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Abstract: Positron emission tomography (PET) using [
18

F]fluorodeoxyglucose (FDG) is a useful modality to examine 

many kinds of tumors, including primary bone tumors. Malignant bone tumors show higher FDG accumulation than 

benign tumors and earlier reports mention that FDG-PET can differentiate malignancy from benignancy; however, some 

benign bone tumors present with high FDG accumulation, which increases false positive rates in FDG-PET. FDG 

accumulation reflects glucose metabolism and thereby FDG-PET can be used for staging malignant bone tumors, which 

require a large amount of glucose. Combined with conventional studies, such as magnetic resonance imaging (MRI) and 

scintigraphy, FDG-PET can more accurately decide the staging. Finally, FDG-PET is also applied to evaluate the 

chemotherapy response of malignant bone tumors and is expected to predict a patient’s prognosis and to help to decide 

appropriate chemotherapy agents. 
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INTRODUCTION 

 Positron emission tomography (PET) using glucose 
analog [

18
F]fluorodeoxyglucose (FDG) as a tracer has been 

widely used in clinical oncology. Intravenously injected 
FDG is first transported into cells by glucose transporters 
and then phosphorylated into FDG-6-phosphate by hexo-
kinase in the same way as glucose is phosphorylated into 
glucose-6-phosphate. While glucose-6-phosphate is further 
catalyzed in a normal glucose metabolic pathway, FDG-6-
phosphate is not transformed by phosphoglucose isomerase 
and therefore remains trapped in cells [1]. The accumulated 
18

F-FDG-6-phosphate reflects glucose uptake and metabo-
lism in the cells. Detecting photons generated via beta decay 
of 

18
F, PET can show the distribution of glucose metabolism 

in a human body [2]. Accumulation of FDG is generally 
quantified by the standardized uptake value (SUV). Quanti-
fication of glucose metabolism by FDG-PET has enabled 
physicians to differentiate malignancy from benignancy, 
identify the primary site of carcinoma of unknown origin, 
decide stages of malignant tumors, and evaluate chemo-
therapy responses in various cancers. Recently, Medicare-
reimbursable oncologic FDG-PET applications as initial and 
subsequent treatment strategies are increasing [3]. In the 
current article, we review the usefulness of FDG-PET to 
diagnose and evaluate primary bone tumors. 

DIFFERENTIATION OF MALIGNANT FROM 
BENIGN BONE TUMORS 

 Computed tomography (CT) and magnetic resonance 
imaging (MRI) have contributed to visualize tumor location, 
tumor extent and the internal structures of tumors; however,  
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these modalities cannot assess tumor activity and metabo-
lism, which are crucial to differentiate malignancy from 
benignancy and to plan the first operative procedures. Since 
Warburg reported in 1956 that a cell line that had produced 
sarcoma in C3H/He mice showed higher glucose metabolism 
than a cell line that had not [4], malignant tumors, such as 
hepatoma [5, 6], leukemia [7], colon cancer, melanoma, 
carcinoma of the urinary bladder [6], and so on, have been 
known to show high glucose metabolism. Some authors have 
reported higher glucose uptake in malignant musculoskeletal 
tumors than in benign tumors, and tried to differentiate 
malignant from benign tumors using an SUV cut-off of 1.9–
3.9. Earlier reports indicate the excellent ability of 

18
F-FDG-

PET to differentiate malignant from benign musculoskeletal 
tumors [8-10] and compression fractures [11]. Recently, 
however, several authors, including us, have revealed benign 
tumors with a high SUV, causing a high false-positive rate in 
trials to differentiate malignancy from benignancy with 
FDG-PET [12, 13]. In our two studies with a SUV cut-off of 
1.9, the sensitivity of FDG-PET to correctly diagnose malig-
nancy was 72.7% and 84.6%, with a specificity of 66.0% and 
80.0% and an accuracy of 68.0% and 81.8%, respectively 
[14, 15]. To overcome the relatively high false-positive rate 
in the FDG-PET study, other tracers, such as L-[3-

