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Abstract: This review has been compiled to assess publications related to the clinical application of direct cerebral tissue 

oxygenation (pbtO2) monitoring published in international, peer-reviewed scientific journals, or major meeting reports 

published as journal supplements. Its goal was to extract relevant, i.e. positive and negative, information on indications, 

clinical application, safety issues and impact on clinical situations, as well as treatment strategies in neurosurgery, 

neurosurgical anaesthesiology, neurosurgical intensive care, neurology, and related specialties. For completeness’ sake it 

also presents related basic science research and case reports. This review is an update of its previous edition published 

elsewhere in 2007. This review reflects publications from 2004 to 2012. Only relevant publications prior to 2004, which 

explicitly addressed or systematically examined the above issues, are included in this review and are listed in the reference 

section. Based on 349 citations it is the most comprehensive review available on direct cerebral oxygen monitoring to this 

date. 
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METHODS 

 This review is based on a systematic “Medline” literature 
search using the following search terms: licox, neurotrend, 
neurovent, raumedic, brain tissue oxygen, brain tissue 
oxygenation, cerebral oxygenation, cerebral tissue oxygen, 
cerebral partial pressure of oxygen, btO2, ptiO2, pti(O)2, 
ptiO(2), pbrO2, PBr(O2), P(bt)O(2), P(br)O(2), PbrO(2), 
BTpO2, tP(O2), PbO2, PbtO2, Pbto, PbtO(2). 

 Only few publications were not retrieved using this 
technique. They were, however, identified through personal 
communication with scientists in the field, meeting 
proceedings and reviewer assignments. This strategy 
provided sufficient certainty that relevant papers have not 
been missed. Unpublished meeting abstracts and published 
conference proceedings were excluded for this review expect 
for few which provided comparative studies between 
different probes. To address relevant matters, related to 
specific pbtO2 issues, selected non-peer reviewed papers 
published in supplements were also used only when no other 
peer-reviewed information was available. 

RESULTS 

 This review is based on a previous review [1]. It is 
currently based on 349 papers, 274 more papers compared to 
its previous version in 2007, which warrants the update. 
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Indications and Applications 

Human 

 PbtO2 monitoring technology is largely used in 
neurosurgical and neurologic intensive care. The majority of 
publications are based on analysis of data from adult patients 
suffering from severe traumatic brain injury (TBI), which 
indicates that this condition represents the largest field of 
clinical application [2-22]. It is also used in patients with 
multiple extracranial injuries and TBI, so called 
“polytraumatized patients” [23]. It is also used in children 
[24-40]. 

 The second largest group of publications comprises 
aneurysmal subarachnoid hemorrhage (SAH) [6, 7, 41-59]. 

 PbtO2 monitoring technology is also used 
intraoperatively during aneurysm surgery [45, 52, 60-64], 
during surgery of cerebral arterio-venous malformation [60, 
65, 66], functional stereotaxy [67], and during cerebral 
angiography [68]. It has also been used in patients with 
spontaneous intraparenchymal hemorrhage [69-76], ischemic 
stroke in children and adults [36, 71, 77], severe 
haemorrhagic stroke [78], and in silent infarcts after 
subarachnoid hemorrhage [79]. 

Case Reports 

 A pbtO2 monitoring course during cardiopulmonary 
resuscitation [80], and a course of Vein of Labbe thrombosis 
[81] have been published as case reports. One case report 
presents the effects of high-dose inhaled aerosolized 
prostacyclin therapy for acute lung injury on cerebral 
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oxygenation [82]. A case report describes a carotid 
dissection during angioplasty for cerebral vasospasm with 
pbtO2 monitoring in situ [43]. Hypoxic brain damage 
management after cardiac arrest in a child with 
catecholamine-induced cardiac arrhythmia using pbtO2 
monitoring has been presented [29]. One paper reports on 
pbtO2 monitoring in 2 pediatric cases with tuberculous 
meningitis [31]. One paper reports its utility in a case where 
decompressive hemicraniectomy was guided by pbtO2 
monitoring in a patient with bacterial meningitis [83], a 
similar case was reported in a patient after brain gunshot 
[84]. 

 Other case reports include a patient with aneurysmal 
subarachnoid hemorrhage associated with aortic coarctation 
[85], status epilepticus-induced hyperemia and brain tissue 
hypoxia after cardiac arrest [76], and pulmonary embolus 
from acute superior sagittal sinus thrombosis secondary to 
skull fracture [86]. 

 PbtO2 monitoring technology has also been used in brain 
tumor surgery [71, 73, 87, 88], and for continued 
postoperative monitoring in awake patients [89]. It has also 
been used for Normal Pressure Hydrocephalus management 
in awake patients [90, 91]. One study reports that pbtO2 
monitoring has been used in ventricular infusion studies on 
33 patients suspected of idiopathic normal pressure 
hydrocephalus (iNPH), benign intracranial hypertension 
(BIH) or occlusive hydrocephalus (HOC) in order to confirm 
shunt indications [92]. 

 It has also been used for diagnosis of idiopathic 
intracranial hypertension with measurements in an awake 
patient [93]. This case report is noteworthy because it 
demonstrates that the technology can be safely used in 
subjects undergoing physical exercise (running, cycling). It 
also demonstrated cortical hyperoxygenation in a human 
breathing natural air without oxygen supplementation [93]. 
Brain tissue oxygenation-guided management of diabetic 
ketoacidosis induced cerebral edema has also been reported 
in two paediatric cases [40]. One paper reports on 
“threshold-based brain oxygen monitoring for seizure 
detection” after SAH and TBI [94]. 

 This technology has also been used to study the effects of 
anaesthetic agents [95, 96] as well as the effects of hypo – 
and hyperthermia on cerebral oxygenation [97-99]. 

 Last but not least pbtO2 monitoring has been subject to 
the “Development and validation of an integrated 
computational model of cerebral blood flow and 
oxygenation” with a subsequent report on “Modeling the 
causes of variation in brain tissue oxygenation” [100, 101]. 

Animal 

 The numbers of animal studies, which are designed to 
support and further investigate clinical pbtO2 applications in 
trauma, resuscitation models and the effects of various drugs 
have once again increased since the previous edition of this 
report [12, 23, 102-141]. It is used to measure oxygen 
delivery to brain parenchyma in animal models [111, 113, 
115, 133, 135, 142-151]. The utility in traumatic brain injury 
and severe uncontrolled haemorrhage with short delay pre-
hospital resuscitation was examined in a swine model [152]. 

 Animal models have also been used for comparative 
studies using different cerebral monitoring applications, e.g. 
near-infrared spectroscopy [153], ICP [154], muscle tissue 
oxygen, CBF [145], and cerebral microdialysis [155]. 

 PbtO2 monitoring has also been used in animal models of 
spontaneous intracerebral hemorrhage [110, 156], malignant 
soft tissue tumors [157, 158], ischemic stroke [159], in 
experimental subarachnoid hemorrhage [160], in a swine 
model of pediatric traumatic brain injury [161], a rodent 
model of penetrating ballistic-like brain injury [162], in a 
rodent model of acclimation and deacclimation to hypoxia 
[163], in a standardized experimental brain death model 
[164], in experimental anhepatic liver failure [165, 166], an 
in potassium-induced cortical spreading depression [167]. 

 One animal study reports on comparative monitoring 
with one Licox probe inserted into a glioblastoma 
multiforme [C6 glioma rat model] and a contralateral 
cerebral hemisphere [103]. 

 It is also used in animal models to study cerebral 
oxygenation during postasphyxial seizures [116]; transfusion 
protocols [118], Erythropoitin administration [148], 
circulatory recovery [106], evoked neural stimulation [151], 
hibernation [105]; and cerebral blood flow, 
electrocorticographic activity after hypoxia [107]. PbtO2 
measurements have also been performed in isolated rodent 
intestinal tissue with a special focus on “possible pitfalls in 
the interpretation of microcirculatory measurements” [168]. 

 Spinal cord intraparenchymal and subdural CSF 
monitoring in a traumatic spinal cord injury model has been 
reported [169] and last but not least feasibility and various 
aspects of “a fully implantable telemetry system for the 
chronic monitoring of brain tissue oxygen in freely moving 
rats” have been published [170]. 

Clinical Applications 

 PbtO2 monitoring technology is increasingly used, which 
is reflected by a growing number of original publications. 
The majority of publications come [in alphabetical order] 
from Germany, Italy, Spain, The Netherlands, the UK, and 
the USA [5-8, 12-14, 24, 25, 47, 48, 52, 54, 55, 65, 80, 81, 
88, 89, 91, 110, 112, 128, 158, 171-196, 197, 311]. 

 There are publications also from Australia [38, 198-200], 
Austria [53, 85], Brazil [58], Canada [93, 118, 132, 135, 
139], China [9, 201, 202], Croatia [203], the Czech Republic 
[204], Denmark [134]; Finland [134], France [43, 77, 114, 
205, 206], Greece [207], Hungary [141], India [208], Japan 
[140, 146, 167, 209], Portugal [64]; Russia [210, 211], 
Singapore [2, 4, 10, 16, 74, 212, 213]; Serbia [214]; South 
Africa [26, 28, 35], South Korea [127], Sweden [90, 134, 
215], Switzerland [11, 216, 217], and Taiwan [218]. 

 PbtO2 monitoring is almost exclusively used in 
combination with other cerebral non-invasive and invasive 
monitoring modalities, in particular intracranial pressure 
[ICP] monitoring [4, 6, 17, 22, 24, 26, 32, 33, 50, 51, 53, 55, 
72, 81, 88 202, 91, 130, 176, 187, 203, 206, 219-223], 
cerebral perfusion pressure (CPP) monitoring [3, 4, 10, 25, 
178, 187, 198, 224-226], jugular venous saturation (JvDO2) 
monitoring [184, 190, 206, 227, 228], cerebral microdialysis 
[17, 74, 83, 114, 117, 186, 193, 196, 205, 207, 212, 227, 
229-238], cerebro spinal fluid (CSF) chemistry [239], 
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cerebral blood flow velocity (CBFV) measured by 
transcranial Doppler ultrasound (TCD) [8, 30, 88 202, 178, 
237], regional cerebral blood flow measurements (rCBF) 
[47, 240-242], near infrared spectroscopy (NIRS) [15, 123, 
179, 190, 243], intracranial temperature measurements [9, 
97, 99, 141], oxygen-15 positron emission tomography 
(15O-PET) [230], continuous surface electroencephalogram 
[94], and cortical spreading depolarizations (CSD) 
monitoring using subdural electrocorticography (ECoG) strip 
electrodes [244]. 

Oxygen Monitoring Technologies 

 Six monitoring devices are found in the literature, 
“Licox”, “Neurotrend”, “Neurovent-PTO”, “MPBS”, “Foxy 
AL-300”, and a probe called “PO2-100DW”. 

