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Abstract:

Introduction:

The frictional contact problem is one of the most important and challenging topics in solids mechanics, and often encountered in the
practical engineering.

Method:

The nonlinearity and non-smooth properties result in that the convergent solutions can't be obtained by the widely used trial-error
iteration method. Mathematical Programming which has good convergence properties and rigorous mathematical foundation is an
effective alternative solution method, in which, the frictional contact conditions can be expressed as Non-smooth Equations, B-
differential equations, Nonlinear Complementary Problem, etc.

Result:

In  this  paper,  static  frictional  contact  problems  of  double  cantilever  beam  are  analyzed  by  Mathematical  Programming  in  the
framework  of  Scaled  Boundary  Finite  Element  Method  (SBFEM),  in  which  the  contact  conditions  can  be  expressed  as  the  B-
differential Equations.

Conclusion

The contact forces and the deformation with different friction factors are solved and compared with those obtained by ANSYS, by
which the accuracy of solving contact problems by SBFEM and B-differential Equations is validated.

Keywords: Frictional contact problem, Scaled boundary finite element method, B-Differential equation, Nonlinear complementarity,
Double cantilever beam, Mathematical programming.

1. INTRODUCTION

The contact problem widely exists in mechanical engineering, civil engineering, hydraulic engineering, such as gear
mesh,  dam  body  joints,  structural  surfaces  between  different  materials,  joint  and  crack  opening  and  slipping  in
geotechnical engineering, etc. The contact characteristics between contact bodies have great effect on the deformation,
motion and stress distribution of the structure.

The prominent feature of contact problem is highly nonlinear for the contact constraints and nonsmooth for the
potential  energy of  the  contact  system. Moreover, the  contact boundaries  are unknown  in advance  which make  the
problem more difficult to be solved. The nonlinearity of contact interfaces originates from two aspects [1]: Firstly, the
area sizes and positions of contact interfaces and  contact states are  not only all  unknown in advance, but also changed
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with time. Secondly, the contact conditions are nonlinear and composed by the following conditions: 1) Contact bodies
cannot  penetrate  with  each  other;  2)  The  normal  component  of  contact  force  can  only  to  be  stress;  3)  The  friction
conditions  of  tangential  contact.  These  conditions  are  different  from  the  general  constraint  conditions,  whose
characteristic  is  unilateral  inequality  constraints,  and  has  strong  nonlinear  property.

Contact problem belongs to free boundary problem in mathematical classification, whose analytical results are very
few and difficult to be obtained for complex geometry of contact bodies and loading conditions. It is impossible to
establish a perfect mathematical model to simulate the real situation and then obtain accurate analytical solution for
contact  problems  encountered  in  many  complex  practical  engineering.  With  rise  and  development  of  computer
technology  and  various  numerical  methods,  it  is  becoming  possible  to  seek  the  numerical  analysis  method  for  the
contact problem which can more accurately meet the practical problem.

As described above, the contact problem is nonlinear problem and needs to calculate in the incremental form, whose
results are dependent on loading the path. Iterative method is commonly used to solve the nonlinear contact problem.
Bathe and Chaudhary [2, 3] derived contact stiffness matrix for point-surface contact model by simplifying assumption,
so that the stiffness matrix of equilibrium equation becomes symmetrical, and it can be conveniently solved. In order to
improve computation efficiency, the contact problem can be condensed to the possible contact boundary, due to the
nonlinear of contact problem mostly occurs in the possible contact area. Francavilla and Zienkiewicz [4] proposed the
flexibility  method  whose  unknown  variable  is  contact  stress  based  on  flexibility  matrix  condensation.  Chen  [5]
proposed  mixed  finite  element  method  based  on  the  contact  flexibility  matrix  by  the  force  method,  in  which  the
unknown variables are contact force and rigid body displacement.

Mathematical  programming  method  is  also  a  very  effective  method  to  solve  the  contact  problem.  In  the
mathematical programming method, the problem can be transformed into mathematical model that can be solved by
introducing the contact constraint conditions into potential energy functional of the system. The earliest application of
mathematical programming method is in the solution of the frictionless contact problem [6]. In this method, the normal
non-penetration condition is introduced into the total potential energy functional of the system by Lagrange's multiplier
method, and a standard quadratic programming model is formed after taking extreme value of potential energy.

