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Abstract:

Background:

The estimation of fiducial points is specially important in the analysis and automatic diagnose of Electrocardiographic (ECG) signals.

Objective:

A new algorithm which could be easily implemented is presented to accomplish this task.

Methods:

Its methodology is rather simple, and starts from some ideas available in the literature combined with new approachs provided by the
authors. First, a QRS complex detection algorithm is presented based on the computation of energy maxima in ECG signals which
allow the measurement of cardiac frequency (in beats per minute) and the estimation of R peaks temporal positions (in number of
samples). From these ones, an estimation of fiducial points Q, S, J, P and T waves onset and offset points are worked out, supported
in a simple modified slope method with constraints.

The location process of fiducial points is assisted with the help of the so called curvature filters, which allow to improve the accuracy
in this task.

Results:

The procedure is simulated in Matlab and GNU Octave by using test signals from the MIT medical database, Cardiosim II equipment
patterns and synthetic signals developed by the authors.

Conclusion:

One of the novelties of this work is the global strategy. Also, another significant innovation is the introduction of the curvature
filters. We think this concept will prove to be a useful tool in signal processing, not only in ECG analysis.

Keywords: Automatic diagnose, Curvature filters, Electrocardiographic signal, Fiducial points, P wave, QRS complex, T wave,
Signal processing.
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1. INTRODUCTION

Electrocardiographic  signals  (ECG) are  a  main  tool  in  Medicine,  since  ECG analysis  is  a  routinary  part  of  any
complete medical evaluation. This is due to the fundamental role the heart plays in human health, and because ECG
provides a noni nvasive and relatively easy way of knowing how the heart is working [1 - 8].

Furthermore, recently ECG and EEG (electroencephalographic) signals have proven to be an appropriate tool in
fields as security, privacy, communication networks or psychology, in which biometric methods play a role [9 - 16].

In this context, the estimation of fiducial points of ECG signals is basic for feature extraction, and subsequently, to
ECG  interpretation.  Thus,  algorithms  and  techniques  which  could  accomplish  accurately  this  task  are  especially
important in designing automatic analysis and diagnose tools.

A  lot  of  such  methodologies  have  been  developed  in  the  recent  decades,  which  constitutes  an  active  area  of
research, with multiple challenges still to overcome [1 - 4, 17 - 69]. The current work is a contribution to this goal.

Before to expose our method, let us describe the basic features of an ECG. In the Fig. (1) a typical cycle of an ECG
with normal sinus rhythm is shown, with the P, Q, R, S and T waves. In this text, the starting and ending points of P and
T waves are labeled Pi, Pf, Ti, and Tf, and its maximum/minimum as Pm and Tm, respectively. The starting point of the
QRS complex is labeled Qi, and the ending point J, as is known as the J point. Also, the maximum/minimum of the Q, R
and S waves are labeled Qm, Rm and Sm, respectively. Note that, because of its inherent complexity, there are no rigorous
definitions of these concepts.

Fig. (1). Eschematic view of a cycle of an ECG with its fiducial points.

In addition, the piece of the signal between two consecutive Rm points is known as RR interval. Furthermore, the
piece of the signal between Pi and the following Qi point is known as PQ (or PR) interval, and the piece of the signal
between Qi and the following Tf point is known as QT interval. Analogously, the piece of the signal between the J point
and the following Ti point is known as ST segment, and the piece of the signal between Pf and the following Qi point is
known as PQ segment [2].

The Table 1 shows the normal values of the main ECG features of a typical lead II in sinus rhythm at a heart rate of
60 bpm for a healthy male adult [2, 23, 70]. We will use these values for testing our methodology by simulating it in
practical examples.
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Table 1. Normal values and limits of the main ECG features.

Feature Normal Value Normal Limit
P width (Pf - Pi) 110ms +20ms

PQ/PR interval (Qi - Pi) 160ms +40ms
QRS width (J - Qi) 100ms +20ms

QT interval (Tf - Qi) 400ms +40ms
ST segment (Ti - J) 150ms -

T width (Tf - Ti) 150ms -
P amplitude 0.15mV +0.05mV
QRS height 1.50mV +0.50mV

ST level 0.00mV +0.10mV
T amplitude 0.30mV +0.20mV

In the clinical evaluation of an ECG, physicians currently focus on the following main features [71, 72]:

1.1 Measurement of Cardiac Frequency: It consists on measuring the number of cycles or heartbeats per minute.

1.2 Heart Rate Analysis: The cardiac frequency should be almost constant in a sinus rhythm, when the sinoatrial
node acts as the natural pacemaker. In the ECG, this is basically characterized by the fact that each QRS complex is
preceded by a P wave.

1.3  Measurement  of  PR  Interval:  The  PR  interval  measures  the  required  time  for  the  electrical  impulse  to
traveling from the sinoatrial node to the ventricles. In a health individual, its length is between 120 ms and 200 ms. It is
useful to evaluate the signal conduction in the atriums and it could help to identify atrial blocks.

1.4 Heart Vector Estimation: It is computed from I and III (or I and aVF) leads, and it gives information about
blocks and hypertrophies.

1.5  Measurement  of  QT  Interval:  It  gives  information  about  depolarization  and  repolarization  processes  of
ventricles, and it is related to some abnormalities known as QT syndrome.

