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Abstract: In order to well solve the phase-only reconfigurable arrays synthesis problems, we introduce an adaptive strate-
gy in invasive weed optimization (IWO), and integrate the adaptive IWO (AIWO) into the framework of MOEA/D, a 
popular multi-objective algorithm. Then, a new version of MOEA/D with adaptive IWO, named MOEA/D-AIWO is pro-
posed in this paper for solving the synthesis problems. In MOEA/D-AIWO, the proposed adaptive strategy is adopted for 
improving search ability and balancing diversity and convergence. We introduce an adaptive standard deviation, which 
changes not only with the increase of evolution generations, but also exponentially with the fitness function value of each 
individual. This strategy improves the convergence rate and helps the seeds escape from local optimum. Taking advantage 
of the powerful searching ability of invasive weeds and well framework of MOEA/D, the overall performance of the pro-
posed MOEA/D-AIWO is illustrated in solving two sets of phase-only reconfigurable arrays synthesis problems. Compar-
ing results with MOEA/D-IWO (MOEA/D with original IWO) and MOEA/D-DE are also provided in this paper. 
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1. INTRODUCTION 

In many actual applications such as satellite communica-
tions and radar navigations, single antenna array is generally 
required to have the capability of producing a number of 
radiation patterns with different shapes, so as to save space 
and reduce cost. In practice, adjusting excitation phases is 
much easier than adjusting excitation amplitudes in the feed-
ing network. Hence, phase-only reconfigurable array, which 
is designed to radiate multiple radiation patterns using a sin-
gle power divider network and different phase shifters, at-
tracts more and more attentions in recent years [1-10]. 

During the past decades, a number of design methods for 
synthesizing phase-only reconfigurable arrays have been pro-
posed [1-10]. These methods can be divided into two catego-
ries. One is local search algorithms, like “alternating projec-
tions” methods [1-3], which are efficient and simple, but sensi-
tive to initial values. The other is the evolutionary algorithms, 
such as genetic algorithm (GA) [4-6], particle swarm optimiza-
tion (PSO) [6-8], differential evolution (DE) [9, 10] and so on, 
which have global searching ability. It has been shown that the 
evolutionary algorithms are more effective and flexible for 
synthesizing phase-only reconfigurable arrays [4-10]. More 
and more researchers prefer to adopt evolutionary algorithms 
for designing pattern reconfigurable arrays. 

For pattern reconfigurable arrays, multiple patterns 
should meet their design indexes simultaneously, and differ-
ent design pattern objectives often conflict with each other, 
then, the phase-only synthesis problem is actually a multi-
objective optimization problem (MOP). 

*Address correspondence to this author at the 88 East Wenhua Road, Jinan, 
Shandong P. R. China; E-mail: yytan928@163.com 

However, in most existing literatures for synthesizing 
pattern reconfigurable arrays, multiple objectives are usually 
summed into a single objective function with different 
weights, the multi-objective optimization problem is con-
verted into a single-objective optimization problem. Alt-
hough the optimization problem is solved easily by using 
this approach, some problems arise inevitably. The weights 
for different objectives depend on experience, thus decision-
makers must have enough prior knowledge of the problem. 
Only when the weights are set properly, can the desired pat-
terns be achieved. In order to get more optimal solutions, 
more experiments need to be done. These would be complex 
and time-consuming. Hence, in this paper, we intend to for-
mulate the phase-only reconfigurable arrays design as a mul-
ti-objective optimization problem and solve it with our pro-
posed multi-objective algorithm. 

Multi-objective evolutionary algorithm based on decom-
position (MOEA/D) proposed by Zhang and Li [11], is a 
well competitive algorithm for solving MOPs. MOEA/D 
makes use of the decomposition methods in mathematics and 
the optimization paradigm in evolutionary computation. Al-
gorithms analysis demonstrates that [11], MOEA/D is of 
easy use and has a low complexity than NSGA-II, another 
classical multi-objective algorithm. Later, a new version of 
MOEA/D with differential evolution (DE) operator named 
MOEA/D-DE was proposed by Li and Zhang [12]. Experi-
mental results show that MOEA/D-DE performs well on the 
MOPs with complicated Pareto set shapes. Thanks to 
MOEA/D's framework, theoretically, any evolutionary oper-
ator can be adopted in MOEA/D for actual problems. 