For  frictional  contact  problems,  the  friction  force  is  non-conservative  force  and  the  work  done  by  friction  is
embodied in the energy dissipation and does not rely on the loading path, then there is no corresponding variational
principle,  thus  it  cannot  be  directly  equivalent  to  the  minimization  model.  For  3-D  frictional  contact  problem,  the
friction contact conditions are in the form of nonlinear complementary, therefore 3-D frictional contact problem should
be a nonlinear  complementary problem essentially.  Some scholars  proposed the parametric  quadratic  programming
iteration algorithm [7], sequence linear complementary method [8] etc. in order to minimize the computational scale
due to linearization as possible. Chen et al. [9, 10] proposed the nonlinear complementarity principle and smoothing
algorithm for  3-D frictional  contact  problem.  Li  [11]  proposed  the  solution  of  non-smooth  equations  for  nonlinear
complementary problem, which can be solved by non-smooth Newton's method. The contact problem is expressed as
the B-differentiable equations by Christensen [12, 13] and solved by B-differential Newton method with guaranteed
convergence property.

For contact problems, FEM and BEM are often used for the discretization of contact bodies. In this paper, the novel
numerical method SBFEM developed in recently by Wolf and Song [14 - 17] is employed. SBFEM is a semi-analytical
approach combining the advantages of finite element method (FEM) and boundary element method (BEM), and has its
own  characters.  Only  boundaries  of  the  investigated  domain  are  discretized  resulting  in  a  reduction  of  the  spatial
dimension  by  one  which  is  similar  to  BEM,  but  the  fundamental  solution  is  not  needed.  These  features  lead  to
significant reduction of the computational cost. The displacement and stress fields are solved analytically in the radial
direction  and  the  accurate  stress  intensity  factors  can  be  calculated  straightforwardly  without  further  introducing
singular elements. This method is also an excellent tool for modeling unbounded domains as the radiation condition at
infinity  is  automatically  satisfied  [14].  So  SBFEM  is  superior  to  solve  unbounded  domain  and  stress  singularity
engineering problems. This method has successfully been used in static crack propagation problems [18, 19], and in
dynamic crack propagation problems [20, 21].

In this paper, SBFEM combined with the B-differential Equation is applied to deal with static frictional contact
problems of double cantilever beam. The formulation for 2-D static frictional contact problem and B-differentiable
equations for contact conditions are firstly presented, and the fundamental theory and details of the SBFEM can be
consulted in publications [14 - 21]. Finally, the contact forces and deformation with different friction factors are solved
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and compared with those obtained by ANSYS in which FEM is employed.

2. BASIC THEORY OF SBFEM

The detailed derivation and solution procedure of the SBFEM may be found in the publications [14 - 21] and only
some  key  equations  for  the  developments  in  this  paper  are  summarized.  As  shown  in  Fig.  (1),  the  domain  is
conveniently divided into a few super-elements whose size and shape can be arbitrary, and only the visibility from the
scaling  centre  is  considered.  Only  the  super-element  boundary  is  discretized  Fig.  (1).  The  SBFEM coordinates  are
defined  as  ξ  and  η,  where  dimensionless  radial  coordinate  ξ  pointing  from  the  scaling  center  O  to  a  point  on  the
boundary, η running in the circumferential direction parallel to the boundary.

Fig. (1). Two-dimensional frictional contact system.

The governing equations derived using Galerkin’s weighted residual method [19] are expressed as follows:

(1)

where coefficient matrices [E 0], [E1], and [E2] depend on the geometry and material properties of the elements, they
are  independent  of  ξ.{Ft(ξ)}.  denotes  the  surface  tractions  or  loads  on  the  side-faces.  {u(ξ)}  represent  the  nodal
displacements. For homogeneous case without loads on the side-faces {Ft(ξ)} = 0, Eq.(1) is transformed into the first
order  ordinary  differential  equation.  By  solving  the  standard  eigenvalue  problem,  the  displacement  field  and  the
associated stress field inside the super-element take the form

(2)

(3)

where [D] is the stress-strain relation matrix; [L] is the differential operator matrix relating displacement with strain;
[N](η)] is the shape function matrix.

3. BASIC DESCRIPTION OF ELASTIC STATIC FRICTIONAL CONTACT PROBLEM

3.1. Basic Assumptions of Frictional Contact Problem

In the present paper, the small deformation and strain, and linear elastic material are assumed. It is assumed that
there are two contact bodies denoted as Ω1 and Ω2 in the contact system which are depicted in Fig. (1). And the node-to-
node contact model is employed. The possible contact boundaries (S1 and S2) in Fig. (1) of the two contact bodies can be
expressed as  one public  contact  boundary Sc,  the  public  normal  direction of  two possible  contact  boundaries  is  the
normal direction from Ω2 to Ω1 on the public possible contact boundary.