1.6 Width of QRS Complex: It represents the time in which ventricles depolarizate, and it is estimated between 80
ms and 120 ms. It is useful to evaluate troubles in the conduction system, as blocks.

1.7  ST  Segment:  Its  width  is  measured,  as  well  as  possible  elevation  or  depression.  It  is  related  to  ischemic
processes, infarcts and other special diseases, as the Brugada syndrome.

8. Special Features of P, Q, R, S and T Waves: Some morphologies are connected to different pathologies.

Note that the diagnose of ECG signals is out of the scope of the current work, so the previous comments are merely
orientative. Here we present a methodology for ECG analysis, focusing in the above 1, 2, 3, 5, 6 and 7 points.

2. MATERIALS AND METHODS

2.1. Curvature Filters

Before to proceed to explain the proposed method for ECG analysis, we introduce a new tool for signal analysis (to
the best of our knowledge), which we call “curvature filters”. We start by explaining the underlying idea.

The onset and offset  of ECG waves are characterized by a noticeable change in the slope of the signal at  these
points. Usually R waves climb up or fall dramatically, what weakens the influence of noise and makes easier the work
of locating them. However, in general these twists are not always easy to find, mainly because of the presence of noise.
It is worth to note that noise makes an appropriate slope measurement greatly difficult.

The onset and offset of the P and T waves (here denotated Pi, Pf, Ti and Tf, respectively), as well as the onset of the
Q wave (called  Qi)  and the  offset  of  the  S  wave,  i.e.,  the  J  point,  sometimes  are  hard  to  be  found.  Frequently,  the
amplitude of the P wave (or even the T wave) is scarcely greater than the noise intensity. Often, this is also the case of
Q and S waves, worsened by the fact of their much more short width. On the other hand, the T wave (and also the other
waves) could be preceded or followed by ascending/descending periods of non vanishing slope, thus not completely
isoelectric. These preceding periods are not quite different from the proper ascending/descending sides of the T wave.
All these circumstances could collude in making these fiducial points almost indistinguishable from regular noise.
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In order to be able to catch these twists, and taking into account the previously observed difficulty of measuring
slopes under noise, we propose a technique to estimate “local curvature” of the signal.

In order to achieve this goal, we proceed as follows. We look for local information, but we have to average in order
to avoid noise effects. On the other hand, the twists or slope changes we are looking for are linked in some sense to the
second derivative,  in  “Calculus  language”.  Thinking  about  Taylor  approximations,  this  is  nothing  but  approximate
locally a function with second order polynomials. This way of thinking is merely motivational, since we are dealing
with discrete signals.  Nevertheless,  we have found it  useful  in our simulations.  Anyway,  consequently,  we have to
discretize our approximations.

Fix a non negative integer n ≥ 3,  which  will play  the  role of  the  window  width.  The set  of integers  will be
 denoted  by , and the set of real numbers will be denoted by . We consider the basic quadratic polynomial p(x) =
3x2  on the interval [- n,  n] (the factor 3 is suitable for notation only), and we discretize it  by averaging on uniform
intervals of length two: For each integer k with 1 ≤ k ≤ n we compute:

Proposition 2.1 The scaling factors in the definition of curvature filters (6) are given by

(1)

Thus, we define

(2)

In order to make the curvature filter orthogonal to constant signals, we subtract the mean

(3)

Thus, we define for k with 1 ≤ k ≤ n

(4)

We also set . Now we get  from the above computations. One can also
check that

(5)

Note that  is integer for k=1,...,n. For the sake of simplicity, the n-th curvature filter is defined by

(6)

where the positive integer factor λn is chosen such that the set of integers  is mutually prime (the only
positive integer that divides both of them is one). That reduces the size of the filter entries, and does not impact on their
use, since any multiple of the curvature filter is equally useful as long as only one order n is used to measure local
curvature.

∫ −n+2k

−n+2(k−1)
p(x)dx = (2k−n)3− (2k−n−2)3 = 6n2 +12n−24nk+24k2−24k+8 .

pn,k =
1
4

∫ −n+2k

−n+2(k−1)
p(x)dx =

3
2

n2 +3n−6nk+6k2−6k+2 .

pn =
1
n

n

∑
ν=1

pn,ν =
1

4n

∫ n

−n
p(x)dx =

n2

2
.

 

fn,k = pn,k− pn = n2 +3n−6nk+6k2−6k+2 .

f̃n = ( f̃n,1, . . . , ˜fn,n) ∈ Rn
∑

n
ν=1 ˜fn,ν = 0

fn,k = 6
(

k− n+1
2

)2

− n2−1
2

(1≤ k ≤ n) .

f̃n,k

fn = ( fn,1, . . . , fn,n) = λ
−1
n f̃n ∈ Rn ,

{ fn,k}n
k=1

It turns out that the sequence of scaling factors  is easily computed:{λn}∞
n=3 ⊂ Z

RZ
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We postpone its proof until Appendix A, in order to avoid a disruption in the explanation. Explicit expressions for
the  curvature filters  can be  found  into this  proof,  and  examples of  the first  curvature  filters  can be  found  listed
in  Table 2 at Appendix B.

Table 2. First curvature filters for 3 < n < 25.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|| fn ||

2 6 4 14 84 84 168 2772 132 858 12012 2002 728 37128 5712 7752 23256 13566 17556 201894 7084 35420 394680 53820
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if n is even.