Invasive weed optimization (IWO) is a numerical sto-
chastic optimization algorithm inspired from weed coloniza-



126    The Open Chemical Engineering Journal, 2015, Volume 9 Liu et al. 

tion, which was proposed by Mehrabian and Lucas in 2006 
[13]. The algorithm imitates seeds spatial diffusion, growth, 
reproduction, and competitive exclusion process of invasive 
weeds. With strong robustness and adaptability, IWO con-
verges to the optimal solution effectively. It has been proved 
that IWO can successfully solve many single-objective op-
timization problems [14-18] and some MOPs [19, 20]. 

In order to solve the design problem of phase-only recon-
figurable arrays effectively, a new version of MOEA/D with 
an adaptive IWO, named MOEA/D-AIWO is proposed. 
MOEA/D-AIWO under the structure of MOEA/D, decom-
poses the phase-only reconfigurable synthesis problem into a 
number of scalar subproblems and solves them simultane-
ously in a single run. At each generation, the population is 
composed of the best solutions found so far for each sub-
problem. Each subproblem adopts an adaptive IWO (AIWO) 
strategy for improving search ability. In AIWO, an adaptive 
standard deviation is proposed, which changes not only with 
the increase of evolution generations, but also exponentially 
with the fitness function value of each individual. This strat-
egy improves the convergence rate and helps the seeds es-
cape from local optimum. Taking advantage of the powerful 
searching ability of invasive weeds and well framework of 
MOEA/D, the overall performance of the proposed 
MOEA/D-AIWO is shown in solving the arrays synthesis 
problems. The arrays synthesis problems are also solved by 
MOEA/D-IWO and MOEA/D-DE, and comparing results 
are provided in this paper. 

The remainder of this paper is organized as follows. Sec-
tion 2 describes the adaptive strategy and IWO used in 
MOEA/D-AIWO. Section 3 presents basic principle of pat-
tern reconfigurable arrays. Then in Section 4, detailed 
MOEA/D-AIWO for synthesizing phase-only reconfigurable 
linear arrays is introduced. Experimental results and discus-
sions are given in Section 5. Finally, we conclude this paper 
in Section 6. 

2. CLASSICAL IWO AND ITS ADAPTIVE MODIFI-
CATION 

The Invasive Weed Optimization (IWO) is a meta-
heuristic algorithm that mimics the colonizing behavior of 
weeds. The flow of IWO may be summarized as follows: 

Step 1. Initialization: A finite number of weeds are ran-
domly initialized in the decision space. 

Step 2. Evaluate fitness and ranking: Each initialized 
seed grows to a flowering plant. In other words, the fitness 
function returns a fitness value to be assigned to each plant 
and then these plants are ranked based on their assigned fit-
ness values. 

Step 3. Reproduction: Every plant produces seed based 
on its assigned fitness or ranking. The number of seeds each 
plant produces depends on the ranking of that plant and in-
creases from minimum possible seed production to its max-
imum. This step adds an important property to the algorithm 
by allowing all of the plants to participate in the reproduc-
tion contest, it gives a chance to all agents to survive and 
reproduce based on their fitness. 

Step 4. Spatial Dispersion: The produced seeds in this 
step are being dispread over the search space by normally 

distributed random numbers with mean equal to the location 
of producing plants and varying standard deviations. The 
standard deviation at the present time step can be expressed 
by: 
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where
maxiter is the maximum number of iterations.   iter

initial
 

and 
finaliter  are defined initial and final standard deviations, 

respectively and pow is the nonlinear regulatory factor. 