 Licox is manufactured by GMS-Integra, (Kiel-
Mielkendorf, Germany). Neurotrend is manufactured by 
Codman, Johnson & Johnson (Raynham, MA, USA). 
Neurovent is manufactured by Raumedic (Münchberg, 
Germany). MPBS is manufactured by Oxford Optronix 
[Oxford, UK]. Foxy AL-300 is manufactured by Ocean 
Optics (Dunedin, FL, USA). The “PO2-100DW” is 
manufactured by Inter Medical Co. Ltd. (Nagoya, Japan). 

 The Neurotrend probe uses optical sensors. 
Measurements are obtained through a dye which is 
connected to a fiberoptic cable. The properties of the dye 
change along with gas concentrations and pH of adjacent 
tissues, which in turn reflects tissue partial pressure of 
oxygen. The Neurotrend probe contains four sensors, it 
measures pbtO2, ptiCO2, tissue pH, and tissue temperature. 
Its sampling area is around 2mm

2
. 

 The Licox probe uses a polarographic (“Clark”) cell in 
which oxygen diffuses from the tissue through the catheter 
polyethylene wall into its inner electrolyte chamber. Oxygen 
is transformed at the electrode where it determines an 
electrical current. The electrical current reflects tissue pbtO2. 
Its sampling area, depending of the type of oxygen sensor, is 
around 13mm

2
 to 18 mm

2
. 

 The Neurotrend probe yields lower values compared to 
the Licox probe. This is a difference due to the probe’s 
monitoring techniques, which users must be aware of. It does 
not indicate measurement validity. 

 The “Neurovent-PTO” is a sensor which measures 
pbtO2, ICP and brain temperature. The pbtO2 measurement 
principle is based on exciting a flourescent dye with light. 
PbtO2 is calculated from the fading properties of the 
fluorescent dye, so called “luminescense quenching”. Its 
sampling area is around 22mm

2
 [71]. 

 The Oxford Optronix and the Foxy-ptiO2 sensor also use 
the “luminescense quenching” technique. The Oxford 
Optronix sensor, referred to as “multi-parametric brain 
sensor” [MPBS] also measures laser-Doppler based cerebral 
blood flow and ICP [149, 245]. It is a prototype and has been 
used in animals [246]. The Foxy AL-300 has also been used 
in animals [247]. 

 The “PO2-100DW” is a micro polarographic cell sensor 
(Clark type electrode) and has been used in an animal study 
[167]. 

 

Catheter Placement and Sampling Size 

 Catheters are generally placed in the right frontal lobe 
white matter in diffuse brain injury or for detecting global 
ischemia, or on the affected side in a hemispheric injury and 
by and at large remain in situ for as long as ICP 
measurements are required [197, 206, 229, 248-252]. During 
intraoperative aneurysm surgery and ICU treatment probe 
placement in the territory of the aneurysm harboring vessel 
has been advocated [44, 62, 63]. As expected pbtO2 is lower 
in peri-contusional tissue than in normal appearing tissue on 
CT scanning in TBI patients [253]. Some groups, however, 
prefer measurements contralateral to the side of mass lesions 
[18, 39]. 

 A run-in time of approximately 1 to 2 hours is required 
before valid measurements are available and a short oxygen 
challenge is useful to test proper performance [13, 67, 172, 
197, 254]. In some cases the run-in time may be shorter or 
longer. We feel that a sensible approach is to wait until 
stable monitoring values show up on the monitor. 

 One paper has further investigated the effect of catheter 
location on the relationship between pbtO2 and neurological 
outcome in severe TBI. They report that: “When the pbtO2 
probe was placed in abnormal brain, the average pbtO2 was 
higher in those with a favorable outcome, 28.8 +/- 12.0 mm 
Hg, compared with those with an unfavorable outcome, 19.5 
+/- 13.7 mm Hg (P = .01). PbtO2 and outcome were not 
related when the probe was placed in normal-appearing 
brain”. They conclude that …the location of the pbtO2 probe 
determines the pbtO2 values and the relationship of pbtO2 to 
neurological outcome” [252]. This may account for various 
pbtO2 cutoffs and thesholds which have been reported, e.g. 
16mmHg [314], or 29 mm Hg [255]. 

 Although it is a local measurement, restricted to a small 
cerebral volume, its utility to reflect hemispheric conditions 
has been demonstrated in studies where pbtO2 
measurements were correlated with cerebral arteriovenous 
oxygen difference [AVDO2] and cerebral blood flow (CBF) 
measurements. Not only did they show a strong correlation 
but they also showed that pbtO2 measurements did pick up 
more ischemic events than the global measurement [120, 
122, 256]. PbtO2 monitoring is also a rather sensitive marker 
for cerebral ischemia, which “…allows for early recognition 
of low O2 delivery, enabling appropriate therapeutic 
intervention” [24]. This finding is supported in a 
comparative study which confirmed a correlation between 
CBF and pbtO2: “The level of pbtO2 seems to be 
predominately determined by regional CBF, since changes in 
pbtO2 were correlated in 90% of episodes to simultaneous 
changes of CBF” [47]. Further evidence to support the fact 
that CBF is a strong determinant of pbtO2 is suppplied in a 
study where O2 reactivity was determined at various levels 
of rCBF. It showed a significant correlation between CBF 
and O2 reactivity [240]. An observational study where 
pbtO2 was recorded during surgery of incidental MCA 
aneurysms reports that: “pbtO2 monitoring during aneurysm 
surgery shows brain tissue perfusion in real time and there is 
a correlation between any episode of reduced blood flow to 
the affected vascular territory during surgery and a decrease 
of pbtO2 value [63]. A case report in a patient who 
developed seizures following CPR after a cardiac arrest 
showed dramatic pbtO2 decreases along with large CBF 
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surges, which the authors interpret as: “…increased 
metabolic demand out of proportion to CBF increase” [76]. 

 The metabolic heterogeneity of different tissue types is 
well known because it affects sampling size considerations. 
It is important to factor in the heterogeneous nature of the 
brain when interpreting oximetry data. Early experiments on 
rats have demonstrated the differing pbtO2 within the cortex 
depend of the depth of probe placement [257]. This has also 
been shown in an early human study [13]. It was proposed 
that the differing base levels relate to the metabolism, 
microcirculation and overall microstructure of each 
environment. Furthermore, depending on the probes 
relationship to the arterial micro-vessels, a gradient within 
the tissues can exist with oxygen levels decreasing over the 
space from arterial to venous circulation. The 
microenvironment is influenced by the cerebral blood flow 
velocity of each microenvironment, with low velocities 
showing the highest variability in terms of oxygenation 
differences [121]. This translates into a situation where 
spatial heterogeneity must be compensated for by a 
sufficiently large sensor sampling area to minimize the so 
called “random position error”. This random position error 
will yield pbtO2 levels anywhere from 15 to 40 mmHg if the 
O2 sensitive area is limited to 1,4 mm in length. If the area is 
increased to 5,0 mm the range is reduced to values between 
25 and 30mmHg [121]. 

Impact on Clinical Situations and Treatment Strategies 

 There are numerous and, from a scientific/research as 
well as clinical/treatment point of view, most interesting 
findings which have derived from about 15 years of research 
using pbtO2 technology. The following paragraphs 
summarize the important ones: 

Definition of Normal and Pathological Values - A 
Complex Task 

 Normal pbtO2 values based on Licox technology are 
around 25 to 30mmHg, based on animal research [119]. This 
was confirmed in patients with normal ICP and CPP [13, 
256]. 

 Functional stereotaxy operations for movement disorders 
with Licox based pbtO2 measurements in normal white 
matter have confirmed these values. The authors report 
22.6±7.2 mm Hg for frontal white matter intraoperative 
recordings during local anaesthesia. These measurements 
were confirmed during a 24-hour postoperative continued 
measurement with values of 23.1±6.6 mm Hg [67]. In 
addition, at optimal vascular reactivity in 27 TBI patients, 
pbtO2 was 24.6 +/- 6.0 mmHg [258]. 

 One group has investigated the relationship between 
markers of ischemia from cerebral microdialysis and an 
ischemic pbtO2 threshold below 20 mmHg in SAH patients. 
They report that: “Mortality was associated with increased 
percentage of samples with elevated lactate and brain 
hypoxia 28% (interquartile range 9%-95%) in nonsurvivors”. 
This study supports the current clinical practise that pbtO2 
below 20mmHg signals cerebral ischemia and may call for 
therapeutic interventions [217]. 

 Normal pbtO2 value in children may be higher than in 
adults. One paper suggests that 30mmHg may be normal in 
children based on their finding that a pbtO2 of 30 mm Hg 

was associated with the highest sensitivity/specificity for 
favorable neurological outcome at 6 months after TBI [39]. 
It must be noted, however, that they measured pbtO2 in the 
uninjured frontal cortex. They emphasize that: “CPP was the 
only factor that was independently associated with favorable 
outcome. Surprisingly, instances of preserved pbtO2 with 
altered ICP and CPP were observed in some children with 
unfavorable outcomes [39]. 

 Normal pbtO2 values based on Neurotrend technology 
are lower [259], a paper has suggested a threshold of 
14mmHg [260]. 

 A one-on-one direct intraparenchymal comparison 
between Licox and Neurovent in 33 patients showed no 
relevant differences between the Licox (19.5±7.1 mmHg) 
and Neurovent multiparameter probe derived values 
(21.7±9.5 mmHg) [71]. This was not confirmed in a 
preliminary report in 11 mixed TBI and SAH patients [261]. 
They increased MAP by 20 mmHg for 10 min and varied 
FiO2 and they report that pbtO2 differed significantly at all 
times. “The Licox probe reacted significantly faster to 
changes in FiO(2) and MAP. Limits of agreement ranged 
between -32.1 and 20.0 mmHg. Mean Licox values were 6.1 
mmHg lower than Neurovent values”. They conclude that: 
“These data therefore do not support the view that both 
probes can be used interchangeably” [261]. 

 Based on analysis of ischemia markers from cerebral 
micodialysis a critical ischemic threshold below 10mmHg 
has been reported in an animal study, in which the 
Neurovent-PTO probe was used [262]. Some clinicians 
consider 7mmHg as the critical ischemic threshold [92]. One 
study reports on the signifiicant association between serum 
levels of S100beta, neuron-specific enolase, and glial 
fibrillary acidic protein, which are considered serum 
biomarkers in severe TBI patients, and hypoxia measured by 
pbtO2 prior to the onset of clinical symptoms [263]. 

 The “Guidelines for the management of severe traumatic 
brain injury” issue a Level III recommendation for pbtO2 
monitoring and recommend maintaining pbtO2 > 15mmHg 
[264]. 

