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Abstract: In this paper, the liquid–liquid equilibrium of twenty two ternary and quaternary systems relevant for food industry was
modeled  using  the  NRTL and  UNIQUAC equations  and  the  Flower  Pollination  Algorithm (FPA).  FPA is  an  emerging  nature-
inspired stochastic global optimization method and it has been used for LLE parameter identification of local composition models in
multicomponent mixtures. FPA and its modified version (MFPA) were assessed for solving LLE parameter estimation problems in
several systems relevant for food industry. Thenumerical performance of these stochastic methods has been analyzed at different
numerical scenarios with and without the application of closure equations. Results showed that MFPA outperformed FPA and other
metaheuristics  (e.g.,  Simulated  Annealing,  Genetic  Algorithm  and  Harmony  Search)  for  LLE  parameter  identification  in  local
compositions models. MFPA with closure equations is a reliable approach for determining the best interaction parameter of NRTL
and UNIQUAC models in the LLE data processing of food-related thermodynamic systems.

Keywords: Closure equation, Flower pollination algorithm, Food products, Parameter identification, Phase equilibria, Stochastic
method.

1. INTRODUCTION

Liquid-liquid equilibrium (LLE) data are essential for the proper design in the food products industry [1, 2]. For
instance,  the solvent extraction is  a LLE-based process commonly used in this sector,  which is  an environmentally
friendly operation that needs less energy and produces minor environmental pollution than other separation schemes [1,
2].  This  industry  also  employs  intensified  operations  where  the  processing  mixtures  may  show  a  complex  phase
behavior at different operating conditions including the presence of LLE [3]. Therefore, the knowledge and the capacity
to describe the LLE behavior of multicomponent systems are very important for an adequate design and operation of
food technology and purification facilities  [1  -  3].  Herein,  it  is  important  to  remark that  LLE predictions  are  more
difficult  than  those  involved  in  vapor-liquid  equilibrium  (VLE)  [4,  5].  However,  the  LLE  data  are  essential  for
understanding the thermodynamic properties of multicomponent mixtures.

Various activity coefficient equations such as universal quasi chemical (UNIQUAC) [6] and non-random two liquid
(NRTL) [7]  can be used to model  and predict  the LLE data of  mixtures involved in the food industry.  These local
composition models are effective and offer several advantages in terms of an easy numerical implementation without
compromising the thermodynamic modeling performance; they can provide both accurate correlations and qualitatively
correct predictions for design purposes. Overall, activity coefficient models require proper binary interaction parameters
that can represent LLE data for highly non-ideal liquid mixtures usually encountered in food products extraction [8].
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Herein, it is convenient to remark that the reliability of a thermodynamic model for predicting and correlating phase
equilibrium data depends strongly on the value of its adjustable parameters. The parameters of thermodynamic models
are usually estimated from the known experimental data via optimization procedures. Thisparameter identification stage
can be considered as a challenging global optimization problem due to the nonlinearity of local composition models, the
non-ideal thermodynamic behavior of liquid phases and the multicomponent nature of LLE systems. To address this
type of parameter estimation problems, several optimization techniques have been reported in literature [3, 4, 8 - 20],
which can be used for the processing of phase equilibrium data. However, current optimization methods may show
drawbacks  and  failures  in  solving  parameter  estimation  problems  for  multicomponent  systems  with  LLE  [9].  For
example, Genetic Algorithms and Harmony Search may show drawbacks for finding the optimum parameters of local
composition models for LLE modeling of biofuels [9]. Therefore, the search of better methods for performing, robustly
and effectively, the parameter identification in LLE modeling is relevant for the process system engineering of the food
industry.

The  aim  of  this  work  was  to  introduce  an  alternative  optimization  framework,  which  is  based  on  the  Flower
Pollination Algorithm (FPA), for the parameter identification in thermodynamic models applied to the processing of
experimental LLE data in multicomponent systems. The Flower Pollination Algorithm [21] is a novel nature-inspired
optimizer  that  is  based  on  the  characteristics  of  flowering  plants.  This  metaheuristic  has  shown  promising
characteristics for global optimization in practical problems from engineering applications and it could be a suitable
optimizer for performing thermodynamic calculations. However, to the best of authors’ knowledge, the application of
Flower  Pollination  Algorithm  for  solving  phase  equilibrium  problems  has  not  yet  been  reported  in  the  literature.
Therefore, this study introduces the application ofthe Flower Pollination Algorithm (FPA) and its modified version
(MFPA) for the parameter identification of the NRTL and UNIQUAC models internary and quaternary systems relevant
for the food industry.

