls with openings) can be reasonably studied through simple beam or frame-like
models. For these structures, shear mechanisms often play an important role inducing failure and collapse.

Objective:

The paper presents an enriched beam model for studying the in-plane response of masonry walls. Initially formulated for masonry columns, towers
and masonry slender structures in general, the model is now modified in order to also capture the shear failure mechanisms, in addition to the
flexural ones.

Methods:

Starting with a one-dimensional no-tension model, a strength domain in the plane of the axial and tangential stress of the beam has been added,
which has been defined by limiting both the stress shear component with respect to any possible direction and the main compressive stress.

Results:

The model, implemented in the FEM computational code MADY, allows for short computational times in studying the response of single panels as
well as walls with openings.

Conclusion:

Comparisons of some experimental results from literature and some numerical results from more refined 2D models show the effectiveness and
accuracy of the model’s predictions in terms of global and local response.
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1. INTRODUCTION

The issue of modelling masonry structures is still an open
one in structural engineering. This is due to the complexity of
the  material’s  mechanical  behaviour  together  with  the  great
variety of structural types and constituents, that is mortar and
bricks,  and  their  textures.  Meanwhile,  seismic  assessment,
repair  and  strengthening  of  ancient  masonry  buildings  is  a
priority, as such structures represent a large part of the cultural
heritage of the Mediterranean basin.  In particular,  masonry’s
lateral  load  capacity  is  crucial  in  seismic  areas,  where  old
masonry buildings have often exhibited high vulnerability  to
earthquakes.

*  Address  correspondence  to  this  author  at  the  Department  of  Civil  and
Environmental  Engineering  (DICeA),  University  of  Florence,  Piazza
Brunelleschi  6,  50121  Florence,  Italy;  Tel:  +390552756850;
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Within  this  framework,  nonlinear  static  procedures  and
equivalent-frame  models  have  become  very  popular  and
attractive  for  practical  engineering  applications.  The  increa-
singly  relevant  role  played  by  nonlinear  static  analyses  in
recent  decades,  and  the  widespread  use  of  equivalent-frame
models for studying ordinary masonry buildings stem from a
common  reason:  the  advantage  of  accounting  for  nonlinear
structural behaviour, while preserving relative simplicity and
modest computational costs.

Substantially, in the equivalent-frame approach, a masonry
wall with rather regularly spaced openings can be idealized as
composed of a series of panels - distinguished into piers and
spandrels - connected by rigid nodes, whose dimensions can be
defined  through  the  alignments  of  the  openings  and/or  the
“effective” heights of the piers revealed by the damage patterns
occurring  under  earthquakes  and  codified  by  the  relevant
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literature [1, 2]. A thorough discussion concerning the features
and benefits of using such models in comparison with others
can be found in a few studies [3 - 5].

A large number of models following the equivalent-frame
method  have  been  proposed  in  the  literature  over  the  last
decade [6 - 10]. Most of these make use of macro-elements to
represent  piers  and  spandrels.  Often,  they  are  developed
assuming the classical hypotheses of a beam and make use of a
limited number of nodes. Furthermore, they generally rely on a
phenomenological description of the constitutive behavior of
the  panel,  especially  for  shear  resistance  behavior.  The  In-
terested  readers  may  refer  to  another  study  [11]  for  a
comprehensive  state-of-the-art  review.

This  paper  presents  an  advanced  one-dimensional  conti-
nuum  model  for  non-linear  static  analysis  of  masonry  shear
walls.

In the previous research by the authors, a numerical model
was defined,  which performed non-linear  static  and dynamic
analyses  on  masonry  columns,  arches,  towers,  and  slender
structures in general. The model relies on a costitutive equation
formulated in terms of generalized strain and stress for beams
with  various  cross-sections,  under  the  hypotheses  that  the
material is non-linear elastic, unable to withstand tension with
limited  compressive  strength  [12,  14].  Furthermore,  to  des-
cribe  the  cyclical  behavior  and  seismic  response  of  masonry
elements more realistically, a damage process under compre-
ssion  has  been  introduced  [15].  The  model  has  been  imple-
mented in the FEM computational code MADY and applied to
the study of several slender masonry structures, which typically
exhibit  flexural  behavior  and  consequent  failure  mechanism
[16, 17].