 A study published in 1998 demonstrated that the 
likelihood of death increased with increasing duration of 
time at or below a pbtO2 of 15 torr (2.0 kPa) or with the 
occurrence of any pbtO2 values of < or =6 torr (< or =0.8 
kPa) [265]. This is supported by an analysis of 103 TBI 
patients in which the authors conclude that “…Brain hypoxia 
is associated with poor short-term outcome after severe 
traumatic brain injury independently of elevated ICP, low 
CPP, and injury severity. Other than ICP and CPP, pbtO2 is 
an independent factor for outcome [266]. One paper has 
pointed out that initial radiographic and clinical scales, 
which are correlated with patient outcome after TBI, are not 
associated with subsequent ICP or pbtO2 [267]. PbtO2 may 
be an important therapeutic target after severe traumatic 
brain injury [268]. 

 These studies have also helped to establish a generally 
accepted treatment threshold, which has been confirmed by 
other papers although no clear cut-off value can be given for 
both TBI and SAH [56, 172]. Similar results have been 
reported for pediatric TBI and it has been stressed that: 
“…many patients experience episodes of compromised 
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pbtO2 despite achieving acceptable treatment targets.” [28], 
and “…low brain oxygen levels during the first 24 h 
following head injury may not correlate necessarily with 
poor outcome [27]. Formal analysis of outcome prediction 
variables has shown that: “The combined use of 
microdialysis variables and pbtO2, in addition to ICP, MAP, 
and CPP was found have the best predictive accuracy” [250]. 

 Of interest is another paper that has reported that “The 
presence of anaerobic cerebral metabolism probably depends 
on duration and severity of the hypoxic episode” [232]. This 
conclusion is relevant for clinical practise because it shows 
that: a. pbtO2 monitoring technology detects short episodes 
of cerebral hypoxia which are not picked up by other 
monitoring modalities b. magnitude and duration of cerebral 
hypoxia have prognostic relevance. One study also reports 
on the positive correlation and prognostic value of pbtO2 
measurements and longterm neuropsychological outcome 
after severe traumatic brain injury [269]. 

 This section shows that various factors contribute for the 
different thresholds described above. Several others can be 
listed: age (paediatric, adult), co-morbidity, injury severeity 
(GCS, ISS, etc), underlying pathology (see list of 
indications), timing of placement (pre-, intra-, post OP, 
secondary deterioration), catheter location (injured vs non-
injured side, catheter location if monitored in the injured 
side, i.e. healthy tissue, penumbra zone, injury area), data 
acquisition frequency (minutely, hourly), therapeutic 
interventions [see below], time of outcome assessment 
[discharge, 3 months, 6 months], outcome measures (GOS, 
neuropsychological measures, etc.). 

The Problem of the Randomized Controlled Trial [RCT] 

 Up to date there is no RCT (class one evidence) which 
has shown outcome improvement with pbtO2 monitoring. 
Four controlled reports are available [226, 270-272]. All 
other papers are uncontrolled or case reports. Consequently 
the “Guidelines for the management of severe traumatic 
brain injury” issue a Level III recommendation for pbtO2 
monitoring [264]. The frequently proposed RCT is under 
way. It is called “Brain tissue oxygen monitoring in 
traumatic brain injury (TBI)” (BOOST 2), and can be found 
at: http://clinicaltrials.gov/ct2/show/NCT00974259. It started 
in October 2009 and it is scheduled to be finish in August 
2014. No preliminary results are yet available. 

 In a series of 53 TBI patients 25 patients were treated 
using an ICP monitor alone while 28 patients had pbtO2-
directed care, with comparable ICP and CPP levels for each 
group [226]. The mortality rate was 44% for the first group, 
25% for the second group, which was statistically 
significant. Although they were not exactly matched for age, 
44±14 years for the ICP/CPP group vs 38±18 years for the 
pbtO2 group, the outcome difference was significant [p < 
0.05]. The conclude that “The use of both ICP and brain 
tissue PO2 monitors and therapy directed at brain tissue PO2 
is associated with reduced patient death following severe 
TBI” [226]. This report on outcome was not confirmed in a 
larger, uncontrolled series [22]. The authors report that a 
pbtO2 guided treatment supplementing ICP/CPP therapy did 
not result in improved outcome at six months, despite a 
significant reduction in cerebral hypoxic episodes. 

 An outcome study of 145 TBI patients receiving either 
ICP or Licox-pbtO2 monitoring reports that mortality, 
hospital length of stay, and ICU length of stay were 
equivalent. More patients in the Licox group achieved a 
moderate/recovered GOS at 3 months than in the Camino 
Group (79% vs 61%; P = .09). Six-month outcomes were 
also better although not at a statistically significant level 
[271]. 

 One study confirms that an ICP/pbtO2 directed protocol 
reduces the mortality rate after TBI in major trauma and 
resulted in improved 6-month clinical outcomes over the 
standard ICP/CPP-directed therapy when compared to 
historical controls [270]. 

 One paper, which was published in 2009 deserves special 
attention: This series has not confirmed the utility of pbtO2 
monitoring for TBI patients [272]. The authors report that: 
[1] The mortality rate in 123 patients with traumatic brain 
injury whose clinical management was guided by pbtO2 
monitoring was not reduced in comparison with that in 
patients who received ICP monitoring alone, and [2]. Brain 
tissue oxygen monitoring was associated with worse 
neurological outcome and increased hospital resource 
utilization [272]. In consideration of the possible 
implications of their findings the authors seek to find reasons 
for their findings. They report that the pbtO2 monitored 
group was younger and more severely injured. They argue 
that their treatment threshold of 20mmHg may have been 
incorrect and that that treatment strategies, e.g. CPP 
augmentation using vasopressors may have caused more 
harmful side effects than beneficial effects. At last they 
argue that the potential for residual confounding is most 
likely due to the observational nature of their study with a 
lack of proper randomization. The authors conclude that a 
randomized trial is necessary to address the issue. This is in 
keeping with the arguments previously listed [200, 273]. 

PbtO2 and Other Monitoring Parameters 

 An analysis of a large pediatric TBI series has suggested 
that pbtO2 cannot be inferred from other clinical and 
physiological variables. The authors stress that: “Reduced 
pbtO2 is shown to be an independent factor associated with 
poor outcome in pediatric severe TBI in the largest study to 
date. It appears to have a stronger association with outcome 
than conventionally evaluated measures [33]. They continue 
to conclude that: “Our data show that pbtO2 is poorly 
predicted by clinical and physiological factors commonly 
measured in the pediatric ICU. Multimodality monitoring 
may be needed to detect all secondary cerebral insults in 
pediatric TBI after TBI” [32]. 

 The same group also studied the frequency of an adverse 
event, defined as a pbtO2 of less than 10mmHg, as a point 
prevalence at 24 and 72 h post-injury, compared with the 
cumulative burden measured as a frequency of the event over 
the full duration of monitoring They report that: “Reduced 
pbtO2 was more common early than late after injury. The 
point prevalence of reduced pbtO2 at the selected time points 
was relatively low [10 % of patients at 24 h and no patients 
at the 72-h mark post-injury]. The cumulative burden of 
these events over the full duration of monitoring was 
relatively high: 50 % of patients had episodes of pbtO2 less 
than 10 mmHg and 88 % had PbtO2 less than 20 mmHg”. 
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They conclude that: “Point-in-time monitoring in a dynamic 
condition like TBI may underestimate the overall frequency 
of adverse events, like reduced pbtO2… “ It supports the 
utility of continuous rather than hourly monitoring and 
recording/charting [37]. 

Treatment Stategies 

 When it comes to treating reduced ptiO2 “the nature and 
effectiveness of commonly used interventions in correcting 
compromised pbtO2 in TBI remains unclear” [274]. In an 
attempt to evaluate the effectiveness and magnitude of 
interventions the authors report their retrospective review of 
a series of 92 TBI patients, in which they report that: “Five 
interventions: narcotics or sedation, pressors, repositioning, 
FIO2/PEEP increases, and combined sedation or narcotics 
and pressors were the most commonly used strategies. 
Increasing the number of interventions resulted in worsening 
the time to pbtO2 correction. Triple combinations resulted in 
the lowest DeltaICP and dual combinations in the highest 
DeltaCPP (p < 0.05) [274]. They conclude that: “Clinicians 
use a limited number of interventions when correcting 
compromised pbtO2. Using strategies employing many 
interventions administered closely together may be less 
effective in correcting pbtO2, ICP, and CPP deficits. Some 
pbtO2 deficits may be self-limited” [274]. 

 PbtO2 monitoring has been used to study the effects of 
the neurological wake-up test with interruption of sedation 
and analgesics (IS) [229]. The authors report that: “In IS-
trials that had to be aborted, a significant increase in ICP and 
decrease in pbtO2 (P < 0.05), including 67% with critical 
values of pbtO2 < 20 mmHg, a tendency to brain metabolic 
distress (P < 0.07) was observed” [229]. 

Hyperventilation 

 Several studies have addressed a long and much debated 
issue in neurocritical care: the role of hyperventilation for 
controlling intracranial hypertension. Hyperventilation 
constricts cerebral blood vessels which will lead to ICP 
reduction, however in turn can cause reduced rCBF, 
hypoperfusion and ischemia and lead to exacerbation of 
brain swelling. PbtO2 technology has the potential to guide 
the degree of hyperventilation because of its ability to 
indicate states of hypoperfusion and impending ischemia 
[70, 102, 112, 175, 241, 275, 276]. 

 This utility has also been demonstrated intraoperatively 
in AVM surgery: “PbtO2 monitoring has a high reliability in 
the detection of intraoperative tissue hypoxia” [65]. Similar 
recommendations have yet previously been reported [183]. 
One paper, however reports that in 3 of 17 TBI patients they 
noted an increase of pbtO2 on hyperventilation, which they 
called a “paradox reaction” [277]. This pattern was only seen 
in the early phase between days 0 and 3 after injury. It may 
represent flow-metabolic uncoupling, and it stresses the 
utility of multimodality monitoring for which other 
parameters are used as well. 

Aneurysm Surgery - Intraoperative Utility 

 One paper adresses the utility of intraoperative pbtO2 
recording during MCA aneurysm surgery after SAH and the 
authors suggest that surgical action may be revised if pbtO2 
decreases. They report that: “Postoperative infarction in the 

territory of MCA developed in cases with an abrupt decrease 
of pbtO2 and a very low and persistent minimum value, 
during temporary clipping, and an incomplete recovery after 
definitive clipping. Verification of clip position should be 
considered when there is an incomplete recovery or a 
persistent fall in pbtO2 after definitive clipping“ [62]. The 
same group has also published on the same matter for surg-
ery of unruptured MCA aneurysms. Here they report that: 
“PbtO2 monitoring during aneurysm surgery shows brain 
tissue perfusion in real time and there is a correlation 
between any episode of reduced blood flow to the affected 
vascular territory during surgery and a decrease of pbtO2 
values. Unexpected low basal values were obtained in 
"uninjured" brain, with no influence from subarachnoid 
hemorrhage. The values of risk for brain infarction during 
temporary arterial occlusion still need further studies, but an 
incomplete recovery or a persistent fall in pbtO2 values after 
definitive clipping should be considered as an indication for 
verification of the position of the clip [63]. 