(7)

for any m,  such that 0 ≤ p ≤ 12 and n = 12m + p ≥ 3.

λ12m+p =


2 if p = 0,3,9.
4 if p = 6.
6 if p = 1,4,5,7,8,11.
12 if p = 2,10.

p ∈ Z

Each column lists the order n, the size , and the filter entries fn,k (for k = 1,...,n).

In virtue of identity (5) the filter entries are symmetric with respect to (n+1)/2. Consequently, the curvature filter is
also orthogonal to linear signals. It is worth to note that symmetry implies that only the half of filter entries fn,k need to
be computed.

Given a signal  its k-th curvature coefficient of order n is

(8)

if n is odd, and

(9)

s = {sν}ν∈Z ⊂ R, for any k ∈ Z

cn,k(s) =
(n−1)/2

∑
ν=−(n−1)/2

sk+ν fn,(n+1)/2+ν

cn,k(s) =
n/2

∑
ν=−n/2+1

sk+ν fn,n/2+ν

‖ fn‖2

Because of the above computations, the curvature filter fn is orthogonal to affine signals: for any  we haveλ ,µ ∈ R
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Next,  for  each  noisy  signal  sj  (with  j=1,...,Nt),  and  for  each  order  n  (with  n=3,...,2ws-1),  we  compute  the
corresponding normalized curvature coefficients. Note that we do that only for sample points such that the window is
completely included into the signal range, as we are dealing with a finite signal; that depends on the order n  of the

(10)

That means that the curvature coefficients are insensitive to the signal level and slope. This property is important,
since we want the curvature filters for measuring only slope changes, not the slope or the proper signal itself.

If  one wants  to use only curvature coefficients  of  the same order,  these definitions with integer  fn,k  are  enough.
However, if one wants to compare curvature features corresponding to different orders n, an appropriate normalization
is convenient.

We define the normalized curvature filter  by

(11)

Given a signal , for any  its k-th normalized curvature coefficient of order n is

(12)

Explicit expressions can be also easily found for the normalized curvature filters:

Theorem 2.2 For any n ≥ 3 the normalized curvature filter entries are given (for 1 ≤ k ≤ n) by

(13)

These formulae come from (4), (5), and the following result.

Proposition 2.3 For any integer n ≥ 3 one has

(14)

We postpone its proof until Appendix A, in order to avoid a disruption in the explanation.

2.1.1.. Choice of curvature filter orders

In order to obtain an accurate result in using curvature filters for wave onset and offset estimation, an appropriate
order n must be chosen on each case. In this section we argue about how to choose this optimal order. In order to do
that, we test the curvature filters on a test example designed for offset estimation. The picture for onsets is completely
similar because of symmetry.

We fix a time wave length wt,  in milliseconds, and a corresponding wave length ws,  in number of samples. The
estimated sampling frequency is then obtained by the formula Fs ~ 1000ws/wt, in Hertzs, where this quantity is rounded
to the closest integer. The base signal is composed by a semi ellipse of length ws samples and height h (in millivolts),
followed by ws zeroes. Consequently, the signal length is 2ws. The base signal is perturbed with random noise of a given
intensity hn (in millivolts), giving a set of Nt perturbed signals of length 2ws.

In  the  next  test  example  we use  the  following values:  wt=110 ms,  h=0.15 mV,  hn=0.01 mV,  and Nt=100 signals
(according to the P wave in the Table 1). The wave lengths used to test the curvature filters in this example go from
ws=3 samples up to ws=100 samples, by increments of 1 sample.

n

∑
ν=1

(λ ν +µ) fn,ν = 0 .

Fn = (Fn,1, . . . ,Fn,n) ∈ Rn

Fn =
1
‖ fn‖

fn =
1

(∑n
ν=1 | fn,ν |2)1/2 fn .

s = {sν}ν∈Z ⊂ R k ∈ Z

Cn,k(s) =
cn,k(s)
‖ fn‖

.

Fn,k =

√
5(n2 +3n−6nk+6k2−6k+2)

(n5−5n3 +4n)1/2 =

√
5
[
6
(
k− n+1

2

)2− n2−1
2

]
[(n−2)(n−1)n(n+1)(n+2)]1/2 .

‖ f̃n‖2 =
n

∑
ν=1
| f̃n,ν |2 =

n5−5n3 +4n
5

=
(n−2)(n−1)n(n+1)(n+2)

5
.
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curvature filter used. Then, we estimate the offset by selecting the greatest normalized curvature coefficient; thus, its
offset is defined as the corresponding sample point k=oj,n with greatest normalized curvature coefficient. Note that, as
we are looking for offsets for upward waves, we might select points with maximum convexity; i.e., greatest positive
curvature.

In Figs. (2 and 3) we show the resulting estimated offsets oj,n for j=1,...,Nt, and n=3,...,2ws-1, for the wave lengths
ws=15 samples  (corresponding  to  Fs=136 Hz)  and  ws=55 samples  (corresponding  to  Fs=500 Hz).  We consider  as  a
reference correct offset the sample point k=ws.

Fig. (2). Obtained offsets in the curvature filters order test for ws = 15.

Fig. (3). Obtained offsets in the curvature filters order test for ws = 55.

