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Abstract: Participants judged the perceived center of three-dot displays at different orientations. In Experiment 1, the dots 

formed an equilateral triangle. The direction of the response distribution aligned with the largest dot, along axes of reflec-

tional symmetry and with the gravitational down. In Experiment 2, we created isosceles triangles where the distance be-

tween one of the dot pairs was varied. Errors were higher for configurations where the symmetry axis was horizontal and 

a virtual elongation axis was vertical. The results of Experiment 3 replicate this finding and show that response direction 

is an accommodation to gravity and other shape factors. 
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INTRODUCTION 

 The perceived center of an object is the point about 
which the bulk of the object is seen as balanced or distrib-
uted. Mathematically, there are many different ways to com-
pute such a center. For two-dimensional shapes made up of 
lines, several mathematical centers can be computed corre-
sponding to the barycenter of the vertices, contour, and area 
[1]. In these figures, the center of gravity or centroid is a 
geometric center calculated as the mean position of all its 
points or parts. It can be determined by averaging across the 
object’s x- and y-coordinates [2]. A centroid is thus the loca-
tion for which the sum of all distances to each point in the 
figure is minimal. If the points on the object have equal mass 
then the term center of mass can be used. 

 Estimation of a perceptual center serves several func-
tions. It can be used for grasping and manipulation of ob-
jects. Participants will grasp wooden planar shapes using 
tongs at their center of mass [3]. A perceptual center can be 
calculated as a compact way of representing the location of 
an object. It could be used to center the origin of a reference 
frame on a shape [4]. The reference frame could then be used 
to describe the shape, enabling pattern recognition. 

 Most center of mass estimation studies have looked at 
either large single objects or the cloud-like distribution of 
multiple small objects. In this study, we investigate the in-
termediate domain of multiple large objects. These stimuli 
are useful to study for several reasons. They can be manipu-
lated to clarify the influence that size ratio plays in biasing 
center estimation because the relative size of the dots is eas-
ily altered. The number, length, and orientation of symmetry 
and elongation axes in these stimuli are also easily manipu-
lated allowing for the further investigation of these factors. 
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 Center estimation for these types of patterns is useful in a 
number of real world situations. It is needed when balancing 
objects on a surface. Imagine for example a serving tray with 
three drinks located at different points, each with varying 
amounts of liquid. Visual estimation of the center of mass, 
independent of haptic feedback, would specify where to 
place one’s hand underneath the tray so that it balances. 

 There are also some single objects with separated mass 
distributions, such as a dumbbell, that approximate the dis-
tribution of two or more distinct objects. The center of mass 
can be used for grasping and manipulation of these objects. 

 The visual system may additionally use the center of 
mass to denote the location of a group of objects. Tracking 
group location is helpful in several situations. It could be 
used, for example, to identify the location of one or more 
subgroups of people embedded in a larger crowd. 

 A number of different variables have been found to influ-
ence judgment of a perceptual center. The most important of 
these is symmetry. In one study participants estimated the 
center of amoeboid, oval, equilateral triangle, square and 
circle shapes [5]. Variability decreased with an increase in 
the number of symmetry axes. This result has been replicated 
using polygonal shapes [6]. Accuracy increased with the 
number of reflectional symmetry axes. This study found that 
ability to locate the center was good for shapes possessing 
only rotational symmetry. It was concluded that rotational 
symmetry alone appears to be sufficient for accurate center 
identification, although if reflectional symmetry is present, it 
will be used. 

 Another study varied the number of reflective axes and 
rotational symmetries in single shapes [7]. There was in-
creased accuracy with an increase in the amount of rotational 
symmetry. When shapes had reflective symmetry, errors 
were reduced perpendicular to the symmetry axis. When 
shapes had rotational symmetry, random error in different 
directions was reduced. The direction of maximum variabil-
ity in compact two-dimensional shapes has been found to 
align with the axis of symmetry for shapes having only one 
symmetry axis [8]. 
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 A second factor affecting perceptual center estimation is 
elongation. The distribution of center responses for contour 
quadrangles is along the main axis of orientation [2]. When 
these distributions were very elongated, they closely ap-
proximated the major orientation axis of the shape. In addi-
tion, there has been an increase in center estimation error 
with an increase in axis length [3]. 

 Elongation is an example of a shape property that carries 
information about orientation. There are other such cues. For 
example, in some triangles there is a wide base that tapers 
toward an apex. Independent of the triangle’s actual orienta-
tion, this information can cause an observer to judge the base 
as “down” and the apex as “up”. Center estimates have been 
found to be displaced toward the apex and away from the 
base in upright equilateral triangles [9]. When the equilateral 
was rotated, this effect disappeared, suggesting that it was 
alignment with perceived gravitational vertical that induced 
the effect. An increase in errors when the major axis of re-
flectional symmetry was vertical is another result [3]. The 
response distribution in this case aligned with both the sym-
metry and perceived gravitational axes. 

 However, one finding shows a displacement of the per-
ceptual center away from the base in isosceles triangles at 
every orientation [10]. In these stimuli, there is always a sa-
lient base to signal the location of down. An up-down axis 
can be aligned with the base and apex in these triangles re-
gardless of any perceived gravitational down. One study 
showed polygonal contour shapes at frontoparallel and hori-
zontal presentation planes. There was no difference in the 
results, suggesting that gravity was not playing a role [6]. 