Step 5. Repeat: After this process carried out for all of 
the plants, the process is repeated at step 2. It should be not-
ed that weeds with lower fitness are eliminated after ranking 
to reach the maximum number of plants in a colony. 

In IWO, new solutions (seeds) produced are randomly 
distributed in D-dimensional space around their parents 
(weed) in normal distribution

  
N 0,! iter
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iterσ is 

expressed as Eq. (1). It can be seen from Eq. (1) that  ! iter  

decreases with the increase of iterations, while the value of 

iterσ in one generation is the same. This is not conducive to 

the algorithm convergence. Generally speaking,  ! iter  affects 

the distance between parent and her produced children 
weeds, different parent should have its own  ! iter , which is 
different with other parent weeds', though they are in the 
same generation. Thus, we modify IWO and present an 
adaptive standard deviation  stditer , in which the value of 

iterσ in one generation changes not only with the iteration but 
also with the maximum, minimum and the individual's fit-
ness value in the generation, as shown in the following equa-
tion: 

  

stditer =
e
! Fit!Fitmean

Fitmax!Fitmean "# iter   when  Fit $ Fitmean,

e

Fitmean!Fit
Fitmean!Fitmin "# iter     otherwise,

%

&
'
'

(
'
'

 (2) 

where Fit is the fitness function value of the weed, 

  Fitmax , Fitmin and 
meanFit denote the maximum, minimum, 

and average fitness function values among all weeds in cur-
rent generation, respectively. 

It can be seen from Eq. (2) that, the adaptive standard 
deviation of the weed   stditer changes exponentially with its 
fitness value, and the higher the fitness value, the smaller 
standard deviation the weed will have, which enables the 
seeds distribute near around their better parents, and far 
away from their worse parents relatively. Moreover, the 
range of the adaptive standard deviation   stditer is  e!1 ,e"# $%& iter

, 
which makes the standard deviation of the weed in the 
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younger generations likely to be larger than that in the older 
generations. This will help the new produced seeds escape 
from local optimum, improve the convergence rate, and bal-
ance the global and local search capabilities effectively at the 
same time. 

In the present generation, the number of seeds produced 
by the parent seed is calculated by 

  
snum = floor

Fit ! Fitmin

Fitmax ! Fitmin

smax ! smin( ) + smin
"
#$

%
&'

 (3) 

where   smax  and
mins are the largest and smallest numbers of 

seeds produced, respectively, and ( )∗floor  represents the 
round-down function of !"!# .  It is clear that better individu-
als produce more seeds. 

Suppose 
   
xi = x1

i , x2
i ,…, xN

i( )T , i = 1,2,…, P is the present 

individual weed, and each new seed produced by ix  

is
   
y = y1, y2,…, yN( )T , in which each element ky  is generat-

ed as follows: 

   
yk = xk

i + N 0,stditer
2( ),k = 1,2,…, N .  (4) 

Then   snum  new solutions are produced by Eqs. (1-4) 

and added into the population. 

3. BASIC PRINCIPLE OF PATTERN RECONFIGU-
RABLE ARRAY ANTENNAS 

Design of phase-only reconfigurable antenna array is to 
find a common amplitude distribution and different phase 
distributions, such that the array can produce multiple differ-
ent patterns. 

Consider a linear equispaced array with N  elements. If 
M different patterns need to be produced only by varying 
the excitation phases of the array under the common excita-
tion amplitude distribution, the optimization variable x  is a 
vector with +MN N  elements, where    xn n = 1,2,…, N( )  is 
the excitation amplitude for the -thn  antenna element de-
noted by nI and 

   
xmN+n n = 1,2,…, N( )  is the excitation phase 

for the -thn antenna element and the -thm pattern, denoted 
by

mn
ϕ . Then, the complex excitation of the -thn element in 

the -thm pattern is 

  imn = In ! e j"mn = xne
jxn+mN .  (5) 

It can be seen from Eq. (5) that, in the process of optimi-
zation, the common excitation amplitude is used for M pat-
terns all the time, and only the phases of the excitation are 
different. The -thm pattern produced by the antenna array 
for far field is given by 

  
Fm !( ) = imn " e2 j#ndcos! $

n=1

N
% ,  (6) 

where   m = 1,2,…, M , d is the spacing between array ele-
ments, λ  is the wavelength in free space, θ  is the angle 
from ray direction to normal of array axis. 