Indeed,  in  the  past  one-dimensional  no-tension  models
have been used extensively to study problems of the stability of
masonry columns [18 - 20], the static and dynamic response of
unreinforced and reinforced arches and vaults [21 - 23], as well
as the out-of-plane behavior of masonry panels and walls. The
same does not  hold for  the study of  the in-plane behavior  of
masonry panels under lateral actions. In this case, as is widely
known,  panels  are  likely  to  undergo  various  distinct  failure
mechanisms,  or  a  combination of  some of  them: for  flexural
behaviour (rocking/toe-crushing failure),  as well  as for shear
with  diagonal  cracking  or  sliding  along  bed-joints  [3,  24],
which  cannot  be  modelled  using  classical  no-tension  beam
models.

The  proposed  constitutive  model  has  been  enhanced  to
address shear behaviour and account for failure with diagonal
cracking in masonry panels.  To this aim, the beam is formu-
lated according to the Timoshenko theory to account for shear
deformations; then, a constitutive law is defined for the shear
force, in addition to that proposed for the axial one and bending
moment.

Essentially,  the  constitutive  model  is  characterized  by  a
strength domain in the plane of the axial and tangential stresses
of  the  beam,  which  has  been  defined  by  limiting  the  stress
shear  component  with  respect  to  any  possible  plane  of  the
panel; namely, not only with respect to the one orthogonal to
the beam axis. Furthermore, in analogy to the proposal for the

shear  stress,  the  principal  compressive stress,  rather  than the
axial  stress  component  of  the  beam,  has  been  limited  to
achieving  maximum  strength.

In the following, the proposed model is first presented, and
then  some  numerical  results  are  provided  and  compared  to
some experimental data available in the literature.

Then, some numerical analyses are conducted in order to
highlight  the  potential  of  the  model  to  approximate  the  2D
solution. To this end, some results obtained through the pro-
posed  models  are  compared  with  those  obtained  via  the
commercial  code  ANSYS  [25]  and  via  the  formulated  bi-
dimensional  masonry-like  model  [26].

Lasly,  preliminary  results  on  an  idealized  wall  with  a
centered  opening  are  provided  as  an  example  for  practical
applications.

2. MODEL SPECIFICATIONS

In order to introduce a constitutive equation also for shear
behaviour, in addition to axial/flexural one, shear deformations
are  accounted  for  according  to  the  Timoshenko  theory  (see
Section 2.1).

Then, a nonlinear-elastic constitutive model is assumed for
describing masonry’s response. Specifically, a strength domain
in the plane of the stress components of a 2D beam (σz-τzy) has
been defined, as explained in detail in Section 6.

Given  the  kinematic  constrains  and  the  material  consti-
tutive laws, the patterns of the axial stress σz and the tangential
stress τzy over the beam’s cross-section can thus be determined
for any strain pattern, as shown by the examples provided in
Section  8.  Finally,  by  simply  integrating  these  stresses,  a
constitutive relation which associates the generalized stresses
axial  force  N,  shear  V  and  bending  moment  M-  to  the
generalized  strains  -  ε,  κ  and  γ-  has  been  obtained.

2.1. Kinematic Hypothesis

According to the Timoshenko beam theory, cross-sections
remain plane after  bending but  not  necessarily normal  to the
deformed axis  of  the  beam.  Hence,  the  displacement  field  is
identified  through  the  longitudinal  and  transverse  displace-
ments  of  the  beam’s  axis,  u,  υ  and  the  rotation  of  the  cross-
section φ, which is independent of υ.

The total slope of the deflected beam’s axis is due to both
bending and shear, and is given by:

(1)

where z denotes the abscissa along the beam axis and γ is
the transverse shear strain. Overall, the generalized strains are
given by:

(2)

where ε is the extensional strain and κ the curvature of the
beam axis.

Lastly, it is worth noting that, in view of the hypothesis of
plane  sections,  each  longitudinal  fiber  undergoes  the  axial
strain:

𝑑𝑣

𝑑𝑧
= 𝜑 − 𝛾 

𝜀 = 𝑢′, 𝛾 = 𝜑 − 𝑣′, 𝜅 = 𝜑′ 
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(3)

where y is the distance between the fiber and the geome-
trical centre of the cross-section.