Triple H Therapy 

 PbtO2 technology has been used to investigate the utility 
of hypervolemia and hypertension therapy for prophylaxis 
and treatment of symptomatic cerebral vasospasm in SAH 
[278]. The authors, most interestingly, report that during 55 
periods of moderate hypertension pbtO2 increases were 
found in 50 cases (90%), with complications occurring in 
three patients (8%). During 25 periods of hypervolemia, 
pbtO2 increases occurred during three intervals (12%), with 
complications occurring in nine patients (53%). During the 
10 periods of aggressive hypervolemic hypertension, pbtO2 
increases were found during six of the intervals (60%), with 
complications in five patients (50%). They concluded that 
“in poor-grade patients, moderate hypertension (CPP 80-120 
mm Hg) in a normovolemic, hemodiluted patient is an 
effective method of improving cerebral oxygenation and is 
associated with a lower complication rate compared with 
hypervolemia or aggressive hypertension therapy”. A similar 
conclusion has been reported from another group [55]. Both 
reports support the utility of pbtO2 for optimizing Triple-H-
Therapy in SAH patients. 

Vasospasm Detection After SAH 

 The utility of pbtO2 monitoring in cerebral vasospasm 
afer SAH is subject of three reports [279-281]. The first 
study reports that post-operative TCD vasospasm developed 
in 13 patients, all of which had intraoperative pre-clipping 
pbtO2 < 10mmHg and pbtO2 was significantly lower in 
cases that developed TCD vasospasm. This association was 
independent of age, clinical status, or CT findings. The 
authors conclude that: “The finding of low intraoperative 
basal pbtO2 values may be an indicator for a high risk of 
occurrence of post-operative TCD vasospasm in cases of 
aneurysmatic SAH” [279]. The second study reports a 
significant pbtO2 increase in a series of vasospasm patients 
after endovascular treatment while CPP, ICP, SaO(2), and 
FiO2, did not. They conclude that: “pbtO2 monitoring 
provides the interventionalist with an objective physiologic 
parameter to determine adequate spasmolysis” but point out 
that: “Further investigation is needed to establish target 
pbtO2 rates indicative of adequate reperfusion, which can be 
used in the endovascular suite” [280]. The third study reports 
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that Erythropoietin increases pbtO2 in severe SAH patients 
with severe cerebral vasospasm but they point out that the 
effect on outcome requires further investigation [281]. 

 One interesting case report presents a patient suffering 
from delayed and profound post-traumatic vasospasm, which 
was recognized solely by pbtO2 monitoring. The patient was 
successful treated with intraarterial Verapamil and baloon 
angioplasty [57]. 

Head and Body Position 

 PbtO2 technology has been used to address another much 
and long debated issue in neurocritical care: the role of head 
elevation. A study in 2004 using pbtO2 measurements has 
demonstrated that “Routine nursing of patients with severe 
head injury at 30 degrees of head elevation within 24 hours 
after trauma leads to a consistent reduction of ICP 
[statistically significant] and an improvement in CPP 
[although not statistically significant] without concomitant 
deleterious changes in cerebral oxygenation” [10]. The 
effects of various other changes of head and body positions 
on pbtO2 has been reported and the authors conclude that: 
"Positioning practices can positively or negatively affect 
pbtO2 and ICP and fluctuate with considerable variability 
among patients. Nurses must consider potential effects of 
turning, evaluate changes with positioning on the basis of 
monitoring feedback from multimodality devices, and make 
independent clinical judgments about optimal positions to 
maintain or improve cerebral oxygenation" [282]. 

 PbtO2 technology has been used to assess the effects of 
prone position on CPP and pbtO2 in SAH patients with acute 
respiratory distress syndrome (ARDS) [53]. The authors 
report a beneficial effect of prone positioning on pbtO2 by 
increasing arterial oxygenation. This effect outweighs the 
adverse effect of prone positioning on cerebral tissue 
oxygenation by decreasing cerebral perfusion pressure in 
ARDS patients. 

PbtO2 during Patient Transport 

 Directions, magnitudes, and time courses of patient 
transport for CT scanning on pbtO2 has been systematically 
assessed [283]. The authors conclude that: "... transport to 
and from the intensive care unit may adversely affect pbtO2. 
This deleterious effect is greater when pbtO2 is already 
compromised and may be associated with lung function." 
Fifty-seven CT scans in 34 TBI patients using a portable 
scanner without patient transport had no effects on pbtO2 
[284]. 

 Decompressive Craniectomy and Ventricular Drainage 

 It has been shown in TBI and SAH patients that 
decompressive craniectomy improves pbtO2 [212, 285]. 
Three papers have addressed the utility of pbtO2 monitoring 
technology for timing of decompressive hemicraniectomy 
(DCH) in severe brain swelling [7, 42, 221]. One case report 
addresses its utility for DCH in a patient suffering from 
bacterial meningitis [83]. It has been shown that not only 
absolute pbtO2 values should be considered for the 
indication of DCH but also magnitude and the time course of 
monitoring trends [7]. Another study has concluded that “ 
…pbtO2 monitoring could be an important tool for timing 
craniectomy in the future” [221]. This report is supported by 

a case report [205]. The effects of DCH, which represents a 
very invasive treatment option and which is considered an 
ultimate surgical treatment option has also been studied: 
“DCH in the treatment of severe brain injury is associated 
with a significant improvement in brain oxygenation” [6]. In 
another, however small, series of patients it was pointed out 
that despite a rapid pbtO2 increase and ICP reduction from 
critical to normal values “the patients' clinical status 
remained poor with two in a persistent vegetative state and 
one dead” [50]. This is in keeping with the long-standing and 
unresolved debate about the utility of DCH and its particular 
regard to outcome [286]. 

 It has also been reported that ventriculostomy for control 
of intracranial hypertension in TBI leads to a significant 
pbtO2 improvement, irrespective of the pre-procedural 
pbtO2 level [287]. 

Nimodipine, Mannitol and Hypertonic Saline Solution 

 Other long and much debated issues in neurocritical care 
have been addressed under consideration of pbtO2 
measurements: the effects of commonly used drugs in 
neurocritical care: Nimodipine and Mannitol. A paper 
published in 2005 has reported that “…although Nimodipine 
use is associated with improved outcome following SAH, in 
some patients it can temporarily reduce brain tissue PO2” 
[51]. A pbtO2 increase following intraarterial Nimodipine 
infusion was reported in 8 out of 9 SAH patients with 
refractory arterial vasospasm [288]. These reports will spark 
the academic discussion about whether Nimodipine should 
be used in patients suffering from aneurysmal subarachnoid 
hemorrhage. The most valuable conclusion for daily 
neurocritical care practise which can be extracted from this 
study is that using pbtO2 monitoring technology will 
identifiy those patients in which Nimodipine has a negative 
effect [176]. 

 In this context it can be noted that Nicardipine, when 
used to treat acute hypertensive emergencies in a combined 
aneurysmal SAH, ICH, AVM, and hypoxic brain injury 
series, had no effect on pbtO2, despite significant CPP 
reduction [289]. 

 With regard to Mannitol it has been shown that although 
Mannitol reduces ICP it has little effect on pbtO2 [17, 176]. 
This is rather unexpected because it is expected that ICP 
reduction will improve pbtO2. The important clinical 
conclusion from this finding - however is that pbtO2 
monitoring technology should be used in addition to ICP 
monitoring as the two monitoring parameters are not 
ultimately linked. Further evidence to support this finding is 
provided in a series of 12 patients after severe haemorrhagic 
stroke [78]. The authors report that: “…CPP increased 45 
min [from 73 +/- 18 to 85 +/- 22 mm Hg, p=0.002] after the 
start of mannitol infusions, whereas mean arterial blood 
pressure and pbtO2did not change significantly [78]”. 

 The effects of hypertonic saline solution [HSS] on pbtO2 
have been studied in 12 hypotensive patients after severe 
TBI [220]. The authors report a uniform and persistent 
pbtO2 increase, along with a 45% ICP decrease, which 
lasted for six hours, a subsequent CPP increase, and less 
demand for inotrope use [220]. Similar results have been 
reported elsewhere [44, 219, 290], although the persistent 
pbtO2 increase has not been confirmed in a combined TBI 
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and stroke series in which Mannitol and HSS were compared 
[77]. This may be due to different treatment thresholds and 
different time points for post infusion assessment of 
monitored variables in different series [290]. 

Vasopressors 

 Vasopressors are commonly used in neurocritical care. 
There is debate whether Dopamine or Noradrenaline should 
be preferred. PbtO2 monitoring has been used to study the 
effects of both drugs in a comparative studies. The authors 
report that: “… CPP augmentation with norepinephrine, but 
not with dopamine, resulted in a significant reduction in 
arterial-venous oxygen difference (37±11 vs 33±12 ml/l) and 
a significant increase in brain tissue oxygen (2.6±1.1 vs 
3.0±1.1 kPa). The CPP intervention did not significantly 
affect intracranial pressure. There were no significant 
differences between norepinephrine and dopamine on 
cerebral oxygenation or metabolism either at baseline or 
following a CPP intervention; however, the response to a 
CPP intervention with dopamine seemed to be more variable 
than the response achieved with norepinephrine” [225]. 
Phenylephrine doubled pbtO2 in four of five TBI patients 
three hours after start of the infusion [228]. 

 One animal study suggests adverse effects of Epinephrine 
on pbtO2 during CPR [291]. It must be said, however, that 
measurements were not clearly intraparenchymally and they 
used an optical sensor which is used for arterial blood gas 
analysis. 

Barbiturates and Sedatives 

 The effect of barbiturates on pbtO2 has been studied in 
patients with refractory intracranial hypertension [2, 292]. 
One report concludes that “Of eight patients with 
prebarbiturate PTiO[2] levels above 10 mmHg, six had a 
further improvement in oxygenation” [2]. Obviously 
barbiturate therapy does not always lead to a pbtO2 
improvement. This finding has also been reported in a series 
of 10 patients. The authors report that two patients 
experienced a significant pbtO2 decrease upon pentobarbital 
treatment [292]. 

 The effects of a commonly used sedative in neurocritical 
care, propofol, have also been studies using pbtO2 
monitoring. Somewhat unexpectedly they found that burst 
suppression induced by propofol has no effect on cerebral 
oxygenation [96]. An intraoperative bolus of 
dexmedetomidine in patients undergoing neurovascular 
surgery also had no effect on pbtO2 [60]. 