In  view  of  Figs.  (2  and  3)  and  the  rest  of  simulations,  several  comments  arise  about  the  curvature  filters
performance:

If the curvature filter order is too small, then the noise has a profound effect in the curvature coefficients. That
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is, low order curvature filters do not distinguish between signal twists and noise.
From certain large enough order, curvature filters are very proficient on the task of detecting the offset.
The  accuracy  of  the  measurement  slightly  deteriorates  as  the  order  increases.  On  average,  a  trend  to  shift
outwards the wave is detected.
The latter convergence for very high orders is spurious since is due to the finite character of the signal.

These remarks suggest that curvature filters could be an useful tool on detecting fiducial points in ECG signals,
provided that a suitable order is chosen for the specific task. We think this is valid also for features extraction in signal
processing, in general.

In order to measure quantitatively the curvature filters performance in the test example, we define the error as 

=  (ws being fixed), for any j=1,...,Nt, and n=3,...,2ws-1. Thus, for each order n we compute the mean error

(15)

Then,  the  mean  optimal  order  is  defined  as  the  (smallest)  order  n=nm  for  which   is  minimum
 In other words, the mean optimal order is the window size for which the greatest-

curvature-coefficient method (i.e.,  the previous one) for detecting the offset  is  more accurate,  on average.  Note we
avoid too large orders in this criteria.

Another important features which are also highly desirable, apart from accuracy, are fiability and robustness under
noise presence. In order to take into account these aspects, we also analyse the measurements error dispersion provided
by the greatest-curvature-coefficient method. Hence, we consider the error standard deviation

(16)

In  Figs.  (4  and  5)  we  see  that  the  magnitude  of  the  errors  dramatically  falls  off  after  the  initial  noise-sensitive
period,  as  expected  from the  above  remarks  based  on  Figs.  (2  and  3)  Coherently,  the  mean  error   and  the  error
standard deviation σn also have the same behavior. We define the standard deviation optimal order as the first order
n=nstd such that σn ≤ σn+1 and σn is lower than a reference value empirically set to 2. That is, we look for a small enough
local minimum of the standard deviation.

Fig. (4). Obtained errors, mean error and error standard deviation in the curvature filters order test for ws = 15.
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Fig. (5). Obtained errors, mean error and error standard deviation in the curvature filters order test for ws = 55.

As it has been remarked before, immediately after the initial noise-sensitive period the greatest-curvature-coefficient
method performs very well, providing a quite low mean error almost stagnant in a long period on n. The same could be
said for the standard deviation of the error.

As it is illustrated in Fig. (6), it often occurs that the mean optimal order unnecessarily increases to larger values.
Due to computational reasons, it is preferable to use low order filters as long as possible. Another factor to bear in mind
is that, generally, waves do not occur isolated in an ECG, but surrounded by other ones. Hence, too high orders are
undesirable since the presence of neighboring waves could cause interference.

Fig. (6). Obtained errors, mean error and error standard deviation in the curvature filters order test for ws = 57.

In order to avoid that, we recommend as a preferential choice the standard deviation optimal order nstd to be used in
the greatest-curvature-coefficient method.

In Fig. (7) we can see the optimal orders (mean optimal order nm and standard deviation optimal order nstd) for ws in
the proposed range (that is, wave lengths from ws=3 samples up to ws=100 samples, by increments of 1 sample).
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Fig. (7). Optimal (mean and standard deviation) orders obtained in the curvature filters order test.

In summary, in view of Fig. (8), we recommend to use a curvature filter order between the 15% and the 30% of the
wave  width  ws.  These  values  should  be  increased  for  very  low  sampling  frequencies,  as  the  resulting  from Holter
monitors. This quantity could be estimated a priori from the estimated wave length wt (in milliseconds, which could be
taken from references as in Table 1), and the signal sampling frequency Fs (in Hertz), which is assumed to be known, by
the formula.

(17)

Fig. (8). Quotients of optimal (mean and standard deviation) orders obtained in the curvature filters order test with respect to ws (in
percentages).

2.2. Description of Methodology

In this section we will describe our proposal of methodology for the analysis and features extraction of ECG signals.
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Suppose we have a non trivial ECG signal, denoted ecg0, of length L. That is, 
is a vector of L real components. We will denote by Fs the sample rate (sampling frequency) with which the ECG signal
was taken, measured in Hertzs (Hz).

2.2.1. Preprocessing

Generally, the ECG signal is assumed to be contaminated with several noise sources. This noise could be reduced
by using some filters which cut off different frequencies, but definitely cannot be completely avoided. Anyway, for this
reason  and  previous  to  the  feature  extraction  process,  a  preprocessing  is  necessary  to  be  applied  to  the  signal.
Consequently, the original signal suffers changes which add some uncertainty to the final results. This phenomena is
specially  remarkable  in  the  case  of  P  and  T  waves  onset  and  offset  location.  That  is  why  we  speak  about  feature
``estimation”, and not about ``measurement”.

First of all, the amplitude of the original signal is normalized to 1:

(18)

The  resulting  signal   has  amplitude  1.  Next,  the  direct  level  is  supressed,
obtaining a signal  given by

(19)

Obviously, one has mean(ecg2)=0.

After that, a high pass filter of type Butterworth of order 2 is applied to filter ecg2, with a cut frequency of 0.5 Hz,

to obtain a preprocessed signal . This step is always present in ECG professional
applications, in order to remove very low frequencies.