 These experiments imply that both intrinsic directional 
properties such as the base and apex as well as extrinsic di-
rectional properties such as gravity can affect the location of 
the perceived center. When there is no single strong intrinsic 
directional as is seen in equilateral triangles, gravity can in-
fluence judgments. When intrinsic cues are strong as is the 
case with isosceles triangles and other shapes, the influence 
of gravity disappears. 

 In the current study we further investigate the role that 
size ratio, symmetry, elongation and gravity play in the esti-
mation of a perceived center. Unlike most previous studies, 
we do not use single shapes. Instead, we have participants 
judge the center of multi-body displays. Our stimuli consist 
only of three black-filled dots arranged into different triangu-
lar configurations. One advantage of using such patterns is 
that there are no obvious confounding shape variables like 
vertices, contours and overall area that are present when sin-
gle objects are presented. 

 In previous work using two dot displays, we found that 
center of mass judgments were affected systematically by 
dot size ratio and separation [11]. Participant’s estimates 
were remarkably accurate, meaning close to the true center 
location, except for when the true center fell close to the 
larger dot’s edge, indicating a reluctance to place estimates 
near or inside one of the dots. In this study, a dimensionality 
closer to one produced the best fit to the data, suggesting that 
observers used either diameters or surface area interpreta-
tions of the dots when performing their judgments. 

 There are several aims in the current study. First, we 
wish to investigate the role size ratio plays in patterns with 

more than two dots. In our earlier study, responses were al-
ways attracted to the larger of two masses [11]. With three 
dots we can investigate more complicated situations such as 
when two dots are equal but larger in mass than a third. 

 Our second aim is to study the influence of symmetry 
and elongation. In line with previous work, we anticipate 
that axes of symmetry and elongation will affect the distribu-
tion of center estimates, even when there is no visible con-
tour in the pattern. A final aim is to study the role of gravity 
in center estimation. We anticipate that responses will be 
pulled downward in the absence of other strong intrinsic 
shape factors. 

 In Experiment 1 we present equidistant dots in the form 
of equilateral triangles at different orientations. We then vary 
the size ratio of the dots to one another. As in our previous 
work, we expect that center estimates will be pulled toward 
larger objects. However, when the dots are all the same size 
we predict that more global configural forces will be at 
work. Reflectional symmetry and the perceived up-down 
axis as determined by gravity should then influence respond-
ing. 

 In Experiment 2 we hold size ratio constant and investi-
gate the spacing between dots. We vary the distance between 
two of the dots in the expectation that they will group when 
they are closer together, pulling center estimates toward 
them. In this study we also vary the length of symmetry and 
elongation axes. We anticipate that accuracy, defined as dis-
tance of the estimates from the true center, will get worse as 
the length of either of these two kinds of axis increase. 

 Finally in a third experiment, we vary the orientation of 
the symmetry and elongation axes. We predict that errors 
will increase the closer the symmetry axis is to the horizontal 
and the closer the elongation axis is to the vertical. The re-
sults are interpreted according to a process whereby observ-
ers use the intersection of the median lines to locate the per-
ceptual center. 

EXPERIMENT 1 

Method 

 Participants. Twenty-four undergraduate students at-
tending Manhattan College participated voluntarily to obtain 
extra class credit. There were five males and 19 females with 
a mean age of 21 years. All participants had normal or cor-
rected-to-normal vision. 

 Apparatus. The stimuli were three black-filled dots 
against a white background. The dots were centered on the 
three points of an invisible equilateral triangle. The center of 
this virtual triangle was positioned at the center of the com-
puter screen. We varied the relative sizes of the dots in pro-
portion to one another. 

 The smallest dot measured 3 mm in diameter and sub-
tended approximately 0.33° of visual angle. The other dots 
were either twice as wide or four times as wide as this. The 
distance separating dot centers was always 65 mm or about 
6.5° visual angle at a viewing distance of 40 cm. 

 The relative size of the dots to one another was the first 
independent variable. We named this variable size ratio. 
There were seven size ratio conditions. In one grouping, the 
dots were all the same size, either all the smallest size (des-
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ignated 111), all at the intermediate size of twice the smallest 
(222), or all at the largest size (444). In a second grouping, 
two dots had a greater diameter than the third. They could be 
twice (122) or four times (144) in diameter. A final grouping 
had one dot either two times (112) or four times (114) larger 
than the others. Fig. (1) shows these conditions that we 
named “Same-size”, “Two-big” and “Two-small”, respec-
tively. 

 

Fig. (1). The three sets of stimuli in Experiment 1. Dots were either 

all the same size (111, 222, 444), or two dots shared the same larger 

(122, 144) or smaller (112, 114) size. Ratios were twice or four 

times the smallest dot. 

 Differing sizes were assigned to dots clockwise from a 
default upright orientation where one of the triangle’s apices 
pointed upwards. In the two-big condition (122 and 144), the 
topmost dot was smallest. In the two-small condition (112, 
114) the bottom-left dot was largest. 

 Our second independent variable was orientation. Each 
size ratio condition was presented at eight different orienta-
tions, starting at the vertical of the default orientation (0°) 
and continuing in 45° increments clockwise. In order, these 
orientations were 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 
315°. 

 Procedure and Design. Participants signed a consent 
form and read instructions for the task. The instructions 
asked them to estimate the center-of-mass. This was de-
scribed as a point of balance or equilibrium. They were 
shown an example of one of the stimuli, with the actual cen-
ter indicated by a crosshair. 