In this paper, patterns we need to reconfigure are pre-
sented below: 

(1) A cosecant-squared beam and a flat-top beam: the de-
sign problem is expressed as: 
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(2) A cosecant-squared beam, a flat-top beam and a pen-
cil beam: the design problem is formulated as: 

  min F x( ) = f
c

x( ) , f
f

x( ) , f
p

x( )( )T

 (10) 

where 

( ) ( ){ }( )
180

2

1

max , 0 ,
c
f x Q Q xθ θ

θ =

= −∑  (11) 

( ) ( ){ }( )
180

2

1

max , 0
f
f x Q Q xθ θ

θ =

= −∑ n  (12) 

( ) ( ){ }( )
180

2

1

max , 0 .
p
f x Q Q xθ θ

θ =

= −∑  (13) 

( ) ( ) ( ), ,
c f p
f x f x f x  represent the function of the cosecant-

squared beam, flat-top beam and the pencil beam, respec-
tively, and ( )，θ θQ Q x  are the desired and calculated values 
for each design specification we use. The lower the function 
value is, the closer the calculated pattern approaches the de-
sired pattern. When the calculated values of all the indexes 
are lower than the corresponding desired values, the function 
value is set to zero. 

4. MOEA/D WITH ADAPTIVE IWO (MOEA/D-AIWO) 

MOEA/D decomposes the phase-only reconfigurable lin-
ear array synthesis problem into a number of scalar optimi-
zation subproblems and solves them in parallel. The objec-
tive in each of these subproblems is an aggregation of all the 
objectives in the array synthesis problem under considera-
tion. Every subproblem has its own aggregation weight vec-
tor, which is different from any other subproblems, i.e., all 
these aggregation weight vectors of the decomposed sub-
problems differ from each other. The number of the decom-
posed subproblems is also the population size. Suppose, is 
the population size, then, we need to optimize P subprob-
lems in a single run. 

There are several approaches for converting a pattern re-
configurable problem into a number of scalar optimization 
problems [21]. In our experiments, Tchebycheff approach is 
mainly employed. Let    !

1,!2,…,!P  be a set of uniformly 
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distributed weight vectors and  z
!  be the reference point,  

i.e., 
   
z! = z1

!,…, zm
!( )T ,   zi

! = min fi x( ) x " l,u[ ]{ }  for each 

   i = 1,2,…, m.  With the Tchebycheff approach, the objective 
function of the -thi subproblem is in the form [21]: 

( ) ( ){ }
1

, max ,te i i

j j j
j m

g x z f x zλ λ∗ ∗

≤ ≤
= −  (14) 

where    !
i = !

1

i ,…,!
m

i( )T

. MOEA/D-AIWO minimizes all these 
P  objective functions simultaneously in a single run. In 
each subproblem, AIWO is adopted for searching. Each sub-
problem is optimized by using information only from its 
neighboring subproblems. Neighborhood relations among 
subproblems are defined based on the distance between their 
aggregation coefficient vectors. Detailed description of 
MOEA/D-AIWO is shown in the following Algorithm 1. 

In the population, optimization variables for each individu-
al are the common excitation amplitudes for all patterns and 
different phases for forming different patterns. The output of 
the algorithm is a Pareto set, in which each Pareto optimal so-
lution corresponds to a phase-only reconfigurable array. In the 
obtained results, different weight coefficients corresponding to 
various patterns form a weight vector, each Pareto optimal 
solution corresponds to a weight vector, all these weight vec-
tors we set are different from each other, then, each optimal 
solution in Pareto set is different in principle. That is to say, we 

can obtain a population of different phase-only reconfigurable 
array designs by MOEA/D-AIWO in a single run, in each de-
sign, synthesized patterns set has different weight vector. In 
actual applications, decision-makers select a desired solution 
from the approximated PF or obey some standards for choos-
ing the best compromise solution. 

