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Abstract:

Introduction:

In order to analyze the displacement and internal force of composite steel-concrete beams under the vertical load, The finite element
solution of composite steel-concrete beams under concentrated loads considering the existence of interface slip and vertical uplift
based on the basic idea of elastic mechanics was derived in this paper.

Method:

A new kind of stiffness equation of bar system was got and its correctness was demonstrated with experimental value, the problem of
composite beams considering the existence of interface slip and vertical uplift was solved, avoiding to produce large amount of
calculation with the body element method.

Results and Conclusion:

It can be seamlessly integrated into the current engineering design software, which provides effective help to practical engineering
problems.

Keywords: Composite beam, Finite element, Interface slip, Vertical uplift,  Element stiffness matrix, Composite steel,  Concrete
beams.

Composite steel-concrete beam is a new type of structure. Shear connectors between steel girder and concrete slab
make them work together as a whole to resist  interface slip and vertical uplift  at  the interface [1].  This structure is
widely used in our country’s urban overpasses and building structure because of its characteristics of light weight, large
stiffness, good plasticity, high strength, good stability, good integrality, long durability and short construction period. In
China, Nie [2 - 4] in Tsinghua University studied the ultimate bearing capacity of composite steel-concrete beams, the
ultimate  bending  capacity  and  strength  expression  of  composite  beams  considering  the  effect  of  interface  slip  are
derived on the basis of experiment.

Yu [5] has studied the interface slip and deformation of composite steel-concrete beams under vertical load, the
formula of slippage is given. On that basis, Liu [6] has derived the analytical solutions of composite steel-concrete
beams under vertical load, which can be used to obtain analytical expressions of stress and displacement in each part of
composite beams just one time.
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Lin [7, 8] has studied the behavior of composite steel-concrete beams under a negative bending moment. Load-
displacement relationships, crack formation and its developing process, slip distribution at the interface of steel girder
and concrete slab, and the flexural strain results of shear connectors were measured and studied. And she has built a
three-dimensional  FE  model  for  numerical  simulation  analysis  on  horizontally   curved   steel-concrete   composite
 beams subjected  to  negative  bending  moment. Hou  [9]  has made  dynamic analysis of  simply-supported  steel-
concrete  composite  beams under  moving  loads, obtained  thegoverning motion equations considering the interface
slip between steel girder and concrete slab. In other countries, Salari [10] has studied the slip effect of composite steel-
concrete beams and pointed out that finite element analysis of composite beams based on force unit is accurate, it is
economic and practical. Barnard [11] obtained many results based on test research of the flexural behavior of composite
steel-concrete  beams.  The  results  are  as  follows:  The  existence  of  relative  slip  at  the  interface  of  steel  girder  and
concrete slab is mainly due to the deformation of the shear connector under the action of horizontal shear.

The vertical uplift at the interface is mainly caused by different bending stiffness of steel girder and concrete slab.
The above two conclusions effectively proved that the bearing capacity of composite beams calculated by transformed
section method is greater than the actual bearing capacity of beam. Fabrizio [12] obtained a beam finite element for the
long-term analysis of steel-concrete composite decks taking into account the shear lag in the slab and the partial shear
interaction at the slab-girder interface.

Andrea  [13]  has  studied  the  non-linear  analysis  of  composite  steel–concrete  beams  using  the  displacement
formulation of the finite elements technique and illustrated some aspects related to the convergence of the method by
comparing solutions deriving from finite elements with 8, 10 and 16DOF. Ranzi [14] has derived a stiffness formulation
for the analysis of composite steel–concrete beams with partial shear interaction based on the direct stiffness method.
The above studies will provide important references to the design and calculation of composite steel-concrete beams,
but they are all only considering the effect of interface slip on mechanical behavior of composite steel-concrete beams
without considering the effect of vertical uplift.