In the first part of this study, in order to analyze the performance of the Flower Pollination Algorithms, several LLE
parameter estimation problems were solved using both local composition models and closure equations. In this stage,
results  showed  that  the  predictions  of  UNIQUAC  with  closure  equations  offered  the  best  performance  for  LLE
prediction  of  tested  ternary  and  quaternary  systems.  After  that,  the  performanceof  these  stochastic  methodswas
compared,in terms of solution quality and computational efficiency, with previously applied metaheuristics such as
Genetic  Algorithm (GA),  Simulated  Annealing  (SA),  Harmony  Search  Algorithm (HAS)  and  Backtracking  Search
Optimization Algorithm (BSOA).In summary, our results show that Flower Pollination Algorithms may offer a better
performance to solve the LLE parameter identification problem using multicomponent mixtures involved in the food
industrial sector.

2. PARAMETER IDENTIFICATION FOR LIQUID-LIQUID EQUILIBRIUM MODELING

2.1. Description of Activity Coefficient Thermodynamic Models

The parameter identification in non-linear thermodynamic models used for LLE prediction and calculation has been
of great interest in the literature [8 - 11].  Overall,  the parameter identification involves the determination of model
parameters, which should represent satisfactorily certain properties or characteristics of the system under study. The
parameter  identification  problem  in  phase  equilibrium  modeling  deals  with  equations  that  are  non-linear-in-the-
parameters and, consequently, robust optimization techniques have to be applied in its resolution [1, 9]. In particular,
local composition models are traditionally used as the thermodynamic framework for the prediction and estimation of
physicochemical  properties  of  food  systems  involving  liquid  phases.  These  models  are  flexible  and  attractive  for
correlating and calculating the thermodynamic properties of a variety of compounds that includepolar, non-polar and
associating  systems.  NRTL  (Non-Random  Two-Liquid)  [7]  and  UNIQUAC  (Universal  Quasi-  Chemical)  [6]  are
models widely used for calculating the activity coefficients in food products systems. For the case of a multicomponent
system, the NRTL model [7] is given by

(1)
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(2)

(3)

where c is the number of components in the mixture, αji>= αij>, T is given in Kelvin and xj> is the mole fraction of
component j, respectively. The corresponding equations for the UNIQUAC model [6] are given below

(4)

(5)

(6)

(7)

(8)

(9)

(10)

where  z  =  10  and  is  the  coordination  number.  These  thermodynamic  models  have  specific  binary  interactions
parameters  Aij  for  each  component  pair  i  and  j  of  the  multicomponent  system.  These  parameters,  in  some  way,
characterize the energy of interaction between molecules i and j. Therefore, the identification of these parameters is
necessary for thermodynamic calculations in theprocess system engineering involving liquid phases. The optimization
procedure  used  in  this  study  for  solving  the  parameter  identification  problem  in  NRTL  and  UNIQUAC  models  is
reported in the following section.

2.2. Optimization Problem for the Parameter Identification in NRTL and UNIQUAC Models

In this study, the LLE experimental data of several food products systems were used to determine the NRTL and
UNIQUAC parameters using Flower Pollination Algorithms. Note that the parameter identification in local composition
models is usually performed using LLE experimental data via the minimization of a suitable objective function. Herein,
it is important to remark that the selection of the objective function used for the parameter identification influences both
correlation and prediction results of thermodynamic models. According to literature [8 - 11], the objective function
based on the isoactivity criterion for LLE suffers from the disadvantage that there is no a guarantee for representing
accurately the experimental phase equilibrium compositions. Therefore, objective functions defined in terms of LLE
concentrations (i.e.,  experimental  tie-lines)  are  more proper  for  parameter  identification in thermodynamic models.
Based on these facts, the next objective function has been used for LLE data modeling [9]

(11)

where m  is  the  number  of  experimental  tie-lines  used in  the  correlation procedure,  xik(j)  is  the  mole fraction of
component i at liquid phase j at tie line k, wik is the weight associated with component i in phase j at tie line k, while cal
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and exp denote calculated and experimental values, respectively. This objective function, with unit weights wik, has been
used for LLE modeling of food products systems. The calculation of the tie-lines using the activity coefficient models
was performed with a flash calculation-based method [11].

In particular, Flower Pollination Algorithms have been employed for the minimization of equation (11) using the
interaction parameters Aij> as decision variables. However, these binary interaction parameters not only affect the results
of LLE modeling, but also they have an impact on the optimization procedure (i.e., constrained or unconstrained) that is
employed for the parameter identification. In this study, the performance of FPA and MFPA has been tested with and
without the application of closure equations [22] including its effect on results of LLE parameter estimation using an
unconstrained problem formulation. The closure equation describes a linear relationship between the binary interaction
parameters of local composition models for multicomponent mixtures and it is given by

(12)

Therefore, these closure equations can be written as follows for ternary systems [8, 9, 22, 23]

(13)

Equation (13) indicates that only 5 out of 6 binary interaction parameters are independent and, consequently, the
minimization of equation (11) can be performed selecting a set of 5 decision variables Aij and using equation (13) for
determining the remaining one. There are 6 different sets of decision variables that can be employed for parameter
identification in ternary systems using equation (13).