18
F]- -

methyltyrosine and [
11

C]-choline, have been used and 
reported to be useful for differentiating malignancy from 
benignancy [14, 15]. Table 1 shows procedures reported to 
be useful for differentiating malignancy from benignancy 
[16-19]. Benign bone tumors with high SUV by FDG-PET 
are giant cell tumor, chondroblastoma, Langerhans cell 
histiocytosis, fibrous dysplasia and osteoid osteoma, a few of 
which have been included in earlier reports. Among these, 
fibrous dysplasias have a wide range of SUV from below the 
cut-off level to a high level, as shown by malignant tumors 
[12]. It remains unclear why some benign bone tumors show 
high glucose uptake; however, it may be noteworthy that 
most of the above benign tumors are giant cells or osteo-
clasts, which are speculated to originate from macrophages 
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[20]. Kubota et al. reported that FDG was highly 
accumulated not only in tumors but also in macrophages and 
granulation tissues surrounding the tumors [21], which might 
explain why some benign tumors present with a high SUV 
by FDG-PET.  

GRADING AND STAGING OF MALIGNANT BONE 

TUMORS BY FDG-PET 

 The propensity of FDG to accumulate in high metabolic 
areas has compelled clinicians to apply FDG-PET to tumor 

grading. Several authors have reported that FDG uptake 
increased in parallel with the tumor grade in chondro-
sarcomas, although this could not be a substitute for histo-
pathological assessment due to the wide range and overlap of 
SUVs in each grade [22-24]. Folpe et al. examined the 
relationship between FDG-PET SUVs and histopathological 
findings using the grading system by Unni and Dahlin with a 
modification [25] and the National Cancer Institute grading 
system [26] for bone tumors and soft tissue tumors, 
respectively. A significant difference was revealed between 
grade I bone and soft tissue sarcomas and grade II and III 

Table 1. Reports on Procedures Differentiating Malignancy from Benignancy 

 

Procedures Authors Year Materials Sensitivity Specificity 

FDG-PET Yanagawa et al. 2003 33 bone and soft tissue tumors 84.6% 80.6% 

FDG-PET Watanabe et al. 2000 75 bone and soft tissue tumors 72.7% 66.0% 

Choline-PET Yanagawa et al. 2003 33 bone and soft tissue tumors 92.3% 90.0% 

FAMT-PET Watanabe et al. 2000 75 bone and soft tissue tumors 72.7% 84.9% 

Dynamic contrast-enhanced MR 
imaging 

Kawakami et al. 2007 175 bone tumors 77% 78% 

Dynamic contrast-enhanced MR 
imaging 

Van der Wounde HJ, 
et al. 

1998 49 bone tumors 63-76% 50-76% 

1H MR spectroscopy Wang CK, et al. 2004 36 bone and soft tissue tumors 95% 82% 

99mTc-MIBI scintigraphy Pinkas et al. 2001 84 bone and soft tissue tumors 81% 87% 

 

A  B  

Fig. (1). (A) A 16-year-old patient with osteosarcoma in his lower leg. FDG-PET screening detected metastasis to the lesser trochanter of his 

femur one year after treatment. (B) Plain X-ray film did not show any lesions in the lesser trochanter at screening. 
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SUV by FDG-PET, although there was little difference 
between benign tumors and grade I sarcomas [27]. They also 
reported that high SUV was related with hypercellularity, 
high mitotic activity, the MIB labeling index, and p53 
overexpression. 

 As for tumor staging, a prospective multicenter trial 
revealed that FDG-PET was superior to conventional 
imaging modalities, including ultrasound CT, MRI and bone 
scintigraphy, to detect lymph node involvement and bone 
manifestation in pediatric sarcoma patients, although CT 
could depict lung metastases more reliably [28]. Meanwhile, 
FDG-PET had the same sensitivity as MRI in assessing bone 
involvement in multiple myeloma, although is superior to 
whole-body X-ray [29]. Franzius et al. reported that FDG-
PET was more sensitive than bone scintigraphy in the 
detection of osseous metastases from Ewing’s sarcoma, 
although less sensitive in the detection of metastases from 
osteosarcoma [30].  