2.2.  Constitutive  Models  and  Definition  of  the  Strength
Domain σz-τzy

With reference to the coordinate system shown in Fig. (1),
let’s  assume  that  the  stress  state  at  any  point  of  any  beam’s
cross  section  is  completely  described  by  the  components  σz

(axial stress) and τzy (tangential stress). The formulation of the
model stems from the idea of defining a strength domain σz-τzy

while  keeping  in  mind  a  plane  state  of  stress,  where  σy  is
supposed to be nil (σy = 0).

Fig. (1). Sketch of the panel and reference system.

In  particular,  the  beam’s  strength  domain  σz-τzy  has  been
defined  by  requiring  some  conditions  on  the  stress  to  be
satisfied. As widely used in the framework of no-tension beam
models [27], the material does not withstand traction in the z-
direction, i.e. σz is assumed to be non-positive. Moreover, with
reference to a plane state of stress, the new condition assumed
herein -referred to in the following as Condition (1)- requires
that, at any point of the panel, the shear stress component τn on
any  plane  -  defined  by  its  normal  direction  n  (Fig.  1)-  must
respect the Mohr-Coulomb criterion, that is:

(4)

where σn denotes the normal stress component parallel to n,
and  τo  >  0  and  m  <  0  are  two  constant  material  parameters,
usually known as cohesion and internal friction, respectively.

With reference to the plane (σ, τ), the foregoing condition
corresponds to requiring that any state of stress in the panel,
which can be represented graphically through the Mohr circle,
will  be  admissible  if  it  is  internal  to  the  cone  with  vertex  at
point (-τo  /m,0) and identified by the half-lines τ  = ±(τo  +mσ).
Hence, by requiring that the circle be tangent to these two half-
lines (Fig. 2), it is a simple matter to verify that Eq. (4) can also
be written as

(5)

where σ- and σ+ denote the principal stresses.

The  second  condition  i.e.  Condition  (2)  consists  of
assuming  that  the  minimum  negative  normal  stress  (com-
pression) on any plane is greater than the minimum admissible
compressive stress τ, namely

(6)

Referring to the reference system (o,y,z)  depicted in Fig.
(1),  where  the  z-direction  corresponds  to  the  beam’s  longi-
tudinal axis, let’s assume that the plane stress state in the panel
is

(7)

where σy is assumed to be negligible (quite an acceptable
hypothesis especially for modest stress states [3]).

Consequently, the principal stresses turn out to be

(8)

and  the  domains  D1  and  D2  that  respectively  guarantee
fulfillment  of  Conditions  (1)  and  (2)  can  be  defined  in  the
plane (σz, τzy).

Specifically,  by  substituting  Eq.  (8)  into  Eq.  (5),  the
domain D1 shown in Fig. (3) has been obtained. Its boundary is
the ellipse defined by the equation

(9)

with  center  at  point  (2mτzy,  0)  and  half  minor  and  major
axis  respectively  equal  to  τo  and   (Fig.  3).  The
ellipse intersects the reference σz-axis at the points

(10)

and the τzy-axis at the points

(11)

As per the condition given on σz (i.e. σz≤0), the domain of
interest  is  limited  to  the  portion  in  the  half-plane  of  the
negative  σz  (hatched  area  in  Fig.  3).

Referring to Condition (2), domain D2 is defined by substi-
tuting Eq. (8) into Eq. (6), (Fig. 4). It is limited by the parabola
with equation

(12)

with axis of symmetry coincident with the σz-axis, vertex at
point (σo,0) and intersecting the τzy-axis at points (0,±σo). Also
in this case the domain is limited to the portion belonging to
the half-plane of negative σz (Fig. 4).

Obviously, simultaneous fulfillment of both Conditions (1)
and (2) is guaranteed if the components of stress (σz, τzy) belong

𝜀𝑧 = 𝜀 + 𝜅𝑦 

|𝜏𝑛| ≤ 𝜏𝑜 + 𝑚𝜎𝑛            ∀𝐧 

𝜎+(√1 + 𝑚2 − 𝑚) − 𝜎−(√1 + 𝑚2 + 𝑚) ≤ 2𝜏𝑜, 

𝜎− ≥ 𝜎𝑜 . 

𝐓 = [
0 𝜏𝑧𝑦

𝜏𝑧𝑦 𝜎𝑧
] 

𝜎− =
𝜎𝑧

2
−

1

2
√𝜎𝑧

2 + 4𝜏𝑧𝑦
2 

𝜎+ =
𝜎𝑧

2
+

1

2
√𝜎𝑧

2 + 4𝜏𝑧𝑦
2. 