When applying this preprocessing to signals from the MIT database ([73]), which proceed from Holters, this last
step is very important and helps to improve the accuracy in subsequent estimations. On the other hand, when dealing
with signals from pattern generating devices, it is usually required an additional filtering of smoothing or averaging
type. In general, the required preprocessing highly depends on the measurement system features used to generate the
ECG signal, and could include the use of other filters, as interference supressing filters out of 60 Hz. For the signals we
have used in this work, this is not the case.

2.2.2. Rm Peaks Location and Heart Rate Analysis

QRS complex detection is considered a fundamental step in the analysis of ECG signals, because of measurement
and characterization of different associated parameters rely on the accuracy with which it is performed (see [19], [2]).
On  the  one  hand,  from  the  QRS  complex  cardiac  frequency  can  be  obtained,  and  subsequently  heart  rate  is  also
obtained. On the other hand, Rm peaks almost delimitate each heart beat (more clearly than other waves) in such a way
that estimation of the other fiducial points is more easily carried out from them.

In the recent decades many QRS complex detection methods have been reported in the literature (see [17], [18],
[19], [1], [2], [24], [4], and references therein), including derivatives approximation, digital filters, wavelets, adaptative
filters, neural networks, hidden Markov models or mathematical morphology, among other techniques.

In this work, we make use of the techniques developed in the literature [24]. Concretely, we select the preprocessed
signal energy maximum, choosing a threshold which is empirically set. An appropriate choice of these maximum allows
to obtain the heart rate (in beats per minute). Moreover, we describe two different methods to locate the Rm peaks in the
original  signal  (in  number  of  samples):  one  can  simply  extract  the  maximum peaks,  or  one  can  perform a  crossed
correlation between the filtered signal and the original signal (normalized and prefiltered).

We start with the preprocessed signal ecg3. Previous to energy processes, we filter it by using a band pass filter, in
the band 10-25 Hz or 15-20 Hz, obtaining a filtered signal . This step is mandatory

0 6= ecg0 = (ecg0,1, . . . ,ecg0,L)∈RL

6

ecg1 =
1

max1≤k≤L |ecg0,k|
ecg0 .

ecg2 = ecg1−mean(ecg1) = ecg1− 1
L

L

∑
k=1

ecg1,k .

6

ecg1 = (ecg1,1, . . . ,ecg1,L) ∈ RL

ecg2 = (ecg2,1, . . . ,ecg2,L) ∈ R

ecg3 = (ecg3,1, . . . ,ecg3,L) ∈ RL

ecg4 = (ecg4,1, . . . ,ecg4,L) ∈ RL
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in order to remove artifacts, interferences, and the influence of P and T waves. Note that in this moment we are only
interested in detecting Rm peaks (Fig. 9).

Fig. (9). Example of Rm peaks location by using the correlation technique.

Next, we consider the energy signal E4 given by E4 = . The energy threshold Eth is
empirically set to the value

(20)

Then,  the  energy  maximum are  extracted  with  the  constraint  E4  >  Eth.  In  the  MATLAB code,  the  energy  peak
extraction is performed by using the implemented built-in function findpeaks ([74]). The resulting energy peaks have to
be sifted out, since they usually appear pairs of ``peaks” which are unnaturally quite close (presumably corresponding
to the same R wave,  due to  the  noise  and filtering processes).  These related peaks have to  be removed,  since they
produce non physiological values for the cardiac frequency.

Each energy peak corresponds to an Rm  peak,  but the last  ones need to be located,  since the band pass filtering
provokes a constant gap between the two signals, which shifts the peaks in time.

What we do is to compute the cross-correlation and finding the correlation coefficient between the energy E4 of the

filtered signal and the energy E3 (given by  of the original preprocessed signal.
Then, the shift is the difference between the signal length L and the lag corresponding to the correlation coefficient Kcr,
the maximum of the cross correlation. In that way, we are able to locate the Rm peaks in the original preprocessed signal
ecg3. In the code, the cross-correlation analysis is performed by using the MATLAB built-in function xcorr ([74]).

Once the Rm peaks of ecg3 are located, the RR intervals are known. The widths of RR intervals, or distance between
consecutive Rm peaks, allow to compute the approximated cardiac frequency: if LRR is the width of a given RR interval
(in number of samples), and HR is the heart rate (measured in beats per minute bpm), then

(21)

2.2.3. QRS Complex Location

In  order  to  describe  the  QRS  complex,  we  have  to  locate  the  Qi,  Qm,  Sm  and  J  points  of  each  cycle.  Here,  for
exposition purposes, we consider the Rm point as the maximum of the R wave, and the Qm and Sm points are understood
as the minimum of the Q and S waves, respectively. In addition, Qi is the starting point of the Q wave and the end of the
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exposition purposes, we consider the Rm point as the maximum of the R wave, and the Qm and Sm points are understood
as the minimum of the Q and S waves, respectively. In addition, Qi is the starting point of the Q wave and the end of the
PQ segment, and J is the ending point of the S wave and the start of the ST segment.

For this task, we proceed by using a modified slope analysis method with restrictions, starting from a peak. This
algorithm is inspired by Chapter 9 of [2]. The basic idea is to descend/ascend from a maximum/minimum, respectively,
until a change in the sign of the slope is found. On a given sample point k (with 1 ≤ k < L), the slope of the signal ecg3
is defined by

(22)

This method is justified because of in the pronounced ascents and falls of the signal, the influence of the noise is
quite lower than in the isolectric segments.