 On each trial the stimulus appeared along with a small 
black positioning dot. Using the mouse, the participants 
moved this dot to what they thought was the perceived cen-
ter. When they were satisfied with their judgment they 
pushed the space bar to end the current trial. The positioning 
dot was smaller than the smallest dot of the triangular con-
figuration and appeared well outside of it in random loca-
tions on each trial. This was done to insure that it did not 
interfere with participant’s estimates. 

 A block of 56 trials consisted of the combination of 
seven size ratios at eight orientations. Participants ran 
through three blocks, completing a total of 168 trials. When 
finished, participants filled out an information form and read 
a debrief explaining the purpose of the study. Each experi-
mental session lasted about one-half hour. 

Results and Discussion 

 The data were first screened for outliers. This was based 
on reaction time, measured in seconds. All responses that 
took longer than 25 seconds were considered outliers and 
removed from the analyses. They constituted far less than 
one percent of the data. These long responses were consid-
ered overly analytical. Most participants responded quickly. 
Average reaction time with outliers removed was only 6.26 
seconds. There was no clear pattern of result with reaction 
time so it was not considered a dependent variable. 

 The center of mass of the three body system was calcu-
lated in the following, standard way. Each of the darkened 
circles represents a uniform, spherical body. As these were 
identical, equal masses for all three was assumed. A two-
dimensional representation is presented to the participant, 
thus the center of mass, when plotted on an X-Y graph, will 
have two coordinates. These are calculated with: 

XCOM =
M1X1+ M 2X 2 + M 3X 3

M1+ M 2 + M 3
 

YCOM =
M1Y1+ M 2Y 2 + M 3Y 3

M1+ M 2 + M 3
 

where the subscripts 1, 2, and 3 refer to the particular dark-
ened circle. Since the masses are assumed to be equal, this 
reduces to 

XCOM =
X1+ X 2 + X 3

3
 

YCOM =
Y1+Y 2 +Y 3

3
 

 The positions of the darkened circles are indicated by the 
coordinates of their centers. The computer software has its 
own unit of measure. The lower left hand corner of the moni-
tor screen is at coordinate (0, 0); all measured and calculated 
positions are made with respect to that position. 

 The triangular arrangement of the three body system lo-
cated at different positions on the screen, depending on con-
dition. The dependent variables error and direction are meas-
ured with respect to the actual position of the center of mass 
for each orientation and geometry. 

 Error Analyses. A (7x8) factorial analysis of variance 
(ANOVA) with size ratio and orientation as factors was per-
formed. Error was the dependent measure and was calculated 
as the Euclidean distance between the response and the true 
center-of-mass. Error values are reported in millimeters. 
There was a significant main effect of size ratio [F(6, 1,288) 
= 751.3, p < .01], of orientation [F(7, 1,288) = 18.23, p < 
.01] and of their interaction [F(42, 1,288) = 4.1, p < .01]. Fig. 
(2) shows mean errors with ± 1 standard error for the interac-
tion. 

111 222 444

122 144

112 114

Same-
Size

Two-
Big

Two-
Small



16    The Open Behavioral Science Journal, 2008, Volume 2 Friedenberg and Liby 

 

Fig. (2). Mean error for each size ratio and orientation in Experi-

ment 1. Error was the difference between estimates and the location 

of the true center. Bars indicate ±1 S. E. 

 Accuracy was greatest in the same-size conditions. In 
these cases center-of-mass estimation is equivalent to locat-
ing the center of the triangle. There is abundant information 
available to locate this center, as it is the intersection of the 
triangle’s three axes of reflectional symmetry. Accuracy im-
proved slightly with an increase in dot size. The 444 case 
had the fewest errors, the 222 case had slightly more, and the 
111 case had somewhat more. However, these differences 
are small as judged by the degree of overlap between the 
three equal dot size curves in Fig. (2). This kind of effect 
makes sense though, as bigger dots are closer to the center of 
the triangle. The shorter the distance between the dots and 
the center, the easier estimation should be. 

 The error functions for each subset of size ratio are simi-
lar. For the same-size conditions there is a large dip in the 
functions at 180° and smaller dips at 45° and 315°. For the 

two-small cases the functions dip at 90°. Here, error is 
greater for 114 than for 112. This is because the larger dot 
exerts more of an influence, biasing responses closer to it. 
For the two-big cases the functions are nearly identical with 
errors again greater for the larger dots. 

 Direction Analyses. Next, another factorial ANOVA 
with size ratio and orientation was performed. This time, the 
direction of the response distribution served as the dependent 
variable. Direction refers to the angular orientation of a re-
sponse from the true center-of-mass. Mean direction indi-
cates which way the response distribution is being pulled or 
stretched. A mass larger than those around it ought to pull 
the bulk of responses outward from the center of the display 
toward itself. Direction was calculated as the orientation of a 
line drawn from the true center to a response. It was meas-
ured in the same way as the orientation variable, as angular 
deviation from the vertical. 

 One problem with analyzing response direction is that 
there may be more than one mode. In other words, responses 
can exist at more than a single orientation. When this is the 
case, averaging the directions can be misleading. For exam-
ple, if responses are equally distributed at 90º and 180º, the 
mean is 135º and not indicative of perceived pointing. For 
this reason, we examined the distribution of perceived direc-
tion. For each stimulus there was only a single peak in the 
distribution with little difference between measures of cen-
tral tendency. We therefore analyzed these data using stan-
dard statistical procedures, i.e., without using circular statis-
tical techniques. 