(2𝜏𝑜(𝑚 ∓ √1 + 𝑚2),0) 

(0, ±
𝜏𝑜

√1+𝑚2
). 

𝜏𝑧𝑦
2 − 𝜎𝑜(𝜎𝑜 − 𝜎𝑧) = 0 

𝜎𝑧
2 + 4(1 + 𝑚2)𝜏𝑧𝑦

2 − 4𝑚𝜏𝑜𝜎𝑧 − 4𝜏𝑜
2 = 0 
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to the intersection . In principle, two situations
can occurr: if , the intersection of the

domains  D  coincides  with  D1  as  shown  in  Fig.  (5a)  where

Fig. (2). Assumed stress state.

Fig. (3). Strength domain in the plane (σz, τzy), defined by Condition (1).

Fig. (4). Strength domain in the plane (σz, τzy), defined by Condition (2).

𝒟  = 𝒟1 ∩ 𝒟2

𝜎𝑜 ≤ 2𝜏𝑜(𝑚 − √1 + 𝑚2) 2𝜏𝑜(𝑚 − √1 + 𝑚2)
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Fig. (5). 

has been denoted with ; in this case, fulfillment of Condition
(1) also ensures Condition (2). Conversely, if 
=  ,  then   turns  out  to  be  the  one  depicted  in  Fig.  (5b).
However,  the  first  situation  is  of  greater  interest  in  practical
applications, as it is more likely to occur for the usual values of
parameters σo,  τo,  and m.  Hence, hereafter we always refer to
such case, i.e.Ɗ ≡ Ɗ1.

It is worth emphasizing that the strength domain Ɗ differs
substantially  from  the  one  obtained  by  applying  the  Mohr-
Coulomb criterion  solely  to  the  shear  stress  τzy  acting  on  the
panel’s horizontal planes, i.e. on the beam’s cross-section. In
other  words,  the  proposed  model  differs  greatly  from  that
accounting only for horizontal bed joint sliding. Fig. (6) shows
a comparison.

According to the strength domain assumed and, as already
stated, referring to the case Ɗ ≡ Ɗ1 for the sake of simplicity,
the constitutive equation can be written as follows:

(13)

with  and E the Young’s modulus; moreover, let

(14)

so that Eq. (9) can be written as ,
and denoting

(15)

with  G  the  shear  modulus,  the  constitutive  law  for  the
tangential stress turns out to be

(16)

3. BEHAVIOR OF THE BEAM’S CROSS SECTION

Given the kinematic assumptions set forth in Section 2.1
and  the  assumed  constitutive  law,  the  normal  stress  σz  has  a
piecewise  linear  diagram  over  any  rectangular  cross  section
and can be determined. Various possible σz patterns can occur,
each of which corresponds to a different region in the plane of
the generalized strains (ε, κ).

This constitutive equation has been presented in details in
[16]  for  the  simpler  case  in  which  the  effects  of  shear
deformation can be neglected and is not provided herein for the
sake of brevity.

𝜎𝑧 = {

0 if    𝜀𝑧 > 0
𝐸𝜀𝑧 if    𝜀 ̅ ≤ 𝜀𝑧 ≤ 0
�̅� if    𝜀𝑧 ≤ 𝜀̅

         

̅

𝜏̅𝑧𝑦 =
1

2
√
4𝜏𝑜

2 + 4𝑚𝜎𝑧𝜏𝑜 − 𝜎𝑧
2

1 + 𝑚2
 

�̅�𝑧𝑦 =
𝜏�̅�𝑦

𝐺
 

𝜏𝑧𝑦 =

{
 

 
0 if    𝜀𝑧 ≥ 0
𝐺𝛾𝑧𝑦 if    𝜀𝑧 < 0    and    |𝛾𝑧𝑦| ≤ �̅�𝑧𝑦
𝜏̅𝑧𝑦𝑠𝑖𝑔𝑛(𝛾𝑧𝑦) if    𝜀𝑧 < 0    and    |𝛾𝑧𝑦| > �̅�𝑧𝑦 .

 

 
σo>

Ɗ

�̅�

�̅�
2𝜏𝑜√1 +𝑚

2

Possible intersection Ɗ of the two domains Ɗ1 and Ɗ2: a) if σo ≤  and b) �̅� if 𝜎𝑜 > �̅�, with �̅� = 2𝜏𝑜(𝑚 − √1 + 𝑚2).