For the case of quaternary systems, the closure equations are

(14)

(15)

(16)

In  this  case,  only  9  out  of  12  binary  interaction  parameters  are  independent  and  they  can  be  used  as  decision
variables for the unconstrained minimization of equation (12). For quaternary systems, there are 220 different sets of 9
decision variables  Aij  (i.e.,  3  parameters  being eliminated out  of  12)  for  LLE parameter  estimation and the  other  3
parameters are obtained using equations (14) – (16). Herein, it is convenient to remark thatthere is no guideline for the
selection of the independent Aij using closure equations and, consequently, this parameter selectioncan be performed
arbitrarily. However, the results of parameter identification may vary depending on the selected set of Aij [9].

Finally, the goodness of the data fitting results between the observed and calculated mole fractions in food products
systems was calculated in terms of the root mean square deviation (RMSD), which is defined as

(17)

These RMSD were calculated for both thermodynamic models and Flower Pollination Algorithms, which were used
as performance metrics of algorithm reliability. As stated, the tie lines are evaluated by a LLE separation calculation
using Newton method.

2.3. Description of Flower Pollination Algorithms

The  Flower  Pollination  Algorithm  (FPA)  is  a  new  metaheuristic  inspired  by  the  biological  process  of  flower
pollination.  This  algorithm  was  founded  by  Yang  [21]  in  the  year  2012.  It  was  developed  by  the  idea  of  flower
pollination process. Flower pollination is the transport of pollen from a male flower to a female bloom. Pollination may
take place in the form of biotic or abiotic. Pollinators such as birds, insects, bats, or other living beings help in the biotic
pollination process. On the other hand, the abiotic pollination is related to transfer of pollen through wind and diffusion
where  no  pollinator  is  required  [24].  Based  on  these  facts,  the  four  rules  employed  to  mimic  the  pollination
characteristics  of  flowers  [21,  25]  are:
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Biotic  and  cross-pollination  is  considered  as  global  pollination  process  with  pollen-carrying  pollinators1.
performing Lévy flights.
Abiotic and self-pollination are considered as local pollination.2.
Flower constancy can be considered as the reproduction probability and it is proportional to the similarity of two3.
flowers involved.
The interaction or switching of local pollination and global pollination can becontrolled by a switch probability4.
p [0, 1] with a slight bias toward local pollination .

Then, the main steps of FPA, or simply the flower algorithm [21], are illustrated below:

On the other hand, the random selection of exploration and exploitation phases, which are based on the selected
value  of  switching  probability,  sometimes  causes  the  FPA  to  lose  direction  and  move  away  from  the  global  best
solution.In this paper, an approach is introduced to enhance the performance of FPA specifically for LLE parameter
estimation problems. A modification has been applied where i) the local pollination phase is modified by employing a
scaling  factor  F  to  control  the  mutation  occurring  in  flowers  during  pollination  and  ii)  an  additional  intensive
exploitation phase is added to improve the best solution. The details of the Modified Flower Pollination Algorithm
(MFPA) are givenin [24]. Therefore, the pseudo-code of the MFPA can be summarized below:

The pseudo code of the flower pollination algorithm (FPA) 

Min or max objective f(x), x = (x1, x2 , . . . , xd ) 

Initialize n flowers or pollen gametes population with random solutions 

Identify the best solution (g*) in the initial population 

Express a switch probability p [0, 1] 

While (t < MaxIte) 

For i = 1 : n (all n flowers in the population) 

If rand < p, 

Draw a (d-dimensional) step vector L from a Lévy distribution 

Global pollination via L(g* - ) 

else 

Draw  from a uniform distribution in [0,1] 

Do local pollination via ( - ) 

end if 

Evaluate new solutions 

If new solutions are better, update them in population 

end for 

Find current best solution 

end while 

Output the optimal solution obtained                  

________________________________________________________________________________________ 

The pseudo Code of the Modified Flower Pollination Algorithm (MFPA) 

Generate initial population of flowers within predefined min and max operating limits of optimization 

Evaluate fitness of each flower and select best flower Xbest 

Define switching probability p [0, 1] 

While (t < MaxIte) 

for i = 1 : n (all n flowers in the population) 

if rand1 > p, 

Describe step vector L of NG dimension that follows Lévy distribution 

 

Else 

 

End (if) 

End (for) 

for i = 1 : n 

if rand2 > p, 

 

End (if)  

End (for) 

Evaluate new solution 

If new solution is found to be better update the population 

End (for) 

Find best solution  

End (while) 
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Details  of  these  algorithms  are  reported  in  [21,  24].  Both  optimizers  have  been  employed  in  the  parameter
identification of NRTL and UNIQUAC models using experimental data of thermodynamic systems related to the food
industry. These algorithms were coded in MATLAB®2011a and were run on a Sony Vaio- Intel Core i3-3227U GHz- 4
GB RAM.