 There was a significant main effect of size ratio [F(6, 
1,288) = 2.9, p < .05] and orientation [F{7, 1,288) = 151.8, p 
< .01]. The interaction was also significant [F(42, 1,288) = 
22.1, p < .01]. We discuss the results once more in terms of 
the three subgroups. For the two-small condition, the arm of 
the response distribution always pointed toward the larger 
dot. Here, size ratio is the effective influence on direction, 
with the larger dot pulling responses toward it. Panel (A) of 

Fig. (3). The arrow indicates the mean direction of the response distribution for three selected conditions in Experiment 1. Panel A shows the 

Two-Small condition, panel B shows the Two-big condition and panel C shows the Same-Size condition. 
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Fig. (3) graphically depicts the mean direction for each ori-
entation of the 114 condition. 

 In the two-big conditions there is another factor affecting 
the results: the downward pull of gravity. Downward means 
toward the bottom of the screen, since the stimuli were pre-
sented here and in the other experiments in a frontoparallel 
fashion where the screen surface was perpendicular to the 
direction of gaze. The mean response distribution for these 
cases always pointed within 45° clockwise or counterclock-
wise of straight down (180°), indicating a perceived gravita-
tional influence that tugged responses in this direction. If one 
of the two larger dots was near the down position, responses 
pointed to it, indicating that size ratio could only compete 
with gravity when it was close by. Panel (B) of Fig. (3) 
shows mean direction for the 144 condition. 

 In the same-size group we see yet a third force at work: 
symmetry. Direction was always aligned near one of the tri-
angle’s three reflectional symmetry axes. When the symme-
try axis was vertical, as in the 0° and 180° cases, it pointed 
downward, indicating a gravitational influence. In all other 
cases, responses aligned themselves along the symmetry axis 
closest to a horizontal orientation. It is important to note that 
the symmetry axes in these displays is not for an individual 
shape. It is that formed by the collection of all three objects 
taken together. 

 Direction in this group always pointed away from the 
single dot near the horizontal. For example, in the 90°case, 
the triangle “points” to the right and responses are pulled to 
the left. In the 270° case, these directions are reversed. This 
pointing effect is perhaps a bias toward the perceived “base” 
of the triangle, the base being the direction flanked by two 
dots rather than the bottom. The two dots, being aligned at or 
near vertical, may be perceived as the more stable end of the 
pattern. Panel (C) in Fig. (3) shows mean direction for the 
111 condition. 

 Three forces can thus nicely account for the results of 
this experiment. These forces can be categorized as either 
extrinsic or intrinsic. Gravity is an extrinsic force because it 
applies independently of the pattern. Because the stimuli 
were viewed on a frontoparallel screen surface, gravity 
would always be down regardless of the particular character-
istics of any dot pattern. On the other hand, size ratio and 
symmetry are intrinsic because they do depend on the stimu-
lus, resulting from either differences in dot sizes or in the 
number and orientation of the symmetry axes. 

 In the two-small patterns where one dot was larger than 
the other two, size ratio overwhelms gravity and responses 
point to the larger dot. In these stimuli, the responses also 
fall along the symmetry axis, so symmetry reinforces size 
differences instead of competing with it. In the two-big con-
ditions gravity appears to reinforce one size ratio alternative, 
since the responses could have pointed to either of the two 
large dots equally often. Instead, they always pointed down-
ward or to the largest dot closest to down. Symmetry only 
plays a role here when it is vertical. 

 In the same-size condition where there are no size differ-
ences, symmetry appears to rule and pointing is always along 
the vertical or horizontal symmetry axis. Gravity again influ-
ences, but only when it reinforces symmetry. The literature 
on symmetry perception typically shows that vertical sym-

metry is the most salient, followed by horizontal and then 
oblique symmetry [13]. In our patterns, responses rarely 
aligned along an obliquely oriented symmetry axis. 

EXPERIMENT 2 

 With equilateral triangles, distance between dots is con-
stant and cannot influence judgments. However, dot separa-
tion does affect center-of-mass estimation. In previous work, 
we found strong distance effects for two dot patterns [11]. 
As separation between two dots of differing sizes decreases, 
estimates move correspondingly closer to the larger dot, 
tracking changes in the true center position. In addition, we 
found that accuracy improved when the two dots were closer 
to one another, but not so close that the true center fell on or 
near the larger dot’s edge. 

 One consequence of moving dots closer together is that 
they may form a perceptual group. According to the gestalt 
principle of proximity, the closer two items are, the more 
strongly they will group assuming all other factors such as 
similarity are equal [12]. Grouping by proximity could play 
an important role in center-of-mass estimation. Proximal 
dots might be perceived as having a combined mass greater 
than their actual physical masses. They could pool their ef-
fects, causing observers to estimate the center closer to them 
than it really is. 

 To see if this is the case, we performed a second experi-
ment using isosceles triangles, those having two equal sides. 
We manipulated the distance of one “side” while holding the 
length of the other two “sides” constant. If there is a percep-
tual grouping effect, we should see center-of-mass estimates 
move closer to the two proximal dots. Alternatively, it may 
be that local grouping factors are overshadowed by larger 
global properties of the stimuli, such as symmetry or orienta-
tion, in which case we may see little or no grouping effects. 

Method 

 Participants. Sixteen undergraduate students from Man-
hattan College participated to fulfill an extra credit assign-
ment. There were six males and ten females. Mean age was 
20 years. Vision was normal or corrected-to-normal. 

 Apparatus. It is important to note that in all of the ex-
periments reported here, none of the sides of the triangles 
were actually visible. They existed only in terms of the rela-
tionships between dots that were visible. We created differ-
ently shaped isosceles “triangles” formed by distances be-
tween dots. In each, the length of one side was varied while 
the length of the other two sides remained the same. This 
served as the first of our independent variables. 