3.2. Formulation of Two –Dimensional Frictional Contact Problem

For each elastic body Ωα(α = 1,2) of the elastic frictional contact system, the boundaries S1  and S2  contain three

0 2 0 1 1 T

, ,

2

t

[ ] { ( )} ([ ] [ ] [ ] ) { ( )}

[ ]{ ( )}+ { ( )} 0

E u E E E u

E u F

    

  

  

 

1
1

{ ( , )} [ ( )] { }i

n

i i
i

u N c     



 

1
1

{ ( , )} [ ][ ][ ( )] { }i

n

i i
i

D L N c      



 



Studies on Static Frictional Contact Problems The Open Civil Engineering Journal, 2017, Volume 11   899

parts: the boundary with prescribed traction Sq
α, prescribed displacement Su

α and the possible contact boundary Sc
α. The

local coordinate system are defined on the contact boundaries of body Ω2, in which  and  are the unit normal and
tangential vector.

Since the frictional force is non-conservative, the solution of contact problem is related to loading path and needs to
be solved with incremental approach. At the t moment, that the equations that the elastic static frictional contact system
needs to satisfy are as follows:

Equilibrium equations:

(4)

Constitutive relation:

(5)

Geometric equation:

(6)

Eq.(4)-Eq.(6) hold for internal point in  .
In the equations above, ui

α, σij
α and εij

α is displacement, stress and strain tensor respectively, duα
i, dσα

ij and dεα
ij is

corresponding increment, and Cijkl is the elastic matrix of the material.

Contact condition in the form of B-Differentiable Equations [1]:

(a) Non-penetration condition in normal direction 

(7)

(b) The frictional slip condition in tangential direction 

(8)

Where, Pn
i, Pa

i are the total contact forces in the normal and tangential directions; r is a positive scalar; Δun
i is the

normal gap; Δdua
i is the tangential incremental relative displacements; the superscript i is the i-th contact pair, NC is the

number of contact pairs in the contact surface.

After the discretization of weak form of the equilibrium equation and the implementation of contact constraints, the
governing equations for two-dimensional elastic static frictional contact problem can be expressed as:

(9)

where H1 is incremental equilibrium equations expressed as Eq.(10), and H2 ~ H3 are B-differentiable equations of
contact conditions.

(10)

In Eq.(10), dR is the incremental external force, dPn and dPa are the incremental contact forces, [Cn] and [Ca] are
matrixes which transform the vectors of local contact forces into the global ones.
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Eq.(9) can be solved by B-differentiable Newton method. In order to improve the efficiency of computation, the
equilibrium equation Eq.(10) can be condensed into the Dofs of the contact points firstly, then the equations (9) and
(10) are solved by B-differentiable equation method to get the contact force, finally the displacement is obtained by
solving Eq.(10) with the known contact forces. The detailed solution procedures of B-differentiable equation method
can be found in publications [13, 22].

4. NUMERICAL EXAMPLE

As shown in Fig. (2), the contact between two cantilever beams with the same size is analyzed. The size of each
beam is 6.0m × 1.5m; the beams are fixed at left side; a concentrated load F(F = 100KN) is applied on the top right of
the upper beam along the vertical direction. The initial gap between the two beams is zero and their interfaces are the
potential contact areas. The material properties of two beams are the same, whose parameters are as follows: Young's
modulus E = 10GPa; Poisson ratio υ = 0.3; friction coefficient µ is taken as 0.0, 0.2 and 0.5 respectively. The plane
stress state is assumed, and the gravity effect of the beams is ignored. In order to verify the validity of the proposed
solution procedure in the framework of SBFEM, the results are compared with those obtained by ANSYS program.

Fig. (2). The loads and dimensions of double cantilever beam frictional contact problems (unit: mm).

4.1. Solution of Static Contact Problem by SBFEM

As shown in Fig. (3), for each beam only the boundaries are discretized by the three-node quadratic elements (their
nodes are marked as those tiny black dots “.”, and each super-element has eighty nodes). The scaling centre is chosen at
the centroid of the beam. Both beams are disretized with same mesh size and can be analyzed using the node-to-node
model  in  which  the  discretized  contact  surfaces  are  mesh-matching.  Two  nodes  with  the  same  coordinates  on  the
different beams are defined as a pair of contact points (marked as ‘*’) and the total number of which is 32 (P1, P2,...,).