3. RESULTS AND DISCUSSION

3.1. Performance of FPA and MFPA for LLE Parameter Identification

In this first section, several examples are analyzed for illustrating the use of FPA and MFPA in the calculation of the
binary  parameters  of  NRTL and  UNIQUAC models.  These  systems  included  14  ternary  and  8  quaternary  systems
relevant for food industry.Selected examples are listed in Table 1  along with their references and temperatures and
details of these mixtures can be found in [26 - 31]. On the other hand, the parameters of Flower Pollination Algorithms
were taken from [21, 24] except the population size, which was defined as NP = 5D for both methods where D is the
number of decision variables (i.e., Aij used in the model parameter identification). Preliminary calculations in selected
problems showed that these algorithm parameters were proper for performing LLE parameter identification in food-
based systems. In particular, these results showed that NP and the stopping condition (i.e., convergence criterion) are
the most relevant algorithm parameters of FPA for solving LLE data modeling. Note that, for multicomponent system
with c ≥ 5, the population size of FPA should be increased to obtain a good numerical performance.

Table  1.  Food  products  systems  used  for  parameter  identification  in  liquid-liquid  equilibrium  modeling  using  Flower
Pollination Algorithms.

System No. Ternary system: A1 + A2 + A3 T, K Reference
1 Water + levulinic acid + dimethyl succinate 298.15 [26]
2 Water + levulinic acid + glutarate 298.15 [26]
3 Water + levulinic acid + dimethyl adipate 298.15 [26]
4 Water + levunilic acid + isoamyl alcohol 298.15 [27]
5 Water + levunilic acid + hexanol 298.15 [27]
6 Water + levunilic acid + decanol 298.15 [27]
7 Water + 1-butanol + β-pinene 298.15 [28]
8 Water + 1-butanol + α-pinene 298.15 [28]
9 Water + 1-butanol + limonene 298.15 [28]
10 Water + butyric acid + diethyl adipate 298.2 [29]
11 Water + butyric acid + diethyl glutarate 298.2 [29]
12 Water + butyric acid + diethyl succinate 298.2 [29]
13 palm oil + oleic acid + anhydrous ethanol 318.2 [30]
14 palm oil + palmitic acid + anhydrous ethanol 318.2 [30]
No. Quaternary system: A1 + A2 + (A3+ A4) T, K Reference
1 Palm oil + palmitic acid + (ethanol 93.9% + water 6.10%) 318.2 [30]
2 Palm oil + palmitic acid + (ethanol 87.59% + water 12.41%) 318.2 [30]
3 Palm oil + oleic acid + (ethanol 93.9% + water 6.10%) 318.2 [30]
4 Palm oil + oleic acid + (ethanol 87.59% + water 12.41%) 318.2 [30]
5 Limonene + carvone + (ethanol 89.02% + water 10.98%) 298.2 [31]
6 Limonene + carvone + (ethanol 76.36% + water 23.64%) 298.2 [31]
7 Limonene + carvone + (ethanol 70.96% + water 29.04%) 298.2 [31]
8 Limonene + carvone + (ethanol 68.67% + water 31.33%) 298.2 [31]

All LLE parameter identification problems were solved 50 times with random number seeds and different initial
values. Parameter identification was performed using the next bounds for Aij (-1000, 2000). According to literature
[7], the non-randomness parameter αij of NRTL equationcan be set to a predetermined value ranging from 0.2 to 0.5 for
LLE calculations. In this study, this NRTL parameter was defined as 0.3, while the volume r and the surface area q
parameters of UNIQUAC model for each component were taken from [28, 30, 31] and Aspen HYSYS Software.

The performances of FPA and MFPA were quantified and compared based on two metrics: the RMSD values for
both thermodynamic models after the minimization of equation (11) and the number of objective function evaluations
(NFE) involved in the parameter identification. Four systems were selected as benchmarking examples to illustrate the
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numerical performance of FPA and MFPA in the parameter estimation for LLE modeling. These mixtures correspond to
the  predictions  of  LLE  for  the  ternary  and  quaternary  mixtures:  a)  water  +  levulinic  acid  +  dimethyl  succinateat
298.15K, b) water + levulinic acid + glutarateat 298.15K, c) palm oil + palmitic acid + ethanol + water at 318.2 K and
d) limonene + carvone + ethanol + water at 298.2 K. The parameter identification for these LLE mixtures has been
solved using FPA and MFPA with four different operating scenarios. These scenarios corresponded to the use of both
FPA and MFPA with and without the application of closure equations and local optimization. This approach has been
used in a previous study [9] and it has been applied in this article for comparison purposes with other metaheuristics.
The nomenclature used for results reported in this section is: FPA-C and MFPA-C for flower pollination algorithms
with closure equations; FPA-CL and MPFA-CL for flower pollination algorithms with both closure equation and local
optimization,  respectively.  The  function  fmincon  of  MATLAB®  was  employed  as  local  optimization  in  these
calculations.