The existence of the lift force between steel girder and concrete slab will reduce combination effect and stiffness of
composite beams, and it will increase the deflection thus affect its bearing capacity. Therefore, it is necessary to conduct
in-depth researches on the effect of interface slip and vertical uplift to the mechanical performance of composite beams.
Fu [15] calculated the uplift between steel girder and concrete slab in theory, compared the calculation results with the
test results and gave analytic solution of composite beams considering the interface slip and vertical uplift at the same
time. But the result is complex and tedious.

It is difficult to be mastered by actual technical personnel. Static and dynamic calculation theories of functionally
graded beams/plates are derived in literature [16 -  20],  which solve the problems of deflection, stress and dynamic
response. They consider also the transverse shear deformation effect without requiring shear correction factors, have
great  significance  in  engineering.  However,  the  contact  effects  of  multi-layer  structures  are  not  addressed  in  these
theories.

In summary, the existence of interface slip is commonly considered but the vertical uplift at the interface is seldom
involved in most existing theories of composite beam. At the same time, the existing theoretical formulas are complex
and hardly to promote, they are just for scientific research. The element stiffness equation of steel-concrete composite
beams considering the slip and vertical uplift effect at the interface has not been discovered in the widely used finite
element theories.

In this paper, the finite element solutions of composite beams considering interface slip and vertical uplift of steel
girder and concrete slab under the vertical load is deduced based on elastic mechanics and contact theory. This method
is not restricted by load and supporting conditions and it is convenient to be applied in practical engineering. A simple
and quick calculation theory to the engineering design problem of composite steel-concrete beams is provided.

2. BASIC ASSUMPTIONS

According to the actual deformation and loading status of composite steel-concrete beams, the basic assumptions
are as follows: (1)Steel girder and concrete slab conform to plane cross- section assumption, respectively; (2)There is
vertical displacement difference between steel girder and concrete slab; (3)There is horizontal slip at the interface of
steel  girder  and  concrete  slab;  (4)The  horizontal  shear  stress  and  the  vertical  stress  transferred  at  the  interface  are
proportional to the relative displacement difference between the lower edge of concrete slab and upper edge of steel
girder.
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3. DERIVATION OF THE ELEMENT STIFFNESS MATRIX

3.1. Selection of the Displacement Mode

From Fig. (1), in order to obtain the element deformation model for the composite steel-concrete beams, it is needed
to  determine  the  nodal  degrees  of  freedom  of  the  element  according  to  the  actual  deformation  characteristics  of
composite  beams.  According  to  assumptions  (2)  and  (3),  there  are  different  vertical  displacements,  horizontal
displacements and different angles between two beam elements. Therefore, the independent degrees of freedom on each
node of composite beam element will be six, i.e. the axial displacements of the concrete slab and the steel beam uc and
us ; the vertical displacements of the concrete slab and the steel beam vc and vs ; the angles of rotation at concrete slab
and the steel beam θc and θs . Thus, the node displacement vector of the composite beam is Eq.(1).

Fig. (1). Composite beam structure.

(1)

where the subscript ‘1’ and ‘2’ represent the left and the right node, respectively.

When the number of nodal degrees of freedom is determined, the displacement mode of the element can be set
down. The axial displacement and the vertical displacement use quadratic function and quartic function, respectively,
are Eqs.(2) ~ (4).

(2)

(3)

(4)

where x is axial coordinates of elements,c1~c5, c10~c12 are undetermined coefficients.

The internal forces can be obtained according to the relationships between the internal forces and displacements [3]
as Eqs.(5) ~ (9).
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where Nc is axial force of concrete slab, Mc is the bending moment undertaken by concrete slab, Qc is the shear force
undertaken by concrete slab, qvc is the vertical uplift force at interface,quc is the horizontal shear force at interface, Ec is
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elastic modulus of concrete, Ic is inertia moment of concrete slab,’ means partial derivative of x,(n)means n order partial
derivative of x.

Set

(10)

(11)

Integrating Eqs.(10) and (11) yields Eqs.(12) ~ (17).

(12)

(13)

and

(14)

(15)

(16)

(17)

According to the relationships between the internal forces and the displacements as Eqs.(18) ~ (22).