Blood Glucose Levels and Obesity 

 The issue of blood glucose levels and its relation to 
cerebral oxygenation in primary basal ganglia hemorrhage 
has been studied. The results show that a strict control of 
blood glucose levels (4-8 mmol/L) with continuous titrated 
insulin therapy is associated with improved cerebral 
oxygenation when compared to a conventional “sliding 
scale” (8.1 to 10 mmol/L) bolus subcutaneous insulin 
administration [74]. 

 It has also been reported that obesity is an independent 
predictor of compromised pbtO2. The authors speculate that 
this may be mediated through obesity-related pulmonary 

dysfunction and inadequate compensatory mechanisms 
[293]. 

Fraction of Inspired Oxygen/Hyperoxia 

 The fraction of inspired oxygen (FiO2) obviously affects 
cerebral pbtO2 levels. One study has recently addressed this 
issue, which is important in the interpretation of measured 
pbtO2 values [294]. The authors report a pbtO2 increase 
from a baseline of 30±5 mmHg to 147±36 mmHg when the 
FiO2 was increased from individual baseline values to 
100%. When it was decreased to 0.6 FiO2 pbtO2 fell to 63±6 
mmHg. Further evidence into the effects of FiO2 levels on 
pbtO2 is provided by a study which shows that the 
magnitude of pbtO2 changes depends on rCBF [240]. It has 
also been shown that 2-hour periods of normobaric 
hyperoxia (NH) increases pbtO2 values but do not produce 
oxidative stress and/or change antioxidant reserves in CSF 
(lipid peroxidation (F2-isoprostane (ELISA)), protein 
oxidation [protein sulfhydryl (fluorescence)) and antioxidant 
defenses (total antioxidant reserve (AOR) 
(chemiluminescence) and glutathione (fluorescence)) [239]. 
Another paper in 30 TBI patients reports that NH 
“…increased PaO(2) and PtiO(2) and significantly decreased 
the lactate pyruvate ration in patients in whom baseline brain 
lactate levels were increased, suggesting that NH improved 
the brain redox state”, and theyconclude that NH “… may 
only be effective in a specific group of patients” [197]. 

 The issue of O2 reactivity in response to increased FiO2 
levels has been studied in 37 TBI patients [194]. The authors 
measured paO2 and pbtO2 after an increase in FiO2 
concentration from baseline to 1.0 for 20 minutes and 
created the “PF ratio”. Patients with higher PF ratios 
achieved greater pbtO2 during oxygen challenge than those 
with a low PF ratio because they achieved a higher PaO2 
after an oxygen challenge. They concluded that:”… lung 
function must be considered when interpreting brain tissue 
oxygenation” [194]. Using pbtO2 monitoring and the O2 
reactivity in response to FiO2 variations one groups has 
reported that: "Acute lung injury is an independent risk 
factor for brain hypoxia after severe traumatic brain injury." 
[21]. They advocate: " the use of lung-protective strategies to 
prevent brain hypoxia in TBI patients." 

 The effects were also studied in a series of 28 children 
with severe TBI [34]. The authors conclude that: 
"Normobaric hyperoxia increases pbtO2 in children with 
severe TBI, but the response is variable. The magnitude of 
this response is related to the change in PaO2 and the 
baseline pbtO2. A greater response appears to be associated 
with worse outcome." 

 A study of 52 TBI patients showed that normobaric 
hyperoxia treatment resulted in a significant improvement in 
biochemical cerebral markers [295]. Using silmultaneous 
cerebral microdialysis they report increased glucose levels 
with significantly decreased glutamate and lactate levels. 
They also report lactate/glucose and lactate/pyruvate ratio 
decreases at comparable CPP levels. Outcome in the 
normobaric hyperoxia treatment group was improved. They 
concluded that: “…normobaric hyperoxia in patients with 
severe TBI improves the indices of brain oxidative 
metabolism. Based on these data further mechanistic studies 
and a prospective randomized controlled trial are warranted” 
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[295]. Similar findings have been reported in a series of 8 
TBI patients [193]. Another normobaric hyperoxia protocol 
was used in a study of 11 TBI patients, pbtO2 measurements 
were supplemented by cerebral microdialysis and oxygen-15 
positron emission tomography [230]. The authors conclude 
that: “…hyperoxia increases pbtO2 with a variable effect on 
lactate and lactate/pyruvate ratio. Microdialysis does not, 
however, predict the universal increases in cerebral 
metabolic rate of oxygen in at-risk tissue, which imply 
preferential metabolic benefit with hyperoxia”. 

 The effects of hyperbaric and normobaric hyperoxia 
[NBH] were assessed in a prospective, randomized clinical 
trial in a series of 69 severe TBI patients [296]. The authors 
conclude that: "Hyperbaric O2 has a more robust 
posttreatment effect than NBH on oxidative cerebral 
metabolism related to its ability to produce a brain tissue 
PO2 > or = 200 mm Hg. However, it appears that O2 
treatment for severe TBI is not an all or nothing phenomenon 
but represents a graduated effect. No signs of pulmonary or 
cerebral O2 toxicity were present." 

Hypo- and Hyperthermia 

 Four studies have addressed the relation between hypo- 
and hyperthermia and pbtO2 [97-99, 202]. One study of 72 
severe TBI patients reports that: “…hyperthermia does not 
seem to reduce pbtO2 or increase the number of episodes of 
brain tissue hypoxia in patients with severe TBI. This 
provides evidence to support their conclusion: “These results 
suggest that hyperthermia may worsen outcome after TBI 
through mechanisms that may be separate from 
compromised brain oxygen” [99]. A study of 30 severe TBI 
patients reports that: “…brain tissue PO2 decreased with 
hypothermia, with a significant reduction below 35 degrees 
C [97]”. The effects of mild hypothermia [34 -36 degrees C] 
was studies in 33 severe TBI patients who had persistent 
increased ICP > 20 mmHg. In keeping with the previous 
study they report that: “Mild induced hypothermia decreased 
brain oxygen significantly from 33±24 mmHg to 30±22 
mmHg (p < 0.05)” [98]. 

 The effects of mild hypothermia on pbrO2 in a large 
series of 148 TBI patients are not uniform [202]. PbtO2 
increased in patients with GCS 5 to 8 and decreased in 
patients with GCS 3 and 4. 

 It is possible that cerebral oxygenation may influence the 
effects of hypothermia, which has been reported in an animal 
study [143]. 

 TBI and SAH Patients who developed shivering during 
induced normothermia were studied. The authors report that 
shivering was associated with an overall pbtO2 reduction 
from 34.1±7.3 to 24.4±5.5 mmHg (P < 0.001), and they 
report a significant correlation between the magnitude of 
shivering-associated pbtO2 decrease [delta pbtO2] and 
circulating water temperature (R = 0.82, P < 0.001). They, 
however, conclude that: “The clinical significance of 
shivering-induced decrease in brain tissue oxygenation 
remains to be determined” [290]. 

Anemia 

 "Anemia is frequently encountered in critically ill 
patients and adversely affects cerebral oxygen delivery and 

pbtO2" [58]. One group reports in a series of 80 TBI patients 
that: “a Hemoglobin level no greater than 9 g/dl (anaemia) 
was associated with compromised pbtO2 (pbtO2 <20 
mmHg)” [297]. They also report that: “Anemia with 
simultaneous compromised pbtO2, but not anemia alone, 
was a risk factor for unfavorable outcome, irrespective of 
injury severity” [297]. 

 Anaemia which is treated prompts investigations on the 
effects of packed red blood cell transfusion (RBCT) on 
pbtO2. One group reports a graded response of local cerebral 
oxygenation in a combined group of TBI and SAH patients. 
In 74% of patients they observed a pbtO2 increase but did 
not provide a suitable explanation why it fell in 26% of 
patients. Cerebral perfusion pressure, CPP, SaO2, and FiO2 
were similar before and after RBCT [298]. Another group 
reports in a series of sixty TBI Patients that “All of the 
patients with basal PtiO(2)<15mmHg showed an increment 
in pbtO2 versus 74.5% of patients with basal pbtO2 
or=15mmHg (p<0.01, hour 3).” They conclude that 
Erythrocyte transfusion is associated with a variable and 
prolonged increment of cerebral tissue oxygenation in 
anemic patients with severe traumatic brain injury. Low 
baseline pbtO2 levels (<15mmHg) could define those 
patients who benefit the most from erythrocyte transfusion 
[3]. Another severe TBI series demonstrated that 57% of 
patients had a pbtO2 increase, whereas in 43% of patients, 
pbtO2 either did not change or decreased. pbtO2 
improvement was not associated with baseline hemoglobin 
concentration or low pbtO2 (<1 kPa) [299]. One paper 
reports that the effect of RBCT on pbtO2 is greater in 
women than in men [300]. 

 The effects of RCBT in 17 children after severe TBI have 
also been reported [35]. The pbtO2 increase was transient 
and seen in 79% of RBCT. A transient decrease was seen in 
21%. The authors also report that: "Brain tissue oxygen 
tension returned to baseline within 24 hrs. Reliable 
predictors of this brain tissue oxygen tension response to 
blood transfusion, however, remain elusive." [35]. 

 The aspect of storage duration of RPBC on the effects of 
pbtO2 has been studied in 66 anaemic male TBI patients 
[136]. The authors report that: “There was a significant 
short-lasting (3-4 hrs) increase in pbtO2 values after 
transfusion of erythrocytes stored for <10 days, 10-14 days, 
or 15-19 days, compared with those at baseline. In contrast, 
no significant changes in pbtO2 were observed after 
transfusion of erythrocytes stored >19 days” [136]. Similar 
findings have been confirmed elsewhere in an animal study 
[135]. 

Clazosentan 

 The effects of Clazosentan, a selective endothelin 
receptor subtype A antagonist, on pbtO2 in SAH patients in 
a phase IIa study have been reported with so far little effects 
[46]. A non-peer reviewed paper reports on the effects of 
intraoperative intracisternal subarachnoid sodium 
nitroprusside (SNP) administration in patients with 
aneurysmal SAH [204]. High-dose intra-arterial verapamil 
for the treatment of cerebral vasospasm after subarachnoid 
hemorrhage Verapamil caused no significant pbtO2 changes 
[301]. 
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Cerebral Angiography 

 One study reports on the utility of pbtO2 monitoring 
during cerebral angiography [68]. In their series of 14 
patients four patients showed a linear pbtO2 decrease which 
indicated cerebral hypoxia without ICP elevation when the 
cerebral catheter was advanced through cervical vessels. 
They also report significant correlations between severe 
intracranial angiographic arterial caliber reduction and 
reduced pbtO2 values, which was also reflected in an 
increased number of ischemic lesions on CT imaging [68]. 