 We began with a canonical upright isosceles triangle. The 
three dots forming the apices of the triangle we labeled as A, 
B and C, starting with the “top” dot and proceeding clock-
wise. The two distances AB and AC were the same for all 
stimuli in the experiment. We varied the distance BC by 
changing the angle at dot A. When this angle is increased, 
distance BC also increases. Fig. (4) indicates these dots and 
the angle in the 80° condition. 

 We produced five different shapes corresponding to an-
gles of 20°, 40°, 80°, 100° and 120°. The equilateral case of 
60° was omitted because it was used in the previous experi-
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ment. We substitute the value obtained there in the current 
results for purposes of comparison. 

 

Fig. (4). The 80º shape condition from Experiment 2. The distance 

between dots A and B and between dots A and C was constant for 

all stimuli. The distance between dots B and C co-varied with an-

gle. Sides are shown for ease of interpretation but were not present 

in the stimuli. 

 All dots were black and viewed against a white back-
ground. The diameter of the dots was 3 mm, the same as the 
smallest size from Experiment 1. The lengths of AB and AC 
were 50 mm and subtended approximately 5° of visual angle. 
The lengths of BC for each of the angle measures, going 
from 20° through 120° were 15 mm, 30 mm, 55 mm, 70 mm 
and 80 mm and subtended approximately from 1.5° to 8° 
visual angle. The sides of the “triangle” were never actually 
visible. 

 Each of the five shape conditions was presented at four 
orientations: up (0°), down (180°), left (270°) and right 
(90°). Orientation in this case corresponds to the orientation 
of the triangle’s symmetry axis in the direction that it bisects 
the single apex dot. Orientation served as our second major 
independent variable. Fig. (4) shows the 80° condition in the 
upright orientation with sides added for ease of interpreta-
tion. 

 Procedure and Design. The procedure was identical to 
that of the first experiment. Informed consent was obtained 
from all participants. They were first instructed on what a 
center-of-mass is and shown an example of one of the stim-
uli. They recorded responses by moving the small position-
ing dot into place and recorded their response by hitting the 
space bar. There were five shapes combined with four orien-
tations to yield a total of 20 unique stimulus trials in a block. 
Participants ran through 16 blocks completing a total of 320 
trials. An experimental session lasted approximately 40 min-
utes. 

Results and Discussion 

 Error Analyses. Error was the first dependent measure. 
It was the distance between the estimate and the actual cen-
ter-of-mass and was used to indicate task difficulty. There 
were no major outliers so all data were included in the analy-
ses. We performed a 5x4 factorial ANOVA with shape and 
orientation as factors. There was a significant main effect of 
shape [F(4, 300) = 36.9, p < .01] and orientation [F(3, 300] = 
21.2, p < .01]. The interaction between them was also sig-

nificant [F(12, 300) = 3.4, p < .01]. Fig. (5) shows error for 
each shape-orientation combination. 

 

Fig. (5). Mean error for each shape and orientation in Experiment 2. 

Bars indicate ±1 S. E. 

 Average error for the 111 condition in Experiment 1 was 
the equivalent of the 60° case in this study and was about 3 
mm. If we superimpose this value onto the plot in Fig. (5) in-
between 40° and 80°we see that errors increased linearly on 
either side of 60°. Errors increase monotonically as the shape 
of the triangle deviated away from an equilateral norm. This 
was the case for shapes with angles both less than and 
greater than 60°. 

 The center-of-mass for triangular shapes with equal-sized 
dots is at the intersection of the median lines. A median is a 
line extending from each vertex to the midpoint of the oppo-
site side. Hence, one possible way of estimating the center in 
these stimuli would be to perceptually complete the sides of 
the triangle, then fill in the medians, and then estimate their 
intersection. For equilateral triangles, this process would be 
easy because all sides are equal, all medians are equal and all 
the medians are symmetry axes. For isosceles triangles it 
ought to be more difficult since only two of the sides are 
equal and only one of the medians is a symmetry axis. 

 If it were true that differing median lengths make it more 
difficult to estimate their intersection and hence the center-
of-mass, then the pattern of error results we obtain make 
sense. As angle decreases for values less than 60°, the sym-
metry axis median becomes longer in proportion to the two 
other medians. As angle increases for values greater than 
60°, the symmetry median becomes shorter in proportion to 
the remaining two medians. 

 Errors were low for vertical orientations when the trian-
gle pointed up or down. In fact, the difference between these 
two conditions is indistinguishable in Fig. (5). Errors were 
much higher for horizontal orientations when the triangle 
pointed left or right. As stated earlier, it is a well-established 
finding that vertical symmetry is easier to detect than hori-
zontal symmetry. Our results parallel this finding and sug-
gest that symmetry detection aids in the localization of the 
center-of-mass. Detecting the symmetry axes in these figures 
provides one of the three medians and would thereby con-
strain the position of the center and improve accuracy. 
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 The interaction between shape and orientation can be 
explained in terms of an elongation axis, which is the longest 
axis that fits through a shape. In our stimuli, the elongation 
axis is virtual. It can be inferred as a line connecting the two 
most distant dots when apex angle is greater than 60º and is 
equivalent to the symmetry axis when apex angle is less than 
60º. In Fig. (5), one can see that the performance difference 
between vertical and horizontal is minimal when angle is 
less than 60°. The lines connecting mean errors for all four 
orientations are close together. For these conditions, the 
symmetry axis and the elongation axis coincide. This may 
make symmetry more salient at horizontal orientations, per-
haps facilitating estimation for those conditions. 