In this analysis we remove the first and final cycles, since they could be incomplete or distorted because of the
original signal capture process. Then, consider the original preprocessed signal ecg3, and fix some Rm peak (not the
first, not the last one).

On the one hand, we move backward from the Rm peak until we find the first local minimum; that is, until we find a
point k whose left neighbor has nonpositive slope sk-1 ≤ 0. This point is defined as the Qm point of this cycle. From this
point,  we  continue  backward  looking  for  the  first  local  maximum;  that  is,  a  point  k  such  that  its  left  neighbor  has
nonnegative slope This point is defined as the sk-1 ≥ 0. This point is defined as the Qi point of this cycle.

On the other hand, we proceed analogously to the right. From the Rm peak, we move forward until we find the first
local minimum; that is, until we find a point k with nonnegative slope sk ≥ 0. This point is defined as the sm point of this
cycle. From this point, we continue forward looking for the first local maximum; that is, a point k with nonpositive
slope sk ≤ 0. This point is defined as the J point of this cycle.

In practice, this method needs to be complemented with different criteria about how far the search should go, related
to the estimated length of the Q and S waves. This is because of, depending on the presence or absence of Q and S
waves in the ECG signal, the pure slope analysis algorithm could produce fiducial points far away from the Rm peak,
which would be unnatural. On the other hand, the greatest/smallest-curvature-coefficient method could assist the slope
analysis method, as in the following subsection is illustrated, specially in the case of the Qi and J points. However, the
short width of these waves forces to use a quite small order, which could be imprecise, specially for signals with very
low sampling frequency.

2.2.4. Estimation of Remaining Fiducial Points

At this point, what remains is to estimate the fiducial points in P and T waves. We proceed by using a modified
slope analysis method [2], as before, combined with the use of curvature filters.

First of all, we find the Pm and Tm peaks. Without loss of generality, we assume we deal with upward P and T waves.
The case of downward waves is completely analogous, and an algorithm to distinguish between upward and downward
cases is easy to implement by computing maximum and minimum and comparing them (Qi and J points could be taken
as isoelectric reference level for the comparison, respectively).

Hence, from the Rm peak, we look for a global maximum in a preestablished backward/forward range of samples of
the signal, respectively. This range could be estimated from the reference values for the PQ and QT intervals (Table 1),
the sampling frequency and the previously estimated fiducial points. Thus, the left maximum corresponds to Pm, and the
right one corresponds to Tm.

From each one of these points, we descend in order to find the corresponding onset and offset points. The idea is to
scan the surrounding signal looking for suitable candidates by using the slope analysis algorithm, and then selecting the
best choice with the aid of the curvature filters. The process is as follows.

We  start  from  the  Pm  point  (the  process  for  the  T  wave  is  completely  analogous).  On  the  one  hand,  we  move
backward inside a preestablished range looking for local minimum: Points k  whose left neighbors have nonpositive
slope sk-1 ≤ 0. At each step, we store them as candidates. When the Range is exhausted, we select the winner by the
greatest-curvature-coefficient method: We compute the curvature coefficients of the candidates, and the sample with

sk = ecg3,k+1− ecg3,k .
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greatest  one among them is  designated as  the Pi  point  of  the cycle.  On the other  hand,  from the Pm  peak we move
forward inside a preestablished range (never farther than the corresponding Qi point) looking for local minimum: points
k with nonnegative slope sk ≥ 0. They are the candidates, and the Pf is selected among them by the greatest-curvature-
coefficient method.

Note  that  a  stopping  criteria  is  necessary  in  this  algorithm.  As  before,  the  ranges  could  be  estimated  from  the
reference values for the PQ and QT intervals (Table 1), the sampling frequency and the previously estimated fiducial
points. Also, it could happen that candidates which are quite close to the Pm/Tm peaks, respectively, might have to be
removed, as at the top of the P and T waves they could exist points with high curvature coefficients, specially in cases
of nonstandard morphologies. Consequently, a starting criteria could be also necessary. On the other hand, suitable
curvature filters orders for the P and T waves need to be chosen for a well performance of the algorithm (subsection
2.1.1.).

3. RESULTS

Next we show some examples of application of this methodology. For QRS complex detection, the modified slope
analysis method was used, aided by range criteria based on estimated wave widths. For P and T waves estimation, a
combined  slope  analysis  and  curvature  filters  method  was  used,  aided  with  an  starting/stopping  criteria  based  on
estimated wave widths (Table 1). In the simulations presented here, the used curvature filters orders were n=3 for the
QRS complex, and n=5 for the P and T waves, in the case of Fs=128 Hz, and n=9,11,13 for the QRS complex, P and T
waves, respectively, in the case of Fs=500 Hz (Fig. 7). Odd orders are prefered because of they center the fiducial point
in a better way.

The first ECG signal is cs403, generated by a Cardiosim II device [75] by using the pattern 03, a reference pattern of
a normal ECG. The second one is a synthetic ECG signal made by the authors, simulating also a normal sinus rhythm
but without noise. Both have a heart rate of HR=60 bpm and a sampling frequency of Fs=500 Hz (Fig. 10).

Fig. (10). Testing ECG signals.