CPP Management 

 Based on an analysis of 18 comatose intracerebral 
hemorrhage patients it has been suggested that: “…pbtO2 
monitoring can be used to identify CPP targets for optimal 
brain tissue oxygenation” [76]. A paper with 30 poor grade 
SAH patients reports that metabolic crisis and BTH are 
associated with mortality and poor functional recovery after 
SAH. CPP levels<70 mm Hg was associated with metabolic 
crisis and brain tissue hypoxia, and may increase the risk of 
secondary brain injury in poor-grade SAH patient [302]. The 
role of CPP management in severe TBI patients has been 
adressed in light of pbtO2 measurements in order to restore 
“normal” cerebral oxygenation, i.e. 25 mmHg. A 
combination of sedation and CPP augmentation were 
effective in 73 and 66% of episodes of compromised brain 
oxygen, respectively [303]. A report in poor grade SAH 
patients which adresses the relationship between CPP, ICP 
and pbtO2 confirms the observation that ICP and CPP 
monitoring “… may not always detect episodes of cerebral 
compromise in SAH patients” [304]. They suggest that: 
“…several complementary monitors may be needed to 
optimize the care of poor-grade SAH patients”, i.e. cerebral 
microdialysis and pbtO2 [304]. Similar reports have been 
presented for TBI patients [305]. Another groups reports 
similar finding which represents an important clinical aspect: 
“CPP and ICP should not be used as surrogates for pbtO2 
since cerebral oxygenation varies independently of cerebral 
hemodynamics and pressures” [306]. This finding is again 
supported by a series of 16 TBI patients in which the authors 
conclude that:” No clear relationship was found between the 
temporal pattern of cytokines and the behavior of the 
intracranial pressure, brain tissue oxygenation, and the 
presence or absence of swelling in the computed tomography 
scan” [196]. This finding has been confirmed in children: 
“Although very high ICP is associated with reduced pbtO2, 
in general, absolute ICP has a poor relationship with pbtO2” 
[307]. 

Applied Physiology 

 More complex physiological matters, which have 
attracted much attention in neurocritical care have also been 
addressed using pbtO2 technology: the role of cerebral 
autoregulation monitoring, i.e. the link between mechanisms 
of cerebral vascular regulation and cerebral oxygenation 
regulation [30, 141, 216, 242, 308, 309]. Studies have shown 
that the mechanisms are closely linked [4, 49, 54, 72, 178, 
222, 223, 258, 310, 311]. Of note, it has been reported that 
“The severity of brain tissue oxygenation derangement 
correlates with increasing cerebrovascular dysautoregulation 
in patients succumbing to severe head injury,…” [4]. One 
study has concluded that “Assessment of pbtO2-

autoregulation gives valuable information on which patient 
will benefit from an increase in CPP and which CPP should 
be achieved to do so” [49]. This finding is in keeping with 
the suggestion that CPP elevation may be beneficial for ICP 
control and pbtO2 management in selected patients after 
TBI, those with intact cerebral autoregulation [199, 223]. 

 Further support for this therapeutic concept is provided 
from a series of 38 TBI patients: "Driving cerebral perfusion 
pressure in excess of optimal cerebral perfusion pressure 
does not yield improvements in brain tissue oxygen after 
head injury and should be avoided, whereas cerebral 
perfusion pressure below optimal cerebral perfusion pressure 
may result in secondary cerebral ischemia" [258]. 

 This view has recently been challenged with the authors’ 
conclusions: “We show that pbtO2 generally tracks the 
direction of CPP irrespective of the state of cerebral 
autoregulation” [309]. It must be noted, however, that their 
study examines spontaneous CPP changes while others have 
investigated pharmacologically induced CPP variations 
[178]. 

 PbtO2-based autoregulation monitoring using an index 
named “ORx” has also been investigated in SAH patients 
[54, 59, 312, 313]. The authors report that “ORx values from 
days 5 and 6 after SAH carried predictive value for the 
occurrence of delayed infarction but before this event 
ultimately occurred” [54]. They conclude that “ORx 
indicates impaired autoregulation in patients who develop 
delayed infarction after SAH [54]. Furthermore, this index 
may distinguish between patients who finally develop 
delayed infarction and those who do not [54].” Such 
identification would allow timely interventions during the so 
called “window of opportunity” [54]. A larger series has 
raised the issue that: “The status of cerebrovascular 
autoregulation (measured by the ORx) might be an important 
pathophysiological factor in the disease process after SAH 
because impaired autoregulation was independently 
associated with an unfavorable outcome” [59]. 

 The utility of the ORx for TBI patients, however, has 
been questioned [308]. A preliminary study in SAH patients 
could not confirm the utility of the ORx Index [41], 
however, methodological issues makes comparison of study 
results difficult [310]. An observational pilot study showed 
that ORx is severely disturbed in the edematous 
perihemorrhagic tissue after spontaneous intracerebral 
hemorrhage [69]. 

 One animal study in which pbtO2 monitoring is 
compared with near infrared spectroscopy [NIRS] 
measurements (rSO[2]) in pigs during cardiopulmonary 
resuscitation is noteworthy because transcutaneous NIRS 
monitoring is commonly used in cerebro- and cardiovascular 
surgery [123]. The authors report that in contrast to 
transcutaneous NIRS measurements, NIRS readings obtained 
from skull showed a significant correlation to brain tissue 
oxygen partial pressure values. This study questions the 
validity of commonly used transcutaneous NIRS 
measurements. Similar evidence is provided from a series of 
22 TBI patients: "In patients with severe TBI, pbtO2 and 
rSO(2) were directly and significantly related. Severe 
intracerebral hypoxia was better detected by rSO(2) than was 
moderate intracerebral hypoxia. However, the diagnostic 
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accuracy of rSO(2) was limited, and this measure should not 
be considered a substitute for routine pbtO2 monitoring." 
[243]. 

 Another animal study is noteworthy [126]. The authors 
describe the effects of volatile anesthetics on pbtO2 and 
other physiological parameters at various FiO2 levels. They 
conclude that “cerebral PO2 cannot be inferred directly from 
measurements of other parameters, indicating that 
methodology incorporating continuous direct measurement 
of brain oxygen will lead to a better understanding of 
cerebral oxygenation under anesthesia and hypoxia.” 

 One animal study has aimed to define the optimal chest 
compression/ventilation ratio for basic life support [BLS] 
using pbtO2 recordings. They conclude that: “During BLS, a 
compression/ventilation-ratio of 100:5 seems to be 
equivalent to 30:2, while ratios of 100:2 or compressions-
only deteriorate peripheral arterial oxygenation and reduce 
the chance for return of spontaneous circulation” [108]. 

Cerebral Circulatory Arrest and Brain Death 

 PbtO2 monitoring in 6 patients with cerebral circulatory 
arrest has been investigated. The authors point out that 
pbtO2 “…decreased toward 0 mmHg as ICP increased and 
CPP decreased. PbtO2 reached 0 only when there was 
clinical evidence for brain death (BD). During the 
subsequent 12 hours until the second (BD) examination, 
pbtO2 remained 0 mmHg and did not respond to oxygen 
challenge”. They contrast these patients to five other patients 
in whom pbtO2 was 0 mmHg but who were not brain-dead. 
They report that: “These episodes were transient (<30 
minutes) and responded to an oxygen challenge, directed 
treatment or catheter replacement”. They conclude that “ A 
sustained (>30 minutes) brain pbtO2 of 0 is consistent with 
BD” and they suggest that “…pbtO2 may be used to 
determine when a BD examination is appropriate in the 
pharmacologically suppressed patient” [88]. 

 Further investigation into the reliability of clinical 
variables and neuromonitoring data as predictors of brain 
death shows that patients at risk of progressing to BD were 
those with low pbtO2 (<16mmHg) on admission and during 
the first 24 hours of neuromonitoring [314]. Multivariate 
logistic regression showed that a low pbtO2 level on 
admission was the best independent predictor for BD [314]. 
Similar evidence is provided in a study which reports that: 
“The first 72 hours of pbtO2 neurologic monitoring predicts 
mortality. When the pbtO2 monitor remains below 29 mm 
Hg in the first 72 hours of monitoring, mortality is 
increased” [255]. 

 Brain tissue oxygenation in brain death has been 
published twice as in case series studies. The reports are 
quite uniform: “A sustained [>30 minutes] brain pbtO2 of 0 
is consistent with brain death [88] and “ pbtO2 fell to 0 in all 
patients who experienced brain death, and all patients with 
pbtO2 of 0 experienced brain death. None of the 61 patients 
who did not experience brain death had confirmed pbtO2 
readings of 0” [73]. The authors, however, do point out that 
larger series are needed to assess sensitivity and specificity. 
Similar experiences have been reported in a series of 5 
children diagnosed with brain death [315]. 

 

Safety Issues and Technical Considerations 

 PbtO2 monitoring is considered safe in both children and 
adults [13, 23-25, 30, 316]. There are no published reports 
that persons involved in direct care of the patients have been 
harmed or injured while using pbtO2 monitoring technology. 
Several papers have by now systematically addressed 
technical issues related to using pbtO2 monitoring 
technology [13, 71, 130, 177, 317-319]. 

 One paper reports two “clinically relevant” cerebral 
hemorrhages in 23 catheter insertions. Few further details are 
presented except for the fact that one of the two patients had 
an AVM which was considered the source of bleeding while 
the other remained “unexplained”. Obviously this latter case 
was not large enough to require surgical evacuation [91]. 
Although no other adverse effects using pbtO2 monitoring 
have been published 3 cases of acute subdural hematoma 
related to pbtO2 monitoring probe insertion are known to the 
first author! The outcomes of these cases are unknown. The 
second author has not encountered problems other than very 
few minor haemorrhages along the catheter trajectory in > 
150 probe insertions. 

Catheters - Pros and Cons 

 If one assumes that the insertions techniques and all 
monitoring algorithms for all cathethers are very alike the 
question becomes which one to use for one’s own unit and 
clinical practise? There are no relevant technical pros or cons 
for any catheter which a priori precludes using any of them. 
The differences of the measurement principles are stated 
above in the paper. 

 Based on the authors and their colleagues’ experiences it 
is not only important to understand the basics and principles 
of each technology but also to become familiar with one’s 
own technology and know its potential clinical 
shortcomings. This section is designed to show all 
comparative papers, both peer-reviewed and non-peer-
reviewed, in order to achieve this goal. 

LICOX 

 Some authors consider the Licox probe the “gold 
standard” [71]. It does not represent the authors’ opinion and 
it is likely that it is the “non-gold standard”. It must be noted 
that the Licox technology uses a Clark-type electrode which 
is the most widely established partial pressure of oxygen 
monitoring device – it is used in the great majority of all 
original publications. 