𝜏𝑧𝑦 = ±𝜏̅𝑧𝑦
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Fig. (6). Comparison of the proposed domain with the case of Mohr-Coulomb failure only on bed joint layers.

Fig. (7). σz and τzy patterns over a non-partialized beam cross-section.

As regards the τzy patterns, some clarification is in order. It
is firstly worth noting that, once the values of the parameters τo

and  m  are  fixed,  the  strength  domain  given  by  Eq.  (9)  is  a
function of σz alone; hence, in view of Eqs. (13) and (3), 
turns out to be a function of two generalized strain only,  i.e.

.

Furthermore, it is a simple matter to verifiy that, for a fixed
pair of values of ε and κ, , depends on the y-coordinate with
the  same  law  of  dependence  on  σz.  Thus,  the  shear  stress
boundary (y) is still an ellipse over the beam cross-section,
with center C and half major axis a equal to:

(17)

The intersections of the ellipse with the y-axis may or may
not fall within the cross-section, depending on the values of ε,
κ, in addition to those of the mechanical parameters E, m and
τo, as shown by the following examples.

Lastly,  from  Eq.  (16)  and  assuming  for  the  sake  of
simplicity  that  the  shear  strain  of  each  fiber  is  equal  to  an
average value given by the generalized strain, i.e. γzy  = γ,  the
shear stress τzy turn out to be a function of ε, κ and γ, i.e. τzy =
τzy(ε, κ, γ).

𝜏�̅�𝑦

𝜏�̅�𝑦 = 𝜏�̅�𝑦(𝜀, 𝜅)

𝜏�̅�𝑦

𝜏�̅�𝑦
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Fig. (8). σz and τzy patterns over a partialized beam cross-section.

Overall,  many  situations  must  be  considered  in  order  to
define the patterns of the axial and tangential component σz and
τzy,  depending  on  the  values  of  ε,  κ  and  γ.  Some  of  those
deemed more significant are shown by way of example in the
following.

With reference to a rectangular cross-section of dimensions
b  and  2h,  let  us  suppose  that  κ  >  0  and  the  section  is  not
partialized i.e. the εz pattern is the one shown in Fig. (7), where
the neutral axis  does not cross the section.

In view of Eq. (17), the ordinate of the vertices of ellipse 
(y)  must  always  be  on  the  opposite  sides  with  respect  to  yn.
Hence,  in  this  case,  with  yn  >  h,  two  qualitatively  different
circumstances can occurr depending on the values of ε and κ:
both  vertices  of   fall  outside  the  section,  or  just  one  of
them,  as  shown  in  Fig.  (7)  respectively  in  rows  A  and  B,
together  with  the  corresponding  σz  pattern.  Moreover,  by
simply  comparing  γ  to   of  Eq.  (15),  any  possible  τzy

pattern can also be obtained, as shown in the Fig. (7).

Essentially,  different  situations,  leading  to  different  τzy

pattern,  can occurr.  With  reference to  the  situation shown in
row A of Fig. (7), it may turn out that γ≤  over the whole
cross-section, i.e. for any y ϵ [-h,h], so that τzy (y)= Gγ; or we
can  have  γ>  over  the  whole  cross-section,  and  in  this
case τzy(y) =  (y); lastly, γ>  may hold solely over a
part of the section, with the consequent τzy pattern shown in Fig.
(7). It is worth just noting that, in case of different positions of
the  ellipse  with  respect  to  the  cross-section  i.e.  for  various

different  values  of  of  the  strains  (ε,κ)-,  the  latter  situation
 may  provide  further  possible  τzy

pattern, not shown for the sake of brevity.

Similar situations can occur if the section is partialized, as
shown  in  Fig.  (8).  Note  that  some  situations,  such  as  the
entirely elastic case, are not consistent with the position of the
ellipse and, thus, can not occurr.

Finally,  once  the  σz  and  τzy  patterns  are  known,  for  any
value  of  (ε,  κ,  γ),  the  generalized  stress  -N,  V  and  M  are
determined  as

(18)

4. NUMERICAL RESULTS

The proposed model has been implemented into the finite
element  code  MADY  [12].  To  obtain  a  locking-free  Timo-
shenko beam element, only one Gauss point has been used for
the  numerical  integration  [28].  For  the  rest,  the  numerical
procedure  used  is  standard  and  has  been  described  in  detail
elsewhere  [12,  15,  16,  29],  with  reference  to  other  types  of
“beam” elements.