(18)
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(20)

(21)

(22)

where Ns is the axial force of steel beam, Ms is the bending moment undertaken by steel beam, Qs is the shear force
undertaken by steel beam, qvs is the vertical uplift force at interface,qus is the horizontal shear force at interface, Es is the
elastic modulus of steel, Ic is the inertia moment of steel beam.

The vertical stresses at the interface are equal, i.e. Eq.(23).

(23)

Substituting Eqs. (8),(21) and Eqs. (9),(22) into Eq.(23) obtains Eq.(24).

(24)

After substituting α and β into Eqs.(13) and (17) we will get the following formulas as Eqs.(25) ~ (27).
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(25)

(26)

(27)

3.2. The Displacement Relationship of the Composite Beams

The horizontal displacement at the cross section of the composite beam is depicted in (Fig. 2).

Fig. (2). Horizontal displacement at the cross section of the composite beam.

From Fig. (2), the expression of the horizontal displacement difference can be obtained as Eq.(28).

(28)

where h1 is the distance from the section centroid of the concrete slab to the interface, h2 is the distance from the
section centroid of the steel girder to the interface. The vertical displacement difference is Eq.(29).

(29)

The relationship between the displacement difference and the stress of interface is Eq.(30).

(30)

where qv and qu are the vertical stiffness and horizontal stiffness of the connecting bolt, respectively, k1 and k2 are the
vertical stiffness and horizontal stiffness of the connecting bolt, respectively, l is the space of the bolts.

The vertical stiffness of bolt can be calculated by the method in Ref [15] as Eq.(31):

(31)

Where Est is the Young’s modulus of the bolt, Ast is the cross sectional area of the bolt, lst is the length of the bolt.

The shear stiffness of bolt can be calculated by the method in Ref [6] as Eq.(32) , (33).
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(32)

(33)

fck is the prismatic compressive strength of concrete, As is the cross section area of bolt, Ec is the Young’s modulus
of concrete, ns is the column number of bolts.

Substituting Eqs. (28), (29) into (30) and setting l = 1 arrives at Eqs.(34) and (35).

(34)

(35)

3.3. Determination of the Element Displacement Matrix

The 12 boundary conditions of the constraint element are shown in Eq.(36).

(36)

Simultaneous (34),(35) and (6),(19) respectively, then substitute midpoints into them as Eqs.(37) and (38):
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Substituting Eqs.(27)~(32) into Eq.(36), and combining with Eqs.(37) and (38), one can solved the coefficients as
Eq.(39).
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Take (39) back into the trial function and show with the form of matrix as Eq.(40):

(40)

3.4. Elemental Generalized Strain Matrix and Generalized Force Matrix

By the basic principles of elastic mechanics as Eq.(41).

(41)

Where kv (x) εu (x) is the horizontal strain. Taking the derivatives of Eq.(40) yields Eq.(42).

(42)

Equation (42) can be denoted as Eq.(43).
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where B is the generalized strain matrix.

By the physical equations of the beam as Eq.(44):
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where Ec and Es are the Yong’s modulus of concrete slab and steel girder, respectively; Ic and Is are second moment
of area of concrete slab and steel girder, respectively.

Substituting Eq. (42) into Eq. (44) yields Eq.(45).

(45)

Equation (45) can be denoted as Eq.(46).

(46)

where N is the generalized force matrix.

3.5. The Expression of Element Stiffness Matrix

Set the nodal force vector of the element as Eq.(47).
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The total potential energy of element is Eq.(48).
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According to the principle of minimum potential energy, make the first variation of the potential energy function of
the system equal to zero AS Eq.(49).
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From Eq.(49), the static equation of the beam can be obtained as Eq.(50).
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(52)

4. SOLUTION OF THE NODE DISPLACEMENT MATRIX

The global stiffness equation of structure can be obtained from literature [21 - 23] as Eq.(53).

(53)

where K is the global stiffness matrix, P is the original equivalent load vector, δ is the nodal displacement vector.
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The global stiffness matrix K and the original equivalent load matrix P can be obtained by assembling the element
stiffness  matrix  Ke  and  the  equivalent  load  matrix  Pe  that  already  obtained  as  Eqs.(54)  and  (55).  When the  load  is
uniformly distributed load q

(54)

when the load is concentrated load p

(55)

The node displacement matrix δ can be obtained by substituting them processed by multiplied with bigger number
method into Eq.(53).