As can be observed in Fig. (11), the signal slope, defined by (22), gives information about the increase of the ECG
signal. However, in Figs. (12) it is clear that noise deeply affects to the signal slope. In that context, curvature filters
help to avoid noise in order to find the fiducial points, since they regularize the signal. This effect is due to the fact that
the curvature coefficients are weighted averages of the signal.
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Fig. (11). Cycle of the synthetic signal, with estimated fiducial points.

Fig. (12). Cycle of cs403 signal, with estimated fiducial points.

The third example is a piece of 8 cycles of nrsdb_16272, a real ECG signal from the normal sinus rhythm data base
from the PhysioBank (MIT database [73]), reported with sampling frequency Fs=128 Hz and nominal HR=60 bpm. In
Fig. (13) a cycle of this signal is shown, with estimated fiducial points.

0

0.2

0.4

0.6

0.8

1

1.2

Pi Pm Pf QiQm Rm Sm J Ti Tm Tf

S
ig

n
a
l

ecg4000_cs03: cycle 4, signal and fiducial points

-0.2

-0.15

-0.1

-0.05

0

0.05

2250 2300 2350 2400 2450 2500

S
lo

p
e

Sample number

ecg4000_cs03: cycle 4, slope signal

-0.2

0

0.2

0.4

0.6

0.8

1

Pi Pm PfQiQm Rm Sm J Ti Tm Tf

S
ig

n
a
l

ecg_synthetic: cycle 1, signal and fiducial points

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

500 550 600 650 700 750 800 850

S
lo

p
e

Sample number

ecg_synthetic: cycle 1, slope signal



Detection and Estimation Methodology The Open Bioinformatics Journal, 2018, Volume 11   223

Fig. (13). Cycle of nrsdb 16272 signal, with estimated fiducial points.

All measurements have been taken with a level of noise, measured in the isoelectric segment which follows the P
waveform, between Pf and Qi, lower than 1.33 x 10-4mV2/Ω (a power of around 100 pW). This is equivalent to a signal
contaminated with a maximum random noise of 0.01 mV in amplitude before the operation of prefiltering. That justifies
the choice hn at subsection 2.1.1.

From the standpoint of signal to noise ratio S/N, a good performance criterion is obtained with S/N ≥ 20dB, figure of
merit kept also in the measurements above [23, 76, 77]. In all cases the power was estimated through the var function of
Matlab which gives the signal variance [74].

4. DISCUSSION

Here  we  have  presented  a  methodology  for  estimating  the  fiducial  points  of  an  ECG  signal.  Other  features  or
measurements of interest, as widths of intervals and segments, wave heights, cardiac frequency, heart rate analysis can
be computed from the located fiducial points.

One of the novelties of this work is the global strategy: first we localize the R, P and T waves peaks, and then we
move backward/forward to the onset/offset, respectively. In this way, we are able to reduce the impact the noise has in
the location process.

Also, another significant innovation is the introduction of the curvature filters. We think this concept will prove to
be an useful tool in signal processing, not only in ECG analysis.

Moreover, it  is worth to note that the combination of the greatest/smallest-curvature-coefficient method and the
slope analysis method is significantly more effective than each of them separately: The first one adds accuracy and
robustness to the second one, and the last one adds efficiency to the first one, as it reduces much more the number of
curvature coefficients to be computed. Note that the signal slope is computationally cheaper than curvature coefficients.

It is worth to note that our method is specially designed to be applied to ECG signals corresponding to a normal
sinus rhythm. However, we expect that the philosophy under the method, and specifically the curvature filters as a tool,
will be useful in analyzing ECG signals corresponding to heart disorders which can significantly change the rhythm of
the heart beat.

-0.5

0

0.5

1

1.5

Pi Pm PfQiQm Rm Sm J Ti Tm Tf

S
ig

n
a
l

nrsdb_272: cycle 6, signal and fiducial points

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

800 810 820 830 840 850 860 870

S
lo

p
e

Sample number

nrsdb_272: cycle 6, slope signal



224   The Open Bioinformatics Journal, 2018, Volume 11 Yáñez de la Rivera et al.

CONCLUSION

In the present work we propose a methodology for estimating the fiducial points of an ECG signal, partly based on
an introduced tool for signal processing, the curvature filters. This task is expected to be continued in subsequent works.
Concretely, one of our main research lines is continue to exploting the curvature filters and related tools potential for
ECG analysis.
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APPENDIX A

Proofs
In this section we provide proofs for Proposition 2.1 and Proposition 2.3.

Proof of Proposition 2.1: we recall that the values for the scaling factors in the definition of curvature filters (6) are
provided in (7). The argument is a combination of ideas from Elementary Arithmetic, and goes as follows: for any p,

from equation (4) we obtain an expression for f12m+p,k by factorizing  for k=1,...,12m+p,

and we make sure that  are integers.

Next, we prove that they are mutually prime. If some integer is a common divisor of the filter entries, then has to
divide any difference of them. Particularly we compute the difference of two consecutive central entries, around the
index value (n+1)/2, because of they are the mutually closest ones. By using this fact we reduce the list of candidates so
much. From this, it is straightforward to check there is no common divisors different from +1 or -1.