The convergence profiles of FPA and MFPA,with and without closure equations,during the parameter identification
of NRTL and UNIQUAC models forwater + levulinic acid + dimethyl succinate at 298.15 and palm oil + palmitic acid
+ ethanol + water at 318.2 K are reported in Fig. (1). Overall, the convergence performance of both FPA and MFPA is
typical of population-based methods where a step-function is observed. As expected, the value of objective function
improves with the numerical effort (i.e., number of generations or function evaluations). However, the application of
closure equation for parameter identification of NRTL and UNIQUAC models improves significantly the convergence
rate of both FPA and MFPA. In particular, MFPA converged faster and reached the lowest values for the objective
function in tested examples with both thermodynamic models, see Fig. (2).

Fig.  (1).  Convergence  performance  of  Flower  Pollination  Algorithms,  with  and  without  closure  equations,  for  LLE  parameter
identification using NRTL and UNIQUAC models in food products systems. Mixtures: a) water + levulinic acid + dimethyl succinate
at 298.15 K and b) palm oil + palmitic acid + ethanol + water at 318.2 K.
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Fig. (2). Evolution of the mean best function value versus NFE for Flower Pollination Algorithms with closure equations for LLE
parameter identification of NRTL and UNIQUAC models in food products systems. Mixtures: a) water + levulinic acid + dimethyl
succinate at 298.15 K and b) palm oil + palmitic acid + ethanol + water at 318.2 K.

Particularly, MFPA with closure equation is effective for finding the interaction parameters Aij of the NRTL and
UNIQUAC models. Note that the application of a scaling factor to control the mutation in the local pollination phase
and the  additional  intensive  exploitation phase  appear  to  aid  the  exploration capabilities  for  global  optimization of
MFPA.  In  terms  of  the  efficacy,  MFPA  showed  the  best  performance  especially  at  low  values  of  NFE  and  this
numerical trend prevails for both NRTL and UNIQUAC models. Overall, results showed that 600th iterations of MFPA-
C are sufficient to find the optimal parametersin these LLE problems, while FPA with and without closure equations
required more than 800 iterations for reaching convergence. In both cases, further generations only seem to improve
marginally the solution obtained independently of  the application of  closure equation.  However,  the use of  closure
equation for LLE parameter identification helps to reduce significantly the numerical effort during the model parameter
identificationwith these stochastic solvers. In particular, the impact of using closure equation on algorithm efficacy and
convergence  rate  is  more  evident  at  early  stages  of  parameter  identification,  see  Figs.  (1)  and  (2).  This  relevant
numerical performance has also reportedfor the LLE modeling of other thermodynamic systems using nature-inspired
optimizers [9].

RMSD values obtained by FPA and MFPA for the benchmark ternary and quaternary mixtures are given in Fig. (3).
It is clear that MFPA with closure equation can achieve lower RMSD values than those obtained for FPA in this set of
ternary and quaternary systems. Furthermore, the application of the local optimization methodimproves the precision of
solution obtained for LLE parameter estimation using FPA and MFPA. On the other hand, UNIQUAC model offered a
better  correlation performance than NRTL model  for  LLE data  of  selected ternary and quaternary systems.  RMSD
values ranged from 0.002 to 0.01 for UNIQUAC model using FPA and MFPA, see Fig. (3).
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Fig. (3). RMSD values of Flower Pollination Algorithms for LLE parameter identification of NRTL and UNIQUAC models in food
products systems. Mixtures: a) water + levulinic acid + dimethyl succinate at 298.15K, b) water + levulinic acid + glutarate at 298.15
K, c) palm oil + palmitic acid+ ethanol + water at 318.2 K and d) limonene + carvone + ethanol + water at 298.2 K.

As stated,  the  closure  equation  was  used  to  reduce  the  number  of  interaction  parameters  (Aij)  to  be  determined
during the global minimization of equation (11). However, there are different possibilities for defining the five or the
nine decision variables used during LLE data fitting of ternary and quaternary food products systems using this closure
equation. For illustration, the results of LLE data modeling for the different possibilities of Aij parameter elimination are
reported in Table 2 for selected food products mixtures using both NRTL and UNIQUAC equations. It is clear that the
RMSD values obtained with both FPA and MFPA depend on the set of interaction parameters selected. Similar findings
have been reported by [8, 9] for the modeling of LLE data using stochastic optimizers. The selection of different Aij may
modify the search space affecting the optimization trajectories selected by the numerical method and, consequently, it
mayimpact the performance of stochastic optimizers [9]. Therefore, the best option for parameter elimination using
closure equations should be identified to improve the results of LLE data modeling. However, it is interesting to remark
that  MFPA  outperformed  FPA,  in  terms  of  RMSD  values,  independent  of  Aij  selected  as  decision  variables  for
parameter identification. This trend prevails for both NRTL and UNIQUAC models.

Table 2. Results of LLE parameter identification in selected ternary and quaternary systems using FPA and MFPA and
closure equations with different parameter elimination.