 Fig. (1A) is a patient with osteosarcoma of the right 
lower leg. Metastasis to the left lesser trochanter of his femur 
was found by FDG-PET screening one year after 
chemotherapy. He had no pain at screening and an X-ray 
examination did not show any changes in his femur (Fig. 
1B). MRI after FDG-PET revealed a lesion invading the 
cancerous bone area, not the cortical bone area or the 
surrounding soft tissues, which explained why a plain X-ray 
film could not detect the lesion. In this case, FDG-PET 
seems to be superior to other examinations to screen a whole 
body and detect metastases. Tateishi et al. described that the 
accuracy of staging bone sarcoma according to the TNM 
classification of the International Union against Cancer is 
improved by combining conventional imaging, including 
MRI, chest radiography, CT, and bone scintigraphy with 
PET/CT [31].  

EVALUATION OF THERAPY RESPONSES IN 
MALIGNANT BONE TUMORS 

 Evaluating responses to chemotherapy is very important 
in the treatment of osteogenic sarcoma because the degree of 
necrosis by chemotherapy is one of the most important 
prognostic factors [32-34], and a poor response to 
chemotherapy increases the local failure rate after limb 
salvage operations [35]. MRI is a good modality to detect 
tumor necrosis, although its ability to predict chemotherapy 
responses has a limitation [36]. Schulte et al. showed that a 
decreased ratio of post- and pre-therapeutic tumor-to-
background in FDG-PET correlated with the amount of 
tumor necrosis by chemotherapy and FDG-PET could 
discriminate therapy responders from non-responders in all 
27 but 2 patients with a tumor-to-background cut-off level of 
0.6 [37]. Hawkins et al. reported that an SUV less than 2.5 
after chemotherapy was predictive of progression-free 
survival in Ewing’s sarcoma family of tumors [38]. 
Recently, we retrospectively examined FDG-PET data for 
patients with osteosarcoma treated with chemotherapy in our 
hospital and revealed that the SUV after chemotherapy, not 
before, could provide prognostic information about patients 
[39]. Interestingly, immunohistochemical analysis revealed 
that the expression of autocrine motility factor, which is 
identical to phosphoglucose isomerase and stimulates tumor 

cell motility and metastasis [40], significantly correlated 
with SUVs after chemotherapy. Jones et al. also described 
that FDG accumulation in soft tissue and musculoskeletal 
sarcomas decreased after neoadjuvant therapies, although 
complete absence of FDG uptake could not be achieved. 
They speculated that the remaining FDG uptake seems to 
correspond with a pseudocapsule or infiltrating granulation 
tissues and fibrosis [41]. Fig. (2) shows a patient with 
osteosarcoma in his left tibia treated with chemotherapy and 
a subsequent operation. FDG-PET showed that the 
maximum SUV was 6.94 pre-treatment (A) and 3.74 post-
chemotherapy (B), suggesting a moderate response to 
chemotherapy, although persistent FDG uptake was 
confirmed. Pathological findings of the tumor removed after 
pre-surgery chemotherapy revealed more than 90% necrosis 
and little remaining tumor tissue.  

 

 A B 

Fig. (2). A 13-year-old patient with osteosarcoma in his left tibia 

treated with chemotherapy. FDG-PET showed strong accumulation 

of FDG with 6.94 SUV pre-treatment (A) and decreased FDG post-

chemotherapy (B) with 3.74 SUV. Histopathological findings 

revealed more than 90% of necrosis in the lesion. 

 In conclusion, when differentiating malignancy from 
benignancy, physicians have to keep in mind that some 
benign bone tumors show high glucose uptake, resulting in 
high accumulation of FDG. To accurately evaluate bone 
tumor metastases and dissemination, not only FDG-PET but 
also other available imaging studies should be used. At 
present, it can be said that if FDG-PET detects new 
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metastatic lesions or SUV does not decrease after 
chemotherapy, the treatment needs to be reconsidered, while 
with only FDG-PET, it remains difficult to precisely predict 
the rate of necrotic lesions in the treated tumor. 

ABBREVIATIONS 

CT = Computed tomography 

FDG = Fluorodeoxyglucose 

MRI = Magnetic resonance imaging 

PET = Positron emission tomography 

SUV = Standardized uptake value 
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