5. EXPERIMENTS 

To demonstrate the performance of the proposed 
MOEA/D-AIWO in the design of phase-only pattern recon-
figurable linear arrays, we carry out two sets of experiments, 
and compare the experimental results with those obtained by 
MOEA/D-DE [12] and MOEA/D-IWO [20]. 

(1) Two patterns reconfigurable arrays design: A cose-
cant-squared beam and a flat-top beam. 

Consider a equisp0.5 d- aceλ  linear array with 16 isotropic 
elements to generate a flat-top beam and a cosecant-squared 
beam. The dimension of vector x in objective function (Eq. 
(7)) is 48, including 16 common amplitudes and 32 unknown 
phases. 

(2) Three patterns reconfigurable arrays design: A cose-
cant-squared beam, a flat-top beam and a pencil beam. 

Consider a equisp0.5 d- aceλ linear array with 16 iso-
tropic elements to generate a cosecant-squared beam, a flat-
top beam and a pencil beam. The dimension of vector x  in 
objective function (Eq. (10)) is 64, including 16 common 
amplitudes and 48 unknown phases. 
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In the optimizing process, excitation amplitudes range from 
0 to 1, and phases are restricted from -180 to 180 degrees. 
Table 1. Parameters used in three comparing algorithms. 

Parameters 
Comparing Algorithms 

MOEA/D-AIWO MOEA/D-IWO MOEA/D-DE 

P  201/300 201/300 201/300 

T  0.1P  0.1P  0.1P  

rη  0.01P  0.01P  0.01P  

δ  0.7 0.7 0.7 

iniσ  0.1 0.1 0.1 

finalσ  0.002 0.002 0.002 

maxs  3 3 3 

mins  1 1 1 

pow  3 3 — 

CR  — — 1 

F  — — 0.5 

η  — — 20 

mP  — — 1 n  

5.1. Parameters Setting 

All the parameters used in MOEA/D-AIWO, MOEA/D-
IWO and MOEA/D-DE are listed in Table 1. In MOEA/D, 
population size and weight vectors are controlled by an inte-
gerH . 1 2, , , Pλ λ λK are the weight vectors in which each in-

dividual weight takes a value from { }0 1
, , ,

H

H H H
K , therefore 

the population size 1

1

m

H m
P C −

+ −
= , where m is the number of ob-

jectives. In experiments, H  is set to 200 and 23 for two-
objective and three-objective instance respectively, there-
fore, the population size P is 201 for two-pattern and 300 
for three-pattern reconfigurable arrays design. About the 
values setting of the other parameters in Table 1, we refer 
related references [12, 20]. Detailed descriptions can be 
found in [12, 20], we do not redescribe them here. To be fair 
in experimental comparisons, we set the maximum function 
evaluation 500000, and all these three algorithms 
(MOEA/D-AIWO, MOEA/D-IWO, and MOEA/D-DE) stop 
after reaching the maximum function evaluation. 

5.2. Experimental Results and Analysis 

In experiments, the synthesis problem is formulated as a 
multi-objective optimization problem, and solved by three 
comparing multi-objective algorithms: MOEA/D-AIWO, 
MOEA/D-IWO, and MOEA/D-DE. The output of these three 
algorithms for each instance is a Pareto set, in which each Pare-
to optimal solution corresponds to a phase-only reconfigurable 
array. Figs. (1) and (2) show the Pareto fronts of the two in-
stances obtained by these three algorithms. It can be seen from 
the two figures that MOEA/D-AIWO performs the best.  

 
Fig. (1). Plots of the final solutions obtained by MOEA/D-AIWO, 
MOEA/D-IWO and MOEA/D-DE for the first instance. 