RMSD for NRTL model RMSD for UNIQUAC model
Thermodynamic system Parameter Elimination FPA-C MFPA-C FPA-C MFPA-C

water + levulinic acid + dimethyl succinate A12 0.0087 0.0021 0.0065 0.0018
A21 0.0098 0.0013 0.0072 0.0028
A13 0.0086 0.0035 0.0068 0.0016
A31 0.0094 0.0018 0.0078 0.0011
A23 0.0092 0.0017 0.0069 0.0026
A32 0.0084 0.0023 0.0085 0.0036
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RMSD for NRTL model RMSD for UNIQUAC model
water + levulinicacid + glutarate A12 0.0092 0.0018 0.0070 0.0025

A21 0.0082 0.0021 0.0052 0.0013
A13 0.0078 0.0040 0.0061 0.0013
A31 0.0075 0.0032 0.0054 0.0018
A23 0.0073 0.0015 0.0047 0.0026
A32 0.0083 0.0020 0.0045 0.0035

palm oil + palmitic acid + (ethanol 93.9% + water 6.10%) 3 parameters Aij 0.0092a 0.0078b 0.0088c 0.0032d

limonene + carvone + (ethanol 76.36% + water 23.64%) 3 parameters Aij 0.0072e 0.0037f 0.0081g 0.0041h

aThe best eliminated parameters are: A12, A31, A32;
bThe best eliminated parameters are: A12, A14, A23;
cThe best eliminated parameters are: A13, A34, A41;
dThe best eliminated parameters are: A23, A24, A34;
eThe best eliminated parameters are: A24, A31, A34;
fThe best eliminated parameters are: A23, A34, A41;
gThe best eliminated parameters are: A21, A32, A41;
hThe best eliminated parameters are: A13, A14, A43.

The results of FPA and MFPA for solving the LLE parameter identification problems along with the corresponding
best  values of  RMSD for all  the food products  systems are reported in Tables 3-6.  These results  correspond to the
application of both algorithms with and without the closure equations. Results confirmed that MFPA-C provides the
best values of RMSD for all ternary and quaternary systems. Overall,  the UNIQUAC model was able to accurately
describe the experimental  LLE compositions and showed better  data fitting results  than those obtained with NRTL
model. For illustration, the phase diagrams of selected food products systems using the best interaction parameters of
UNIQUAC model are reported in Fig. (4). The comparison of tie-line compositions indicated that the experimental and
calculated LLE data agreed very well using this activity coefficient model.

Table 3.  Results  of  NRTL interaction parameters for LLE modeling of  ternary systems relevant for food industry using
Flower Pollination Algorithms.

System No.
NRTL interaction parameters, K Best value of RMSD

A12 A21 A13 A31 A23 A32 FPA FPA-C MFPA MFPA-C
1 70.58 65.82 1307.06 561.48 325.47 -415.35 0.0092 0.0082 0.0059 0.0016
2 73.18 49.80 539.58 843.77 407.66 735.23 0.0086 0.0071 0.0058 0.0013
3 102.40 67.59 1122.87 603.88 856.11 371.93 0.0100 0.0090 0.0086 0.0048
4 114.40 76.38 1051.97 388.06 1205.35 579.46 0.0093 0.0073 0.0059 0.0035
5 93.21 88.25 873.92 284.65 907.63 323.32 0.0096 0.0080 0.0067 0.0015
6 158.68 283.51 1122.89 997.03 792.38 541.69 0.0121 0.0093 0.0091 0.0063
7 372.29 -183.72 1280.17 479.83 1053.45 809.12 0.0113 0.0095 0.0080 0.0047
8 382.21 -122.61 1197.56 511.38 1008.41 827.05 0.0088 0.0072 0.0064 0.0045
9 528.27 -155.32 1231.13 408.16 1120.92 981.54 0.0097 0.0083 0.0076 0.0048
10 -247.37 -339.83 997.60 513.48 1266.58 874.92 0.0075 0.0051 0.0048 0.0030
11 -122.85 -507.18 1305.28 492.61 1100.42 672.08 0.0079 0.0059 0.0069 0.0022
12 -318.21 -282.95 1191.62 686.73 1295.48 755.33 0.0091 0.0069 0.0077 0.0050
13 687.83 450.72 958.17 465.09 1184.57 928.60 0.0110 0.0090 0.0085 0.0067
14 1033.56 718.23 1262.93 385.87 987.61 425.88 0.0098 0.0079 0.0058 0.0031

Table 4. Results of UNIQUAC interaction parameters for LLE modeling of ternary systems relevant for food industry using
Flower Pollination Algorithms.