5. EXAMPLE OF VERIFICATION AND ANALYSIS

In order to demonstrate the correctness of the presented method for calculating the slippage and uplift of composite
steel-concrete  beams,  two  composite  beams  with  their  sectional  dimensions  shown  in  Fig.  (1)  were  tested  and
calculated. The span of this composite beams is 4.0m and the size of concrete slab is 800mm × 80mm, the size of steel
roof  is  120mm ×  6mm,  the  size  of  the  steel  web  is  6mm ×  238mm,  the  size  of  the  steel  bottom slab  is  120mm ×
6mm.The diameter of bolt is 12mm and the arrangement form of bolts is double row and symmetrical, the spacing of
each row is 60mm,along the beam length direction bolts was uniform arranged and the spacing was 200mm of each
row. Concrete grade of roof is C40 and the steel grade of steel girder is Q335, the performance level of bolt is 6.5. 50kN
concentrated loads were applied at 1.4m from the beam at both ends. The model has 40 units. The calculation time is
3minutes.

The  comparisons  of the results  calculated  by  the  presented  method  and  the  experimental  results  are  shown 
in  (Figs. 3-6).

Fig. (3). The contrast of calculated value and experimental value of deflection.
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Fig. (4). The contrast of calculated value and experimental value of slip strain difference.

By comparison, the results of calculation got by the method of the new type of bar system finite element and testing
are in good agreement. Both deflection and slip strain difference are shown in Figs. (3 and 4). As shown in Fig. (3), the
values of midspan deflection obtained from test  1 and test  2 are 6.07mm, and the calculated value is 6.20mm. The
relative error between the results of calculation and testing is 2% at most.  Fig. (4) shows that slip strain difference
presents  M-shape  along  the  beam,  and  the  curve  is  symmetrical.  It  should  be  noted,  there  are  some  discrepancies
between the results of calculation and testing of slip strain difference, the possible reasons may be the existence of test
errors,  which  mainly  from the  positions  of  studs  and  the  sticking  positions  of  strain  gauges.  It  can  be  proved  that
element stiffness matrix derived in this article is correct. At the same time calculated results of relative slippage and the
value of vertical lift can be obtained quickly and accurately by using the calculation method, perfecting the calculation
theory of composite beams that only considering slip effect. According to the results shown in Figs. (5-6), the uplift has
almost the same order of magnitude of shear slip near the beam ends, however in the central region of the beam, it is
almost zero. It shows that uplift is relevant and can't be ignored, especially when flexible shear connectors are provided
between steel girder and concrete slab. Due to the deformation of flexible shear connectors, it can only play a part of the
horizontal shear and vertical uplift effect. And it must be said that the element is not able to take into account the shear-
lag effect, which can be necessary to evaluate the effective width. The method can be obtained from Ref [24].

Fig. (5). The calculated value of shear slippage.
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Fig. (6). The calculated value of the amount of vertical lift.

CONCLUSION

The finite element solution of composite steel-concrete beams considering the existence of interface slip and1.
vertical  uplift  is  derived  for  the  first  time  based  on  elastic  mechanics  and  contact  theory  which  solves  the
problem of slip and uplift at the interface of composite beams using common finite element method.
Comparing the results of calculation and test result of composite steel-concrete beams, the correctness of the2.
finite element of composite beams derived in this paper was assessed.
The finite element method is feasible and effective. The element stiffness matrix was derived in this paper. It3.
can be seamlessly integrated into the current engineering design software and provide effective help to practical
engineering  problems.  It  can  not  only  be  used  to  calculate  the  displacement  and  stress  of  steel-concrete
composite beams under vertical loads, but also can calculate inner force and distortion of bridge deck pavement
casted by stages under the vehicle loads. It provides an accurate calculation method for the large span beam-type
structure with steel-concrete composite beams.
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