To  highlight  the  ability  of  the  proposed  beam  model  to
capture  the  in-plane  behaviour  of  masonry  panels,  some
comparisons have been conducted with the numerical  results
obtained by means of two different 2D finite element models.

The first bi-dimensional model used has been developed by
the authors themselves and is presented in detail in [26]. The
model  is  an  extension  of  the  classical  masonry-like  or  no-
tension  model  [30,  31]:  besides  limiting  the  compressive
strength,  the  model  accounts,  for  a  bound to  the  shear  stress
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component on each plane, that depends on the acting normal
stress  component.  With  reference  to  shear,  the  idea  of  the
material constitutive behaviour is, therefore, the same used for
developing  the  proposed  beam  model.  Naturally,  the  two
models differ essentially in the kinematic constraints and the
consequent stress state given by Eq. 7. Moreover, they differ
with regard to the hypothesis on the cohesive force acting on
the cracked parts of the structure, being nil in the beam model
but  provided  for  the  2D  model.  The  2D  model  has  been
implemented  into  the  code  MADY and has  been  used  in  the
following analyses with four-node elements in the plane stress
framework.

The second model  used a  2D model  available  within the
FE  commercial  code  ANSYS.  Specifically,  2D  geometries
under the assumption of plane stress have been discretized by
using  PLANE182  finite  elements,  while  the  Mohr-Coulomb

model  with  cut-off  has  been  selected  to  represent  the
masonry’s  constitutive  behavior  [25].

It is also worth mentioning that the constitutive law of the
two 2D models used are similar but not equivalent [32].

4.1. Comparisons for Single Panels

In  this  section,  some  comparisons  with  experimental
results for a single panel are provided. Specifically, referring to
the  experimental  research  conducted  at  the  Joint  Research
Centre in Ispra in 1995 [10, 24, 33 - 36], two geometries have
been  considered:  A  squat  panel  with  1.35  m  height,  and  a
slender  panel  with  2.0  m  height,  both  of  them  having  a
rectangular cross-section 1 m in width and 0.25 m in thickness.
As in the experimental tests, the panels are perfectly clamped
at their base, with a further restraint to rotation at the top.

Fig. (9). Comparison with results from the 2D models for (a) the squat panel and (b) the slender panel.

 (a)

 (b)
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Moreover, they have first been subjected to a constant vertical
load  P  equal  to  150kN,  which  entails  a  normal  compressive
stress  σz  equal  to  -0.6MPa.  The  self-weight  has  also  been
considered,  assuming  for  the  mass  density  a  value  ρ  =  1800
kg/m3  [24].  Then,  all  the  analyses  have  been  conducted  by
applying a monotonic increasing horizontal displacement at the
top of the panels.

As per to some indications given in the literature [10, 24,
36],  the  main  mechanical  characteristics  assumed  are  as
follows:  E  =  1800MPa,  G  =  820MPa  (i.e.ν  =  0.1),  σo  =
-6.2MPa, and for shear, the values τo = 0.72MPa and m = -0.4,
have  been  chosen.  It  is  worth  noting  that  such  values  are
reasonable, and fall within the range of values assumed in the
aforementioned  research  papers  to  calibrate  other  numerical
models. Naturally, the issue of assuming appropriate values for
these  material  parameters  is  an  open  one,  which  requires
comparisons with a large amount of experimental data, a task
which is beyond the scope of the present paper.

For  the  numerical  simulations,  both  panels  have  been
discretized  into  80  beam  elements.  The  number  of  finite
elements has been chosen to obtain the most accurate response
provided by the model, also in view of the comparisons of the
stress state given by the more refined 2D models. Decreasing
the element number – down to very few elements, has shown to
cause slight  variations in  the results  –  which are  in  any case

conservative;  conversely  increasing  the  number  of  finite
elements  has  not  lead  to  any  significant  variation.

The  global  response  of  the  analysed  panels  has  been
presented  through  pushover  curves,  i.e.  shear  force  vs  top
displacement curves. Fig. (9a) shows the results obtained for
the squat panel. The analogous diagrams for the slender panel
are shown in Fig. (9b).