Details are shown up next for every case:

● p=0: we have λ12m = 2 and for k=1,...,12m

(23)

f̃12m+p,k = λ12m+p f12m+p,k

{ f12m+p,k}12m+p
k=1

f12m,k = 2
(

36m2 +9m−18mk+
3k (k−1)

2

)
+1 = 3

(
24m2 +6m−12mk+ k2− k

)
+1 .
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Since f12m,6m+2-f12m,6m+1 = 6, the common divisors divide 6. But 2 nor 3 divide no f12m,k. Note that k(k-1) is even for any
integer k.

● p+1: we have λ12m+1 = 6 and for k=1,...,12m+1

(24)

Since f12m+1,6m+2-f12m+1,6m+1 = 3, the common divisors divide 3. If 3 divides m, then it is easily seen that 3 does not divide
f12m+1,2, and if 3 does not divide m, one can easily check that 3 does not divide f12m+1,1.

● p=2: we have λ12m+2 = 12 and for k=1,...,12m+2

(25)

Note that k(k-3) is even for any integer k. Since f12m+2,6m-f12m+2,6m+1 = 1, we have finished.

● p=3: we have λ12m+3 = 2 and for k=1,...,12m+3

(26)

Since f12m+3,6m+1-f12m+3,6m+2 = 3, the common divisors divide 3, but 3 divide no f12m+3,k.

● p=4: we have λ12m+4 = 6 and for k=1,...,12m+4

(27)

Since f12m+4,6m+1-f12m+4,6m+2 = 1, we have finished.

● p=5: we have λ12m+5 = 6 and for k=1,...,12m+5

(28)

Since f12m+5,6m+2-f12m+5,6m+3 = 1, we have finished.

● p=6: we have λ12m+6 = 4 and for k=1,...,12m+6

(29)

Since f12m+6,6m+2-f12m+6,6m+3 = 3, the common divisors divide 3, but 3 divide no f12m+6,k. Note that k(k-7) is even for any
integer k.

● p=7: we have λ12m+7 = 6 and for k=1,...,12m+7

(30)

Since f12m+7,6m+3-f12m+7,6m+4 = 1, we have finished.

● p=8: we have λ12m+8 = 6 and for k=1,...,12m+8

(31)

Since f12m+8,6m+3-f12m+8,6m+4 = 2, the common divisors divide 2, but f12m+8,2 is odd.

● p=9: we have λ12m+9 = 2 and for k=1,...,12m+9

f12m+1,k = 3
(

8m2−4mk+
10m+ k2−2k+1

3

)
.

f12m+2,k = 12m2 +7m−6mk+
k (k−3)

2
+1 .

f12m+3,k = 3
(
24m2 +18m−12mk+ k2−4k

)
+10 .

f12m+4,k = 24m2 +22m−12mk+ k2−5k+5 .

f12m+5,k = 24m2 +26m−12mk+ k2−6k+7 .

f12m+6,k = 3
(

12m2 +15m−6mk+
k (k−7)

2

)
+14 .

f12m+7,k = 24m2 +34m−12mk+ k2−8k+12 .

f12m+8,k = 2
(
12m2 +19m−6mk

)
+ k2−9k+15 ,
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Since f12m+9,6m+4-f12m+9,6m+5 = 3, the common divisors divide 3, but 3 divide no f12m+9,k.

● p=10: we have λ12m+10 = 12 and for k=1,...,12m+10

Note that k(k-11) is even for any integer k. Since f12m+10,6m+4-f12m+10,6m+5 = 1, we have finished.

● p=11: we have λ12m+11 = 6 and for k=1,...,12m+11

Since f12m+11,6m+5-f12m+11,6m+6 = 1, we have finished.

Proof of Proposition 2.3: from (5) we have

Now we compute these two sums separately. On the one hand,

In order to compute the other sum, we split in two cases. We will make use of the well known Faulhaber formulas:
for any positive integer N, one has

If n is odd, then there exists a positive integer m such that n=2m-1. Then

On the other hand, if n is even, then there exists a positive integer m such that n=2m. Then

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

f12m+9,k = 3
(
24m2 +42m−12mk+ k2−10k

)
+55 .

f12m+10,k = 12m2 +23m−6mk+
k (k−11)

2
+11 .

f12m+11,k = 24m2 +50m−12mk+ k2−12k+26 .

n

∑
ν=1
| f̃n,ν |2 =

n

∑
ν=1

∣∣∣∣∣6
(

ν− n+1
2

)2

− n2−1
2

∣∣∣∣∣
2

=

= 36
n

∑
ν=1

(
ν− n+1

2

)4

−6(n2−1)
n

∑
ν=1

(
ν− n+1

2

)2

+
1
4

n(n2−1)2 .

n

∑
ν=1

(
ν− n+1

2

)2

=

(
1
6

n

∑
ν=1

f̃n,ν

)
+

n(n2−1)
12

=
n(n2−1)

12
.

N

∑
j=1

j =
N2 +N

2
,

N

∑
j=1

j2 =
2N3 +3N2 +N

6
,

N

∑
j=1

j3 =
N4 +2N3 +N2

4
, and

N

∑
j=1

j4 =
6N5 +15N4 +10N3−N

30
.

n

∑
ν=1

(
ν− n+1

2

)4

=
2m−1

∑
ν=1

(ν−m)4 = 2
m−1

∑
ν=1

ν
4 =

=
1
80

n5− 1
24

n3 +
7

240
n =

3n5−10n3 +7n
240

.
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Note that in both cases we obtain the same expression.

Finally, we have
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