 In contrast, the performance difference between vertical 
and horizontal symmetry axis orientations is more pro-
nounced when angle is greater than 60°. Here, the error func-
tions for these two sets of orientations are widely separated. 
For these conditions the symmetry axis is perpendicular to 
and shorter than the elongation axis. This may reduce the 
salience of horizontal symmetry, making estimation for those 
conditions more difficult. 

 Direction Analyses. There was no evidence for direc-
tions pointing to more than one orientation so mean direction 
was taken to be a valid measure of perceived pointing. We 
next performed a factorial ANOVA using direction of the 
response distribution as the dependent measure. As before, 
shape and orientation were the two factors. There was no 
main effect of shape. There was a main effect for orientation 
[F(3, 300) = 4.3, p < .01] and for the shape by orientation 
interaction [F(12, 300) = 13.5, p < .01]. Fig. (6) shows the 
interaction. 

 

Fig. (6). Mean direction of the response distribution for each shape 

and orientation in Experiment 2. Bars indicate ±1 S. E. 

 The fact that there was no main shape effect becomes 
immediately apparent when one looks at Fig. (6). The direc-
tion functions for up and down and for left and right are op-
posites and cancel each other out. Why should this be? Let 
us examine the up and down cases first. 

 For vertical shapes where angle is less than 60° responses 
align along the symmetry axis median and point downward. 
In these cases the symmetry median exerts a powerful influ-
ence because it is the longest median and aligns with the 
gravitational axis. When angle is greater than 60° the other 

non-symmetric medians bias estimation as they get longer in 
proportion to the symmetry median. For the upward pointing 
triangle (0°), direction rotates counterclockwise, tracking 
median B (the median intersecting the midpoint of the angle 
at dot B). For the downward pointing triangle (180°), direc-
tion rotates clockwise, tracking median C (the median inter-
secting the midpoint of the angle at dot C). Medians B and C 
are both equidistant from the vertical or gravitational orienta-
tion, so these trends seem to represent inherent directional 
biases in the participants. 

 For horizontally oriented triangles the story is similar. 
For right pointing triangles (90°) when angle is less than 60°, 
direction tracks median C. When angle is greater than 60° 
direction tracks median B. For left pointing triangles (270°) 
when angle is less than 60°, direction tracks median B. When 
angle is greater than 60° direction tracks median C. 

 The results of this experiment fail to support the grouping 
by proximity hypothesis. As angle decreased, the distance 
between dots B and C diminished causing them to group 
more strongly by proximity. According to the hypothesis this 
ought to have pulled the response distribution closer to them. 
This did not happen. Take for example the right pointing 
triangle. A decrease in angle ought to have pulled the re-
sponses clockwise, leftward in this case, toward the converg-
ing dots. Instead the actual distribution swung counterclock-
wise as angle increased. 

 What we see here instead is dominance of the global fea-
tures of the dot configuration. Symmetry and median lines, 
which did impact on estimates, are global, configural proper-
ties of these patterns and can only be formed by taking into 
account all three dots together. These factors override the 
more local effect of grouping, which is induced by just a 
portion of the configuration. 

 There is an alternate interpretation of this data. With tri-
angular shapes center of mass estimation has been found to 
correspond more closely to the center of an inscribed circle 
than to the true center [8]. In order to test whether our par-
ticipants were also making use of an inscribed circle, we 
calculated the mean center values for each of our triangular 
patterns and compared them against the true center location. 
If participants were using the inscribed circle, their estimates 
would move toward the base as the triangles became more 
acute and toward the apex as the triangles became more ob-
tuse. The observed pattern was in fact the opposite of this. 
We conclude that our participants did not use this strategy, 
perhaps because it may be difficult to imagine an inscribed 
circle without any external contours. 

EXPERIMENT 3 

 In Experiment 2, we saw new influences at work. Elon-
gation in addition to symmetry was found to affect center 
judgments. As the elongation axis increased in length be-
yond that of the symmetry axis, accuracy steadily dimin-
ished. This effect was particularly pronounced for left and 
right facing triangles where the axis of elongation was verti-
cal. 

 It seems that elongation and symmetry both vie for influ-
ence over center judgments but that in most cases symmetry 
wins out. Elongation seems to play a role when it is promi-
nent, i.e., longer than any other axis in the pattern, and when 
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it is vertical. In this experiment we set out to further investi-
gate the conditions under which elongation might affect cen-
ter estimates. We chose the 120° shape from Experiment 2 
because this angle produces a very long elongation axis per-
pendicular to symmetry. We then presented this shape at 
various orientations both clockwise and counterclockwise 
away from the symmetric horizontal. These orientations al-
low us to study the influence of symmetry and elongation as 
they deviate about the vertical and horizontal. 

 In particular, we can investigate how these factors bias 
both the magnitude of error and the direction of response. 
Given the results of the previous study, we expect error rates 
to be highest when elongation and symmetry compete with 
one another, that is, when elongation is reinforced by align-
ment near vertical. Accuracy should be better when the 
symmetry axis is reinforced near vertical. 

 Response direction should also be quite informative. If 
symmetry always wins out, direction should align with the 
symmetry axis. If elongation wins out, direction should in-
stead align with the orientation of the elongation axis, or 
perhaps along one of the non-symmetry medians approxi-
mately parallel to it. A third possibility, and one that seems 
more likely, is that both symmetry and elongation will influ-
ence responses to varying degrees depending on their orien-
tation. 