System No. UNIQUAC interaction parameters, K Best value of RMSD
A12 A21 A13 A31 A23 A32 FPA FPA-C MFPA MFPA-C
1 -283.10 425.39 1120.72 886.15 1368.91 425.85 0.0088 0.0066 0.0066 0.0010
2 -83.51 261.10 1034.05 628.37 1286.47 536.18 0.0082 0.0048 0.0052 0.0015
3 197.82 381.21 1126.94 465.14 1371.37 526.18 0.0110 0.0086 0.0082 0.0044
4 319.45 238.67 1053. 23 548.18 1203.98 779.71 0.0093 0.0058 0.0058 0.0030

(Table 2) contd.....
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System No. UNIQUAC interaction parameters, K Best value of RMSD
5 -98.27 416.71 1007.88 892.31 1317.02 686.47 0.0086 0.0046 0.0064 0.0018
6 451.11 763.36 1279.77 1055.48 1362.15 825.61 0.0154 0.0098 0.0083 0.0058
7 518.72 -397.85 927.16 -243.32 1180.33 926.42 0.0103 0.0087 0.0071 0.0042
8 959.72 183.65 1042.63 -311.82 1295.44 717.06 0.0087 0.0040 0.0061 0.0038
9 1153.45 621.92 946.27 -418.62 1316.73 483.37 0.0089 0.0052 0.0069 0.0041
10 753.48 -285.26 829.54 -575.83 1082.65 716.02 0.0073 0.0038 0.0050 0.0021
11 910.12 -435.78 1295.49 -821.58 1312.65 541.48 0.0077 0.0041 0.0067 0.0013
12 1125.47 276.13 1050.35 -387.56 1379.62 791.05 0.0082 0.0057 0.0073 0.0015
13 -273.21 432.13 812.44 589.97 1281.89 354.08 0.0097 0.0073 0.0081 0.0048
14 186.73 709.24 1104.58 967.81 1308.62 649.34 0.0089 0.0066 0.0078 0.0055

Table 5. Results of NRTL interaction parameters for LLE modeling of quaternary systemsrelevant for food industry using
Flower Pollination Algorithms.

System
No.

NRTL interaction parameters, K Best value of RMSD
A12, A21 A13, A31 A14, A41 A23, A32 A24, A42 A34, A43 FPA FPA-C MFPA MFPA-C

1 688.87, 733.01 460.79, 937.14 1547.98, 1509.81 684.79, 1117.00 837.17, 754.86 1216.73,702.21 0.0096 0.0062 0.0065 0.0042
2 674.73 , 718.90 446.69, 923.11 1533.82, 1495.65 670.62, 1102.87 823.10, 740.76 1202.78, 688.19 0.0095 0.0080 0.0048 0.0036
3 645.17 , 538.87 176.11 , 474.62 1347.80 , 1224.61 453.09 , 857.90 643.28 , 626.39 726.92 , 305.22 0.0120 0.0096 0.0050 0.0022
4 787.78, 681.50 318,63, 617.23 1490,38,1367.21 595,61, 1000.51 785,89, 769.00 869, 53, 447.74 0.0098 0.0086 0.0076 0.0065
5 1266.14, 619.5 1032.48, 266.24 728.35, 543.58 1357.07,1237.47 613.69,1075.56 -49.80, 531.67 0.0132 0.0098 0.0080 0.0068
6 1206.14, 632.03 1020.74, 283.98 685.68, 598.81 1381.57, 1218.92 605.52, 1092.76 -81.00, 568.89 0.0098 0.0088 0.0078 0.0060
7 1270.29, 656.33 1030.93, 262.32 698.52, 570.63 1379.42, 1224.77 610.22, 1096.29 -72.24, 568.48 0.0200 0.0110 0.0082 0.0071
8 1261.52, 624.18 1046.79, 285.86 708.83, 550.58 1352.33, 1228.74 611.08, 1090.17 -58.82, 543.86 0.0180 0.0105 0.0089 0.0052

Fig. (4). Experimental and adjusted data LLE of a) water + levulinic acid + dimethyl succinate at 298.15 K, b) water + levulinic acid
+ glutarate at 298.15 K, c) palm oil + palmitic acid + ethanol + water at 318.2 K and d) limonene + carvone + ethanol + water at
298.2 K using MFPA with closure equations.

(Table 4) contd.....
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Table 6. Results of UNIQUAC interaction parameters for LLE modeling of quaternary systemsrelevant for food industry
using Flower Pollination Algorithms.

System
No.

UNIQUAC interaction parameters, K Best value of RMSD
A12, A21 A13, A31 A14, A41 A23, A32 A24, A42 A34, A43 FPA FPA-C MFPA MFPA-C