 
Fig. (2). Plots of the final solutions obtained by MOEA/D-AIWO, 
MOEA/D-IWO and MOEA/D-DE for the second instance. 

The final approximations obtained by MOEA/D-AIWO have 
better spread and convergence than those obtained by 
MOEA/D-IWO and MOEA/D-DE in general, especially for 
the two-pattern. MOEA/D-IWO cannot obtain representative 
Pareto solutions within the given number of iterations. 
MOEA/D-DE performs the worst. 

From the Pareto set, we choose the best compromise so-
lution [20] obtained by each algorithm and present them in 
Figs. (3), (5) and Tables 2, 3. Fig. (3) and Table 2 are for 
instance 1, and Fig. (5) and Table 3 for instance 2. For the 
first instance, i.e., the two-pattern reconfigurable array syn-
thesis problem, it can be seen that, for the cosecant-squared 
beam the peak SLL obtained by MOEA/D-AIWO is 2.3554 
dB lower than that obtained by MOEA/D-IWO and 0.5956 
dB lower than that obtained by MOEA/D-DE. The BW val-
ue obtained by MOEA/D-AIWO is 45o , equal to that ob-
tained by MOEA/D-IWO, while the value obtained by 
MOEA/D-DE is 53°, which is 8° wider than those obtained 
by MOEA/D-AIWO and MOEA/D-IWO. For the flat-top 
beam, it can be seen from Fig. (3) and Table 2 that, the pat-
tern obtained by MOEA/D-AIWO has 0.9202 dB lower peak 
SLL value, which performs the best in those three algo-
rithms. The SLL values obtained by MOEA/D-IWO and 
MOEA/D-DE are -20.5452 dB and -20.4597 dB, which are 
0.375 dB and 0.4605 dB higher than that obtained by 
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MOEA/D-AIWO respectively. In terms of BW, MOEA/D-
IWO performs the best. The BW value obtained by 
MOEA/D-IWO is141o , which is narrower than145o , that 
obtained by MOEA/D-AIWO and147o , that obtained by 
MOEA/D-DE. Other indexes and the design objectives are 
listed in Table 2. Excitation amplitudes and the phases for 
the synthesized radiation patterns obtained by MOEA/D-
AIWO are shown in Fig. (4). 

In the second experiment, we use MOEA/D-AIWO to 
synthesize three patterns: A cosecant-squared beam, a flat-
top beam and a pencil beam, and compare the results with 
those obtained by MOEA/D-IWO and MOEA/D-DE too. 
Fig. (5) and Table 3 show the desired values and the best 
compromise solutions obtained by three algorithms. It can be 
seen from Fig. (5) and Table 3 that, for the cosecant-squared 
beam the peak SLL obtained by MOEA/D-AIWO is 0.9903 

Table 2. Design objectives and simulated results for the first instance. 

 Desired MOEA/D-AIWO MOEA/D-IWO MOEA/D-DE 

Cosecant-squared beam 

Side lobe level (SLL, in dB ) -20 -22.3374 -19.9820 -21.7418 

Half-power beam width 

(HPBW, in θ ) 
30

o
 34.9035

o

 34.0448
o  35.1359

o  

Beam width at SLL (BW, inθ  ) 40
o
 45

o
 45

o
 53

o
 

Ripple (in dB) 1 0.7002 1.2076 1.4299 

Flat-top beam 

Side lobe level (SLL, in dB ) -20 -20.9202 -20.5452 -20.4597 

Half-power beam width 

(HPBW, in θ ) 
112

o  118.9857
o 118.9866

o 121.0613
o  

Beam width at SLL (BW, inθ  ) 135
o  145

o  141
o  147

o 

Ripple (in dB) 1 0.9995 0.9995 0.9995 
 

 
Fig. (3). Synthesized radiation patterns by MOEA/D-AIWO, MOEA/D-IWO and MOEA/D-DE for the first instance. 