 In 1998 a comprehensive study has addressed technical 
considerations and safety issues. 118 Licox catheters, which 
were used in 101 patients were assessed [13]. This paper 
includes finding of a previous publication based on an 
assessment of 73 catheters [317]. The results are as follows: 

1. Small iatrogenic hematomas were observed for two 
patients (1.7%). This number compares favorably to 
what has been published for similar monitoring 
devices, e.g. intraparenchymal intracranial pressure 
monitoring. This number is much smaller to what has 
been published for external ventricular drains which 
are widely for treatment of TBI patients. 



12    The Open Critical Care Medicine Journal, 2013, Volume 6 Lang and Jaeger 

2. No infection occurred after 6.7 ± 3.9 days. This 
number compares to what has been published (see 1. 
Above) 

3. The technical complication (dislocation or defect) rate 
was 13.6%. This figure is higher to what has been 
published (see 1. Above). It does, however, not 
translate into patients’ harm because it relates to 
technical malfunction. Such technical complications 
incur increased expenses because a fresh sensor is 
required. 

4. The mean adaptation time was 79.0 ± 51.7 min. This 
number relates to this particular monitoring 
technology. 

5. The greatest PO2 display errors were measured 
during the first 4 days of continuous monitoring. 
There is no comparable data to further comment on 
this number. 

6. The maximal probe display error was 1.07 ± 2.14%, 
tested at temperatures between 22 degrees C and 37 
degrees C and tested at oxygen pressures of 0, 44, and 
150 mm Hg. This number is low and is irrelevant for 
daily clinical practise. 

7. The zero display error was -0.21 ± 0.25 mm Hg. This 
number is low and is irrelevant for daily clinical 
practise. 

8. Excluding the first 1 hour after insertion, data are 
reliable, with almost 100% good data quality. 

 Similar features have been reported from other groups: 
No infections or hematomas, one catheter failure, and 2 
transport-related dislodgements in 30 TBI patients monitored 
with Licox [18]. This paper notes a six-hour hyperoxia 
treatment due to misinterpretation of treatment algorithms 
[18]. 

 One paper reports that recordings in 5 out of 186 patient 
recordings obtained with Licox probes were excluded from 
an analysis because the drift exceeded preset limits without 
further details provided [276]. 

 An extensive institutional practise review of 61 cases of 
multimodality monitoring, including 59 cases in which 
pbtO2 was monitored reports an unusually high percentage 
of device malfunction or dislodgement of 43%; n = 26. Their 
hematoma- and infection rates were 3 and 5%, respectively, 
which includes a wide range of invasive cerebral monitors. 
Wit regard to the Licox probe they report a 17% hardware 
malfunction rate and discuss the possible reasons for that 
high number. They did, however, not return the devices to 
the manufacturer for further assessment of “hardware 
malfunction”. They also report one large right frontal 
hematoma upon monitor insertion in a patient who was 
taking two antiplatelet function medications They conclude 
that: “…collaboration among institutions is necessary to 
establish practice guidelines for the choice and placement of 
multimodal monitors. Further advancement in device 
technology is needed to improve insertion techniques, inter-
device compatibility, and device durability, …” [320]. Some 
authors advocate a post-probe-insertion CT to ensure correct 
placement [237, 267, 304]. 

 

LICOX AND NEUROTREND 

 In vitro accuracy, long-term drift and response-time were 
addressed in a paper published in 2005 [177]. This paper 
also compares the Neurotrend and Licox system. The authors 
conclude: 

1. Both systems measure oxygen tension sufficiently. 

2. Licox technology measures more accurately than 
Nerotrend. 

3. Neurotrend sensors read significantly lower pO2 in 
1% O(2). 

4. Neurotrend sensors show an increasing deviation with 
higher oxygen concentrations which was due to two 
of twelve probes. 

5. A slight drift towards lower oxygen tension readings 
for both sensors, but more pronounced for the 
Neurotrend, does not impair long-term use. 

 A comparison is presented in a non-peer reviewed paper 
[130]. Using 49 Licox catheters in 42 patients the authors 
report that 37 patients [88%] has artifact-free data collected. 
Using 50 Neurotrend catheters in 35 patients they had 14 
patients [40%] with artifact-free data collected. They report a 
20% catheter/bolt breakage and 8% catheter/sensor 
malfunction for Neurotrend compared with 0% and 2% for 
Licox. In their series of 99 catheters total they report 2 
hematomas, no further details on size or other details, 
however, are provided [130]. It is also noteworthy that 
monitoring-related infections did not occur. 

 Another non-peer reviewed Licox/ Para-Neurotrend in 
vitro comparative study [319] reports: 

1. 95% response times were 102 ± 13 seconds for first 
generation Licox probes and 135 ± 24 s for Paratrend. 

2. Second generation probes were 134 ± 4 and 116 ± 16 
s respectively. 

3. At pO2 150 mmHg Licox and Paratrend probes were 
accurate with 2.2% and 2.1% error, respectively and 
2.6% and 4.1% for later generation. 

4. At pO2 18 mmHg, Paratrend overestimated by 16.5% 
(absolute error range 2.18 to 4.18 mmHg), 7.4% for 
Neurotrend, Licox underestimated by 1.8% (absolute 
error range 0.08 to 0.52 mmHg) with 3.6% for the 
second generation probe. 

 The authors draw a sensible conclusion: “Although there 
were statistically significant differences between the first 
generation probe types, this difference may not be clinically 
relevant. Overestimation of pO2 by Neurotrend and small 
underestimation by Licox partially explain differences in 
published thresholds for cerebral ischemia. The Neurotrend 
was slightly more accurate and faster than the Paratrend 
system.” [319]. 

 Additional aspects of a direct Licox-Neurotrend 
comparison were reported in a non-peer reviewed study in 7 
TBI/SAH patients [259]: 

1. Mean PtiO2 was generally lower when assessed by 
the Neurotrend, as compared with the Licox [Licox 
27.7 mmHg vs Neurotrend 20.9 mmHg. 
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2. The amplitude of PtiO2 elevations during ventilation 
with 100% oxygen was higher with the Licox, but this 
did not reach statistical significance (Licox 55.2 
mmHg vs Neurotrend 50.2 mmHg). 

3. Regarding clinical stability of the sensors, only one 
Neurotrend sensor provided valid function over the 
desired monitoring period. Five Neurotrend sensors 
dislocated or broke and one sensor did not show any 
function after insertion. 

4. No malfunction occurred with the Licox sensors. 

LICOX PMO 

 Formal testing results of the combined pbtO2-
temperature probe called “PMO” was published in 2008 
[318]. Accuracy and response times of the PMO probe was 
assessed over a range of PO2 values and temperatures under 
controlled laboratory conditions. In addition they tested the 
automated card calibration system and describe their clinical 
experience. The authors report: 

1. The new Licox PMO probe accurately measures 
oxygen tension over a wide range of oxygen 
concentrations and physiological temperatures, but it 
does have a small tendency to underestimate oxygen 
tension (mean error, -3.8 ± 3.5%) that is more 
pronounced between the temperatures of 33 and 39 
degrees C. 

2. The thermistor of the PMO probe also has a tendency 
to underestimate temperature when compared with a 
resistance thermometer (mean error: -0.67± 0.22 C). 

3. The card calibration system was also found to 
introduce some variability in measurements of 
oxygen tension when compared with a manually 
calibrated system. 

4. Clinical experience with the new probe indicates 
good placement within the white matter using the 
improved bolt system and low rates of hematoma 
(2.9%), infection (0%), and dislodgement (5.9%). 

LICOX AND NEUROVENT 

 A formal comparison between Raumedic - Neurovent 
(NV) and Licox (LX) [215] yields the following: 

1. In all gas concentrations, NV and LX sensors 
measured pO2 with high accuracy and stability in 
vitro (mean differences from calculated values were 
for NV 0.76-1.6 mmHg and for LX -0.46-0.26 
mmHg). 

2. Both sensors showed a shorter response time to pO2 
increase (for NV 56 ± 22 s and for LX 78 ± 21 s) 
compared to pO2 decrease (for NV 131 ± 42 s and for 
LX 215 ± 63 s). 

3. NV pO2 values were more stable for changes in 
temperature, while LX sensors showed larger 
standard deviations with increasing temperature (the 
difference from the calculated values in 19.7 mmHg 
O(2) at 40 degrees C were for NV probes between 0.5 
and 1.7 mmHg and LX between -2.3 and 1.9 mmHg). 

4. Both sensors gave stable results with low standard 
deviations during long-term (10 days) use, but with a 
slight elevation of measured pO2 levels by time. 

 The conclusions are: “Both NV and LX were accurate in 
detecting different oxygen tensions, and they did not deviate 
over longer recording times. However, LX needed a 
significantly longer time to detect changes in pO2 levels 
compared to NV. Furthermore, LX probes showed an 
increased standard deviation with higher temperatures.” 
Similar to the data presented above [319] these differences 
are unlikely to be clinically significant. 

 Another formal comparison between Raumedic - 
Neurovent (NV]) and Licox (LX) is available [71]. This 
group reports: 

1. The average of individual mean pbtO2 measurements 
showed no relevant differences between the Licox 
(19.5±7.1) and Neurovent multiparameter probe 
(21.7±9.5). 

2. Twenty-eight Licox probes out of 30 showed proper 
functioning over the desired monitoring period. 
Raumedic multiparameter probes displayed a higher 
malfunction/handling error frequency (2 device 
errors, 11 handling errors). 

3. A comparison of the pbtO2 data between the Licox 
and Raumedic systems according to Bland and 
Altman was possible in 18 out of 30 patients and 
showed acceptable results (mean difference -1.24 mm 
Hg; limits of agreement: -25.1 to +22.6 mm Hg). A 
total of 95.2% of 96,083 recordings was within the 
calculated limits of agreement. 

4. Ex vivo tests of the probes after explantation revealed 
stable ICP and TBr function of the Raumedic probe. 
Precision of Zero pbtO2 did not differ between the 
probes, whereas precision of the 150 mm Hg pbtO2 
was greater in the Raumedic probes. 

 Their conclusions are: “Interpretation of our data is 
limited by several factors: [1] monocentric study; [2] 
reduced mechanical probe stability, handling difficulties 
with the double lumen bolt; [3] design changes to improve 
mechanical stability will require further study; [4] conflict of 
interest with Raumedic because of its support for the study. 
The conclusion drawn from our study is that the new 
multiparameter probe evaluated does measure ICP, TBr, and 
pbtO2. But all the initial data given in this paper have to be 
interpreted cautiously. A new study will be necessary when 
the mechanical stability of the new probe has been 
improved”. 