Method 

 Participants. Twenty undergraduate students attending 
Manhattan College participated to obtain extra class credit. 
There were 15 females and five males. Mean age was twenty 
years. Vision was normal or corrected-to-normal. 

 Apparatus. The 120° triangular shape from Experiment 
2 was presented at 16 different orientations. Each orientation 
corresponded to a 20°, 40°, 60° and 80° rotation of the shape 
clockwise and counterclockwise from a left and right facing 
horizontal symmetry axis orientation. This yielded the fol-
lowing symmetry axis orientations: 10°, 30°, 50°, 70°, 110°, 
130°, 150°, 170°, 190°, 210°, 230°, 250°, 290°, 310°, 330° 
and 350°. 

 Procedure. The procedure was identical to that of the 
previous two studies. Informed consent was obtained from al 
participants. 

Results and Discussion 

 The data were first screened for outliers. Any x- or y-
coordinate more than 45 mm from the true center were omit-
ted from the analyses. These constituted about 1.7% of total 
responses. 

 Error Analyses. A one-way ANOVA with symmetry 
axis orientation as the factor and error as the dependent vari-
able was performed. There was a significant effect of orien-
tation [F(15, 304) = 2.4, p < .01]. Fig. (7) depicts the means 
and standard errors. The trend in this figure is straightfor-
ward. Accuracy is greatest at symmetry axis orientations 
near vertical and least for those near horizontal. This effect is 
gradual and continuous, since errors bottom out near the ver-
tical and gradually rise as the shape rotates toward the hori-
zontal. The effect is stronger for right facing triangles, which 
may again reflect inherent observer biases. This result repli-
cates our finding from Experiment 2 and supports our hy-

pothesis that error rates will be higher when elongation and 
symmetry compete, i.e., when both are perceptually salient. 
This is the case when symmetry is horizontal and elongation 
is vertical. 

 

Fig. (7). Mean error as a function of symmetry axis orientation for 

Experiment 3. Bars indicate ± 1 S. E. 

 Direction Analyses. The histograms failed to show evi-
dence of pointing to more than a single orientation so an-
other one-way ANOVA with symmetry axis orientation was 
performed, this time with direction as the dependent meas-
ure. The test yielded a significant result [F(15,304) = 21.6, p 
< .01. In order to better interpret the results, we present the 
angular difference between direction and three different axes 
in Fig. (8). These are the gravitational axis, which is always 
pointing downwards, the symmetry axis and the elongation 
axis. The elongation axis is always perpendicular to symme-
try. 

 

Fig. (8). The difference between direction of the response distribu-

tion and the symmetry, gravitational and elongation axes as a func-

tion of symmetry axis orientation in Experiment 3. Difference is 

calculated as (direction – axis orientation). Bars indicate ±1 S. E. 

 An examination of Fig. (8) reveals several interesting 
conclusions. First, the responses were most closely aligned 
with the gravitational axis, or 180°. The difference in orien-
tation between the responses and straight down was smallest. 
After that they were next most influenced by the symmetry 
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axis and finally by the elongation axis. Gravity exerts its 
greatest influence when the triangle is pointing near down. In 
this condition, the apex dot is almost at 180° and may tug 
responses toward it. Symmetry is also a strong influence for 
the orientations near down because it is reinforced by grav-
ity. On the other hand, elongation at this orientation has little 
effect, presumably because it is aligned near the horizontal. 

 The influence of all three factors diminishes with devia-
tions away from downward either clockwise or counter-
clockwise to the horizontal orientations near 90° and 270°. In 
these near left or right facing directions, the deviation from 
gravity is large. Symmetry is weak here, perhaps because it 
aligns at the horizontal, but so is elongation, even though it 
is vertical. 

 Deviation from gravity is close to zero at 50° and 310°. 
These appear to be “breakpoints” where elongation changes 
from horizontal to vertical. Perhaps elongation serves as a 
reference frame at non-diagonal orientations where it is more 
vertical or horizontal. When it is near diagonal, this reference 
is lost and participants default back to a gravitational frame. 

 All in all, these data suggest that no single factor deter-
mines the direction of the response distribution. Instead, it is 
an accommodation between various influences. In some 
cases, these influences reinforce one another, as is the case 
with gravity, symmetry and the apex dot near 180°. In other 
cases, there is competition. For example, at 290° direction is 
in-between gravity and symmetry but closer to gravity, re-
flecting gravity’s stronger influence at this orientation. 

GENERAL DISCUSSION 

 In these experiments we investigated estimation of a per-
ceptual center in multi-body displays. The use of this type of 
configuration has allowed us to manipulate a number of fac-
tors including relative dot size and the number, length, and 
orientation of symmetry and elongation axes. It has extended 
our previous findings with size ratio to patterns with more 
than two dots [11]. 

 Let us now summarize and discuss the specific results of 
each experiment. In Experiment 1, the dots formed an equi-
lateral triangle presented at various orientations. The relative 
sizes of the dots were varied. The results were accounted for 
by three different factors: size ratio, symmetry, and the per-
ceived up-down axis produced by gravity. 

 When one of the dots was larger than the other two esti-
mates were pulled toward the larger dot. In these patterns 
there is a pure mass effect. In contrast, when all the dots 
were the same size, mass played no role. In this case, the 
response distribution aligned along one of the display’s three 
symmetry axes. When two of the dots were larger than the 
third, responses were tugged downward toward the gravita-
tional bottom of the pattern, pointing either straight down or 
toward the largest dot located closest to down. 