As shown in Figs. (9a and b), the responses obtained via
the beam model are consistent with those from the 2D-models.
Unsurprisingly,  the  response  obtained  via  the  beam  model
exhibits  a  slightly  larger  global  stiffness  with  respect  to  that
predicted through the 2D models. Nevertheless, the predicted
total lateral strength of the panels are in very good agreement.
It is quite interesting to note that no significant variation in the
agreement of results emerges between the two structural cases
considered, that is by varying the slenderness of the panels.

The  accuracy  of  the  beam  model’s  predictions  has  been
also  verified  from a  local  perspective.  With  reference  to  the
squat case, Figs. (10a and b) provide a comparison with results
obtained via the 2D models, respectively in terms of minimum
principal stress σmin - previously denoted by σ- – and maximum
shear stress τmax attained throughout the panel. Such comparison
is carried out at the loading step where a displacement of 5 mm
is attained.

Fig. (10). Squat panel: Comparison of (a) σmin and (b) τmax.

     
 
        BEAM            2D(MADY)              2D(ANSYS)  

(a) 
  

 
 
    BEAM              2D(MADY)              2D(ANSYS)  
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As  shown  in  Fig.  (10),  the  beam  model  yields  quite  a
different  result  in  terms  of  stress  state,  despite  the  similar
global  response  depicted  in  Fig.  (9).  The  degree  of  stresses
achieved at the top and the base of the panel provided by the
beam model is acceptable, if compared with those predicted by
the 2D models. However, the predicted stress state throughout
the panel is more widespread if compared to that given by the
two 2D models, which is confined to a limited area along the
diagonal of the panel. Such a distribution cannot be captured
by the beam model due to the embedded kinematic contraints.

Like the global responses, the local results for the slender
panel  are  also  qualitatively  similar  to  the  analogous  ones
shown in Fig. (10) for the squat case, and hence have not been
presented here for the sake of brevity.

In  the  following,  some  further  comparisons  have  been
carried out by varying the boundary conditions, as they have
proven to affect the panels response significantly.

Specifically,  for  each  geometry,  the  following  boundary
conditions - widely assumed to represent the actual constraints
in real buildings - have also been considered:

the  panels  are  perfectly  constrained  at  the  base  and[i]
totally free at the top, a condition that in the following
will be referred to as C, i.e. cantilever;
the  panels,  still  clamped  at  their  base,  have  further[ii]

restraints on the axial displacement and rotation at the
top  nodes  after  application  of  the  vertical  load;  such
cases  will  be  referred  to  as  DF,  which  stands  for
double  fixed.

Figs. (11a and b) show the pushover curves for the squat
and the slender cantilevers (C panels), respectively. The trends
of the results  are similar  to those already shown in Figs.  (9a
and  b),  thus  confirming  the  ability  of  the  simple  model  to
provide an acceptable picture of the global response.

Fig. (12) shows the results obtained for the C slender panel
in terms of stress state. In this case, contrary to what happens
with the panel when top rotation is constrained, the proposed
model  appears  to be more accurate  in describing the state  of
stress in the panel body. Indeed, the stress state prediction is
quite satisfactory if compared to that given by the 2D models.
Results for the C squat panel are substantially similar and thus
omitted here.

Fig. (13), where results analogous to those in Fig. (11) are
illustrated  for  the  DF  panels,  substantially  confirms  the
previously  revealed  trends.  The  beam  model  provides  an
accurate  prediction  of  the  global  response  of  the  panel.

From a local point of view, trends qualitatively similar to
Fig. (10) emerge from the DF panels stress state, not reported
here.

 (a)
Fig. 11 contd.....
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Fig. (11). C panel: pushover curves for (a) the squat and (b) the slender panel.

Fig. (12). C slender panel: comparison of (a) σmin and (b) τmax.

 (b)
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Fig. (13). DF panels: pushover curves for (a) the squat and (b) the slender panel.

4.2. A Wall with an Opening

Simplified models are especially useful for analyzing more
complex structures than simple panels, for which sophisticated
models may involve very high computational costs. Hence, in
order  to  highlight  the  possible  use  of  the  proposed  model  in
practical applications, some preliminary results are presented
for  an  idealized  masonry  wall,  provided  for  illustrative  pur-
poses  only.  In  this  framework,  the  wall  is  represented  as  an
idealized frame, in which the piers and spandrels are connected
through rigid offsets.