 A peer reviewed, yet preliminary formal comparison in 
eleven SAH and TBI patients with simultaneously recorded 
Licox and Neurovent pbtO2 for ORx calculation reports a 
mean ORx difference of 0,1 with Licox producing higher 
values [313]. ORx agreement was between -0.6 to +0.7. For 
the calculation of the optimal CPP (CPP[opt)), based on 
cerebral autoregulation assessment, they report a mean 
difference of 0 mmHg, however the limits of agreement 
ranged between -16.5 and +16.4 mmHg. They conclude that: 
“ The main result is that Licox and Raumedic showed 
consistent differences in ORx and CPP(opt). Therefore, ORx 
values of both probes cannot be interchanged and should not 
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be viewed as equivalent. This should be taken into 
consideration when discussing ORx data generated by 
different pbtO2 probe types” [313]. 

 Another formal comparison between the Neurovent PTO 
and the Licox probe was carried out in an animal model 
[321]. Probes were compared on seven manoeuvers (a) 
baseline measurements followed by (b) hyperoxygenation 
(fraction of inspired oxygen (Fio2)=1.0), medically induced 
(c) hypo- and (d) hypertension, (e) hyperventilation, (f) tris-
hydroxymethylaminomethane application, and (g) 
hypoxygenation (Fio2<0.05). The authors report that: 

1. Both probes show good comparability under baseline 
conditions (meandiff 2.09 mm Hg, standard deviation 
0.04 mm Hg, range 1.98-2.20 mm Hg). 

2. Measurement dynamics during hyperoxygenation 
(Fio2=1.0) revealed significantly different profiles, eg 
Neurovent-TO probe reached up to 1.53-fold higher 
pbtO2 values than the Licox probe. 

3. During hypoxygenation (Fio2<0.05), the Neurovent-
TO probe detected the hypoxic level of 8.5 mm Hg 
1.5 minutes earlier than did the Licox probe. 

4. All other maneuvers showed similar responses in both 
technologies. The authors conclude that: “ The 
Neurovent-TO PbrO2 device comparably measures 
PbrO2 under most conditions tested compared with 
the Licox device. The Neurovent-TO is more 
sensitive to rapid Fio2 changes. Further studies are 
necessary to clarify these differences. It is 
questionable whether existing knowledge of Licox 
tissue oxygenation, ie, hypoxic threshold, can be 
directly transferred to the Neurovent-TO [321]. 

 Four other, yet non peer reviewed, Licox-Neurovent 
comparisons are available [166, 322-324]. 

 The first paper with a series of seven SAH patients 
reports clinically acceptable, i.e. stable monitoring 
parameters [322]. They report: 

1. Mean pbtO2 from Licox and Neurovent PTO was 
16.1 +/- 9.0 mmHg and 17.5 +/- 11.9 mmHg 
respectively. 

2. Mean ORx was 0.35 +/- 0.44 and 0.31 +/- 0.43 
respectively. 

3. The pbtO2 difference was -2.73 +/- 10.1 mmHg 
(Licox – Raumedic). 

4. The difference for the calculated ORx was far smaller 
(0.03 +/- 0.31; Licox – Raumedic) and the correlation 
coefficient higher than for both pbtO2 values (0.76 
for ORx vs 0.56 for pbtO2) [322]. 

 The second paper reports on the testing of eight Licox 
and eight Neurovent-PTO sensors for 10 min at 37 °C, 
atmospheric pressure, at an oxygen content of 0% and 100% 
before and after the in vivo test. The same probes were 
implanted in pigs, which underwent hepatectomy. A 100% 
FiO2 challenge for 10 min was performed 2h post-abdominal 
surgery [323]. 

 They report: 

1. At 0% O2 content values varied from 0.2 to 7 mmHg, 
at 100% O2 content from 130 to 165 mmHg. No 
difference between probes was found. 

2. In vivo tests: Raumedic showed statistically 
significant higher pbtO2 (mean +6.3 mmHg) 
compared with Licox. 

3. During O2 challenge, both probes responded 
similarly; however, Raumedic had a 10% higher, 
statistically significant response amplitude. 

4. After explantation there was again no difference 
between the two sensors. 

 They conclude that Neurovent sensors measured higher 
pbtO2 values. There was no significant difference regarding 
overall measurement of in vitro accuracy between the two 
probes, which proved to be robust when used consecutively 
for longer periods and in different environments [323]. 

 The third paper reports on 18 TBI and SAH with 
simultaneous Licox and Neurovent pbtO2 measurements 
[324]. 

 They report: 

1. Both types of probes were able to display 
spontaneous pbtO2 fluctuations and reactions to 
therapy. 

2. Mean measurement difference between the probes 
was -2.3 mmHg, with corresponding 95% limits of 
agreement of -32.3 to 27.5 mmHg. 

3. Regarding an ischemia threshold of 15 mmHg, both 
probes were in agreement in 78% and showed 
disparate results in 22%. 

 They conclude that: “Our data suggest that the pbtO2 
measurements of the two systems cannot be interchanged. 
Although we were unable to determine which system 
delivers more valid data, we do think that more rigorous 
testing is necessary before implementing the new probe in 
clinical routine” [324]. 

 The fourth and final paper, which is an animal study with 
simultaneous Licox and Neurovent recordings after 
hepatectomy in swine reports that: 

1. Despite a statistically significant mean pbtO2 
difference of 6.2 mmHg, the mean ORx (Licox) was 
0.139, the mean ORx(Neurovent) was 0.146 (p = 
0.2098). 

2. Correlation coefficient of ORx values assessed every 
minute and every hour was 0.52 and 0.58 
respectively. 

3. They conclude that: “Despite this significant 
difference in absolute pbtO2 values the derived mean 
ORx values were not different. Similar to the 
established Licox system, the Raumedic system 
seems to enable a valid ORx recording [166]. 

LICOX AND FOXY AL-300 

 Performance of the Licox and the Foxy AL-300 system 
was compared in an animal study [247]. They took 
measurements at (a) baseline with 100% FiO2, (b) during 
episodes of apnea, and (c) during recovery at 100% FiO2.  
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 They report 

for (a): Foxy-ptiO(2) 62+/-24 mm Hg, and Licox-ptiO(2) 
55+/-29 mm Hg, 

for (b): Foxy-ptiO(2) 37+/-12 mm Hg, and Licox-ptiO(2) 
31+/-16 mm Hg, 

for (c): Foxy-ptiO(2) 78+/-26 mm Hg, and Licox-ptiO(2) 
62+/-32 mm Hg, 

with no further statistical analysis. The authors conclude 
that: “The present study demonstrates the feasibility of pO2 
measurements in … cerebral microcirculation using a novel 
uncoated fluorescence quenching probe. The technology 
(Foxy AL-300) allows for real-time investigation of pO2 
changes at a temporal resolution of 0.05 to 10 Hz” [247]. 

PbtO2 Monitoring Reviews & Critical Appraisal 

 After pbtO2 monitoring technology has been introduced 
into clinical practise in the mid 1990’s it has been subjected 
to several formal reviews with an increasing number since 
2003 [1, 130, 171-173, 175, 185, 186, 188, 190, 192, 195, 
198, 200, 206, 208-210, 214, 231, 233, 273, 325-346]. This 
increasing number reflects the fact that pbtO2 monitoring 
has established itself as an additional monitoring tool for 
neurointensive care [347]. It has even been said to be “… as 
close to a gold standard of cerebral oxygenation as we have 
at the bedside” [233]. The Licox Clark type electrode is 
considered a reference or “gold standard” electrode in 
experimental setups [247, 261]. All but one review indicate 
that this technology is useful for routine clinical practise 
[206]. This paper recommends that both AVDO2 monitoring 
and pbtO2 monitoring should only be used for scientific 
research based on the conclusion that these technologies 
have at present not been demonstrated to be associated with 
a clinical benefit [206]. A similar yet less conclusive 
statement is presented in another review [188]. The authors 
point out that “…pbtO2 monitoring may allow one to find 
individual trends and to react therapeutically to counter local 
tissue ischemia but must not be mistaken for a ‘crystal ball’ 
that can predict the ultimate outcome” [188]. It has also been 
emphasized that the surgeon/physician in charge of pbtO2 
monitoring must have experience in data interpretation: "It is 
equally important that the clinician understands relevant 
aspects of brain oxygen physiology and head trauma 
pathophysiology to enable correct interpretation of the 
monitored data and therefore to direct an appropriate 
therapeutic response that is likely to benefit, not harm, the 
patient" [348]. 

 Three reviews have underlined the known fact of a lack 
of a randomized trial to prove the utility of pbtO2 monitoring 
which, speaking from a strictly scientific point of view, is 
needed to recommend its unrestricted routine use [200, 273, 
325]. In keeping with this view a recent comprehensive 
pbtO2 review concludes that the current scientific literature 
implies that: “... These results imply that treating patients to 
increase pbtO2 may improve outcome after severe TBI. This 
question will require further study” [316]. This group has 
previously suggested that:…pbtO2 monitoring might even 
have the potential to improve outcome [226]. 

 If clinicians, however, were to restrict all monitoring 
modalities unless proven by such trials were available, little 
if any routine neuromonitoring would be established. 

 A 2010 paper including 41 severe TBI reports that: "The 
use of pbtO2 monitors to guide therapy was associated with 
higher cumulative fluid balance, more vasopressor use, and 
the development of both pulmonary edema and refractory 
intracranial hypertension" [20]. They also report that patients 
who had a pbtO2 monitor had a worse neurological outcome. 
Although the authors present various approaches to account 
for this association a conclusive explanation is not presented. 

CONCLUSIONS 

 Based on this review it is concluded that pbtO2 
monitoring technology is a safe and valuable cerebral 
monitoring device in neurocritical care. Its clinical utility has 
repeatedly been clearly confirmed because it adds a 
monitoring parameter, independent to established cerebral 
monitoring devices. Pathologic values have been established 
in peer-reviewed research, which are not only relevant to 
outcome but are treatable. 

 The effects of virtually all ICU treatment modalities on 
cerebral oxygenation have been investigated, and pbtO2 
monitoring technology offers new insights into cerebral 
physiology and pathophysiology. The benefits clearly 
outweigh the risks, which remains unchallenged in almost all 
publications retrieved except for two. It is particular 
attractive because it offers continuous, real-time data and it 
is available at the bedside. 

 This technology represents an invasive cerebral 
monitoring modality which requires cranial access and 
harbors a small risk of causing subdural or intraparenchymal 
hematoma. It should only be used in units which have 
experience with comparable monitoring devices, e.g. 
intracranial pressure monitoring. It appears helpful to 
establish guidelines for safe practise [218, 332, 349]. 

 Only a randomized trail, which is currently under way, 
will eventually prove that pbtO2 monitoring will lead to 
improved outcome in any of the conditions for which this 
technology is currently used. 
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