 These results demonstrate an inter-play between intrinsic 
and extrinsic influences. When the pattern contains notice-
able size differences or obvious symmetry, these two intrin-
sic factors affect center location. When these properties are 
less salient, the orientation of the display relative to a per-
ceived external gravitational frame of reference best ac-
counts for the results. 

 Several previous studies have found a “base effect” 
where responses point toward the perceived bottom or base 
of a single triangle with visible contours [10, 9]. This was 
true in two cases. First, for upright equilaterals where gravity 
reinforced one of the three sides as downward. It was also 
found for isosceles triangles with a salient base regardless of 
orientation. 

 We failed to replicate this effect. In the two-large condi-
tion of Experiment 1 with equilaterals, the two larger dots 
should form a strong perceptual base. Yet, responses only 
pointed toward them in the 0° condition. In all other cases, 
they pointed to gravitational down. Apparently, size similar-
ity by itself is not enough to induce perception of a base. We 
also failed to obtain a base effect in Experiment 2. Direction 
of the response distribution in these isosceles triangles was 
roughly toward 180° for upward and downward pointing 
triangles only. The base effect may require the presence of a 
visible contour. 

 In Experiment 2 we employed dots in an isosceles con-
figuration. Errors were lower for vertical and higher for hori-
zontal orientations. This finding follows a similar effect 
found for symmetry detection [13]. It implies that symmetry 
detection is part of computing a perceptual center. Because a 
symmetry axis is a median and the intersection of the medi-
ans yields the center, it make sense that observers might first 
detect the presence of symmetry and use it to judge center 
location. 

 It is interesting to speculate on how observers might 
compute a perceptual center. For single shapes viewed in 
isolation there are several possibilities. Perceptual center 
estimates for triangles and quadrilaterals have been found to 
coincide more closely with an inscribed circle than with the 
true center-of-mass [8]. The center of the inscribed circle is 
the point that is equidistant from each of the sides of the 
polygon. However, these authors note that the inscribed cir-
cle can only be used for compact shapes, not those such as a 
banana or dumbbell. The inscribed circle is just a geometric 
way of describing how a perceptual center may be computed 
and does not necessarily indicate the stimulus cues used or 
process by which observers perform this operation. 

 In triangles, the center of mass coincides with the aver-
age position of the three vertices and with the intersection of 
the three medians. In these shapes, participants may “trace” 
along the axes to their intersection [6]. The fact that esti-
mates fall along these axes and are minimized perpendicular 
to them supports this notion. The center of shapes with rota-
tional symmetry also lies at the focus of radial symmetry. 
For radial patterns, participants may imagine the shape rotat-
ing about the center to superimpose upon itself and place the 
center at this point of rotation. 

 As noted earlier, elongation is another property affecting 
estimation of a perceptual center. Previous work finds that 
errors increase with an increase in elongation [3]. We also 
obtained results that can be interpreted according to elonga-
tion, although in our case elongation is an inferred property. 
In our second experiment, errors were higher when an elon-
gation axis formed by connecting the two farthest dots was 
vertical (the 90° and 270° orientations). At these orienta-
tions, vertical reinforces elongation, while symmetry is at its 
less preferred horizontal orientation. The elongation axis 
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seems to interfere with detecting symmetry, thereby produc-
ing more errors. In comparison, when symmetry does align 
with vertical (the 0° and 180° orientations) errors are lower, 
ostensibly because vertical now reinforces the symmetry 
axis. 

 In Experiment 3, we took the 120° shape and presented it 
at various deviations away from the horizontal, the orienta-
tion where error rates for this shape were highest in Experi-
ment 2. We did this to investigate further the role of per-
ceived elongation. We replicated our previous finding that 
errors are highest at horizontal symmetry axis orientations. 
One interpretation of these results is that symmetry and 
elongation compete for responses. The results for Experi-
ment 3 support the competition hypothesis: response direc-
tion in every case was an accommodation between factors 
like gravity and symmetry. When these factors reinforce, 
they strongly determine pointing. When they compete, point-
ing is an accommodation between them and responses align 
in-between but closer to the stronger influence. 

 One of the surprising results of our study was that global 
geometric factors such as symmetry and elongation over-
rode more local effects such as the proximity between dots. 
An axis is a prominent feature of a single object and can help 
localize its center. Our results suggest that this is also the 
case for multiple objects. The visual system effectively treats 
our displays as if they were a single object rather than a col-
lection of disparate parts. 

 To reiterate, center estimation for multiple objects of the 
sort we use here is useful in a variety of everyday situations. 
It allows for the balancing of objects on a surface, the grasp-
ing and manipulation of single objects with irregular mass 
distributions, and the tracking of group location. Our results 
demonstrate that at least four factors must be taken into con-
sideration when determining the perceptual center for these 
sorts of patterns. 

CONCLUSION 

 Estimation of center of mass in triangular dot patterns 
can be accounted for by four factors: size ratio, gravity, 
symmetry and elongation. When the size of a dot is at least 
double that of the others, its “perceptual mass” attracts re-
sponses. When all dots are the same size, responses align 
along axes of symmetry and toward the gravitational down. 

The presence of elongation also has an influence. Error rates 
increase the greater the length of an elongation axis. The 
effect is enhanced when elongation and symmetry are per-
pendicular and thus compete for responses. The orientation 
of these axes makes a difference. Center estimation is best 
for vertical symmetry and horizontal elongation and worst 
for horizontal symmetry and vertical elongation. Center es-
timation in these patterns is affected most by global con-
figural properties, those that apply over the entire display. 
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