1 288.23, -518.37 201.06, -212.16 1245.09, 462.18 -217.46, 175.92 772.83, 796.52 243.46, -126.23 0.0086 0.0062 0.0052 0.0026
2 261.82, -507.93 185.18, -199.42 1228.23, 481.79 -215.04, 170.11 769.43, 792.74 239.26, -122.58 0.0092 0.0076 0.0045 0.0020
3 345.73, -450.61 213.11, -164.06 1173.42, 439.84 -200.92, 218.25 658.91, 721.67 228.63, -127.78 0.010 0.0091 0.0042 0.0010
4 678.70, 1310.60 713.32, -252.96 373.48, 675.68 1302.70,-295.48 1426.90,1097.20 -782.92, 485.56 0.0120 0.0096 0.0073 0.0035
5 376.23, 1137.81 1092.57, 996.73 1242.03,1298.31 434.63, -422.79 1019.76, 314.46 873.32, 1025.44 0.0098 0.0078 0.0065 0.0028
6 372.56, 1102.37 1115.97, 990.58 1260.18, 1285.77 429.18, -426.02 1015.21, 310.99 871.07, 1022.05 0.0095 0.0072 0.0080 0.0042
7 385.22, 1098.75 1146.18,1002.26 1265.85, 1281.16 431.52, -425.93 1011.87, 313.65 867.48, 1026.71 0.0160 0.0098 0.0077 0.0052
8 387.61, 1092.83 1149.28,1006.44 1268.36, 1275.94 425.74, -422.32 1009.52, 311.88 786.12, 1026.54 0.0120 0.0095 0.0066 0.0043

3.2. Performance Comparison of Flower Pollination Algorithmsand Other Nature-Inspired Stochastic Methods
applied in LLE Parameter Identification

The  numerical  performance  of  FPA  and  MFPA  has  been  compared  with  the  efficacy  of  other  metaheuristics
algorithms, with and without closure equations and local optimization, for performing the LLE parameter identification
in tested food products systems. For this analysis, the ternary and quaternary systems reported in Table 2 have been
employed. The methods assed in this stage were: Genetic Algorithm (GA), Simulated Annealing (SA), Harmony Search
Algorithm (HSA)  and  Backtracking  Search  OptimizationAlgorithm (BSOA).  Results  of  this  comparative  study  are
reported in Figs. (5) and (6).

Fig. (5). RMSD values of FPA, MFPA, SA, GA, HAS and BSOA (with and without closure equations and local optimization) for
LLE parameter identification using NRTL and UNIQUAC models in selected food products systems. Mixtures: a) water + levulinic
acid + dimethyl succinate at 298.15 K, b) water + levulinic acid + glutarate at 298.15 K, c) palm oil + palmitic acid+ ethanol + water
at 318.2 K and d) limonene + carvone + ethanol + water at 298.2 K.
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Fig. (6). RMSD versus NFE for FPA, MFPA, SA, GA, HAS and BSOA with closure equations for LLE parameter identification
using NRTL and UNIQUAC models in selected food products systems. Mixtures: a) water + levulinic acid + dimethyl succinate at
298.15 K, b) water + levulinic acid + glutarate at 298.15 K, c) palm oil + palmitic acid + ethanol + water at 318.2 K and d) limonene
+ carvone + ethanol + water at 298.2 K.

In particular, Fig. (5) shows the RMSD values obtained during the parameter estimation of NRTL and UNIQUAC
models for the selected food products systems using all stochastic solvers. It is clear that MFPA outperformed all other
algorithms in terms of reliability (i.e., it showed the lowest values of RMSD) with and without the closure equations
and  local  optimization.  It  is  interesting  to  remark  that  the  use  of  the  local  optimization  has  more  impact  on  the
performance ofthe other stochastic methods in comparison to Flower Pollination Algorithms. This result suggests that
FPA and MFPA may show better exploration capabilities for finding the optimum parameters Aij.

On the other hand, Fig. (6) shows the evolution of the RMSD values versus NFE for all optimizers used for LLE
parameter estimation of local composition models in selected ternary and quaternary systems. Overall, the most reliable
algorithms for LLE modeling are BSOA, FPA and MFPA, which outperformed GA, SA and HAS. In particular, MFPA
may reach a high precision in the solution obtained for LLE parameter identification. It is clear that the application of
closure  equation  improves  the  solution  quality  of  the  stochastic  methods  irrespective  of  the  used  model.  For  all
mixtures, the MFPA with closure equations offered the best tradeoff between reliability and numerical effort for both
NRTL and UNIQUAC models.

CONCLUSION

This paper introduces the application of Flower Pollination Algorithms to phase equilibrium calculations of LLE
systems.  In  particular,  this  novel  metaheuristic  has  been  applied  in  the  parameter  identification  of  UNIQUAC and
NRTL models from ternary and quaternary systems relevant for food products mixtures. In general, Modified Flower
Pollination Algorithm performed better than the original Flower Pollination Algorithm in LLE parameter identification
with and without the application of closure equations.  In fact,  Modified Flower Pollination Algorithm with closure
equations showed better solution quality and convergence characteristics for all the multicomponent systems tested in
this  study.  This  novel  stochastic  method  outperformed  other  metaheuristics  such  as  Genetic  Algorithm,  Harmony
Search  or  Simulated  Annealing  in  LLE  parameter  identification.  However,  the  parameter  identification  involving
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closure equations may impact on results of LLE modeling if a proper selection of the independent parameters Aij is not
performed. On the other hand, UNIQUAC model offers a better performance than NRTL model for LLE modeling in
testedfood product mixtures. Therefore, this local composition model is a proper choice for thermodynamic calculations
involved in the process system engineering of food-based multicomponent mixtures.
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