 
Fig. (4). Excitation coefficients for the synthesized radiation patterns obtained by MOEAD-AIWO for the first instance. 
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dB lower than the desired objective value, while those ob-
tained by MOEA/D-IWO and MOEA/D-DE are -18.095 and 
-19.9418 respectively, which have not met the design objec-
tive yet. All these three algorithms get the same 49o BW 
value. However, the ripple values obtained by three algo-
rithms are all a bit large, they cannot meet the design objec-
tive well. For the flat-top beam, it can be seen from Fig. (5) 
and Table 3 that, MOEA/D-AIWO performs the best in eve-
ry aspect. The SLL value obtained by MOEA/D-AIWO is -
20.0552 dB, which is 0.7864 dB lower than that obtained by 
MOEA/D-IWO, and 0.9925 dB lower than that obtained by 
MOEA/D-DE. The BW value obtained by MOEA/D-AIWO 
is 44o, which is 2o  narrower than that obtained by MOEA/D-
IWO, and 8o  narrower than that obtained by MOEA/D-DE. 
The ripple values obtained by three algorithms are all con-

trolled in 1 dB, which can meet the design objective. In the 
case of pencil beam, MOEA/D-AIWO also performs the 
best. In terms of SLL index, in three comparing algorithms, 
MOEA/D-AIWO gets the lowest value -21.5153 dB, which 
is 0.309 dB lower than that obtained by MOEA/D-IWO and 
0.2957 dB lower than that obtained by MOEA/D-DE. In 
terms of BW, the value obtained by MOEA/D-AIWO is 
equal to that obtained by MOEA/D-IWO, and MOEA/D-DE 
performs the worst, the BW value obtained by MOEA/D-DE 
is 20o, which is 2o  wider than those obtained by MOEA/D-
AIWO and MOEA/D-IWO. Other indexes such as ripple 
value can meet the design objectives well. Excitation ampli-
tudes and the phases for the synthesized radiation patterns 
obtained by MOEA/D-AIWO are shown in Fig. (6). 

 
Fig. (5). Synthesized radiation patterns by MOEA/D-AIWO, MOEA/D-IWO and MOEA/D-DE for the second instance. 

 
Fig. (6). Excitation coefficients for the synthesized radiation patterns obtained by MOEAD-AIWO for the second instance. 
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All above experimental results show that MOEA/D-
AIWO is competitive. Under the same conditions, 
MOEA/D-AIWO performs better or at least equal to 
MOEA/D-IWO and MOEA/D-DE in general, which demon-
strates that the adaptive strategy proposed in this paper is 
effective in balancing diversity and convergence of the 
search, it is beneficial for stressing the performance of algo-
rithm. MOEA/D-AIWO is effective and efficient in synthe-
sizing phase-only patterns reconfigurable arrays. 

CONCLUSION 

In order to synthesize the phase-only reconfigurable an-
tenna arrays effectively, a new version of MOEA/D based on 
adaptive IWO, called MOEA/D-AIWO, is proposed in this 
paper. MOEA/D-AIWO under the structure of MOEA/D, 
decomposes the phase-only reconfigurable synthesis prob-
lem into a number of scalar subproblems and solves them 
simultaneously in a single run. In each subproblem, an adap-
tive IWO strategy is adopted for improving search ability. 
We introduced an adaptive standard deviation, which chang-
es not only with the increase of evolution generations, but 
also with the fitness function value of each individual. This 
strategy improves the convergence rate and helps the seeds 
escape from local optimum. Taking advantage of the power-
ful searching ability of invasive weeds and well framework 
of MOEA/D, the overall performance of the proposed 
MOEA/D-AIWO is tested in solving the synthesis problems. 

Two sets of experiments are carried out to illustrate the ef-
fectiveness of MOEA/D-AIWO, and the comparing results 
with MOEA/D-IWO, MOEA/D-DE show the superiority of 
MOEA/D-AIWO in solving this kind of antenna array syn-
thesis problems. 
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