More  in  detail,  the  analysed  structure  is  a  wall  with  a
centered  opening  (Fig.  14).  The  wall’s  main  geometrical
characteristics are as follows: height = 3.2 m, width = 3.4 m
and thickness = 0.25 m, while the dimensions of the opening
are 2 x 1 m. As for the mechanical properties, the values used
in the foregoing have been assumed, i.e.  ρ  = 1800kg/m3,  E  =

1800MPa, ν = 0.1, σo = -6.2MPa, and τo = -0.72MPa and m =
-0.4.

In addition to the self-weight, a distributed vertical load -
with total resultant of 220kN- is firstly applied at the top of the
wall; then, it is subjected to an increasing horizontal displace-
ment, keeping rotation at the top costrained.

A sketch of  the  idealized wall  used in  the  finite  element
analysis is depicted in Fig. (14).  The dimensions of the rigid
nodes  have  been  defined  according  to  the  relevant  literature
[2].

Using  the  proposed  beam  model,  each  pier  has  been
modeled  through  40  finite  elements,  while  the  spandrel  has
been  discretized  into  20  elements.  Each  node  is  instead
represented  by  6  (vertical)  plus  6  (horizontal)  rigid  beam
elements.

 (a)

 (b)
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Fig. (14). The analyzed wall: geometry and beam model idealization.

Fig. (15). Pushover curves of the wall: comparison of the beam model with 2D models.

The results have been compared with those obtained with
the  2D  models  used  in  the  foregoing,  i.e.  the  masonry-like
model  implemented  in  MADY  and  the  one  available  in
ANSYS, assuming the same mechanical  properties,  load and
constraint conditions.

Fig.  (15),  which  shows  the  total  base  shear  vs  top
displacement curves obtained via the three models, highlights a
consistent trend with some slight difference in the total lateral
capacity.

Obviously,  although  some  promising  results  have  been
obtained, a number of issues still remain to be settled in order

to  enable  using  the  proposed  model  for  the  analyses  of  real
masonry  structures,  especially  with  regards  to  defining  the
behavior and geometries of the spandrels and rigid offsets.

CONCLUSION

The  need  to  preserve  an  enormous  heritage  of  masonry
buildings, which as demonstrated by recent seismic events are
extremely vulnerable to horizontal actions, calls for simplified
models  and  low-computation  numerical  methods  to  perform
preliminary and/or wide-area investigations.

It  is  to  this  end  that  a  refined  beam  model  has  been
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proposed.  Starting  with  a  no-tension  material  approach,  the
model  has  been  enhanced  by  endowing  it  with  the  ability  to
describe shear behavior and predict the collapse mechanisms
typically  exhibited  by  relatively  squat  panels  loaded  in  their
plane.

Some comparisons with the results obtained through two
different  2D models  (which also account  for  a  limit  to  shear
stress)  have  been  conducted  to  evaluate  the  accuracy  of  the
results predicted by the proposed model. Despite its simplicity,
the beam model is quite capable of capturing the panels global
response.  This  is  true  regardless  of  the  slender-ness  and
constraint  conditions.

The model can also provide some broad indications on the
local  stress  distribution  in  the  panels.  Also  from  a  local
perspective, the predictive capacity of the model is practically
independent  of  the  slenderness  of  the  walls.  Conversely,  the
accuracy of these results is affected by the panel’s constraint
conditions, being more acceptable for panels which are free at
the top.

Lastly, some preliminary results have also been carried out
for  an  idealized  wall  with  an  opening,  in  order  to  show  the
possible  application  of  the  proposed  model  to  assess  the
seismic  capacity  of  a  masonry  wall  and facade  through non-
linear static analyses.

NOTATIONS

(o, y, z) = Reference system

b = Width of the beam’s rectangular cross-section

2h = Height of the beam’s rectangular cross-section

n = Normal unit vector

σn = Normal component of the stress

τn = Tangential component of the stress

T = Stress tensor

σy, σz, τzy = Stress components

σ-, σ+ = Principal stresses

εy, εz, γzy = Strain components

σo = Minimum compressive stress

τo = Cohesion

m = Internal friction

ρ = Density

E = Young’s modulus

G = Stress tensor

ν = Poisson’s ratio

ε, κ, γ = Generalized strain

N, V, M = Generalized stress

u, v = Displacement component of the beam’s axis

φ = Rotation of the cross-section
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