Fig. (3). Mesh discretization and selection of pair of contact points of double cantilever beam frictional contact problems based on
SBFEM (unit: mm).
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Fig. (4). Mesh discretization of double cantilever beam frictional contact problems using ANSYS (unit: mm).

Fig. (5). Distribution of tensile principal stress of double cantilever beam with different friction coefficients solved by SBFEM and
ANSYS.

 

(a) SBFEM, 0.0=  
 

(b) ANSYS, 0.0=  

 

(c) SBFEM, 0.2=  
 

(d) ANSYS, 0.2=  

 
(e) SBFEM, 0.5=  

 
(f) ANSYS, 0.5=  
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4.2. Solution of Static Contact Problem by ANSYS

As  shown  in  Fig.  (4),  the  double  cantilever  beams  are  discretized  with  PLANE82  elements  (eight-node  plane
element), whose total number is 1698, the surface-to-surface contact is employed. The left ends of the beams are fully
constrained.  The mesh size in the ANSYS is half  of that  in the model solved by SBFEM. The output results  of 32
contact pairs are compared.

The deformation figures (magnified 100 times) with the contour of principal tensile stress σ1 resulted from SBFEM
and ANSYS for different frictional coefficients are shown in Fig. (5). It can be seen from the figures that the peak value
and distribution of the principal tensile stress σ1 are in good agreement. Besides, the upper parts of the upper and lower
cantilever beams sustain tensile stress, and the peak value occurs on the left constraint of each beam. No penetration
appears which agrees with the actual situation, due to the contact between the two beams is considered. As shown in
Figs.  (5a,  5b  and  5c),  by  comparing  the  distribution  of  principal  tensile  stress  σ1  of  double  cantilever  beams  with
different friction coefficients, it can be found that, for different friction coefficients, the stress distributions solved by
SBFEM is consistent with those by ANSYS.

Fig. (6). Comparison of normal displacements of contact pairs with different friction coefficients.

Figs. (6 and 7) show the normal and tangential displacements of contact points respectively for double cantilever
beams  with  different  friction  coefficients  solved  by  SBFEM  and  ANSYS.  As  shown  in  Fig.  (6),  normal  contact
displacements of each contact pair obtained by both methods are nearly identical, whose result errors are all within
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5.0% except for the two pairs of contact points (P26 and P27) at the right side. It can also be drawn from the comparison
of normal contact displacement of contact pairs with different friction coefficients (as shown in Figs. 6a-6c) that normal
displacements of contact pairs are almost the same for different friction coefficients. As shown in Fig.(7), tangential
displacement  curves  of  contact  pairs  by  both  methods  nearly  coincide,  whose  result  errors  are  all  less  than  0.8%.
Tangential displacements gradually reduce with the increase of friction coefficient as shown in Figs. (7a-7c).

It can be seen from the normal contact displacement curves in Fig. (6) and the tangential ones in Fig. (7) that when
friction coefficient µ  = 0.0, six pairs of contact points (P27-P32) on the right side are in the contact status, while the
remaining pairs of contact points are in the separation status. But when µ is 0.2 or 0.5, only five pairs of contact points
on the right side (P28-P32) are in the contact status. In ANSYS, the distributed contact pressure, not the nodal contact
force is obtained. When friction coefficient µ = 0.0, the total normal contact force by SBFEM is 53.64KN , and that is
54.52KN by ANSYS. For µ = 0.2, the total normal contact force based on SBFEM is 53.64KN, which is 53.88KN, by
ANSYS, and the total tangential contact force by SBFEM is 10.73KN, and that is 10.78kN based on ANSYS. For µ =
0.5, the total normal contact force based on SBFEM is 53.64KN, and that is 54.16kN by ANSYS, and total tangential
contact force based on SBFEM is 26.82KN, and that is 27.08KN by ANSYS. From the above analysis, with the increase
of friction coefficient µ, tangential contact displacement reduces gradually when tangential contact force increases, and
the  different  friction  coefficients  have  few  effect  on  the  stress  distribution,  normal  contact  force  and  contact
displacement.

Fig. (7). Comparison of tangential contact displacements of contact pairs with different friction coefficients.
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CONCLUSION

This paper presents the formulation and solution procedure by combing SBFEM and B-differentiable equations for
solving two-dimensional frictional contact problem. As an example, the contact problem of double cantilever beam is
given  to  verify  the  accuracy  and  effectiveness  of  proposed  method  by  comparison  with  ANSYS  software.  In  the
framework of SBFEM, only the boundaries of contact bodies are needed to be discretized with one-dimensional three-
node linear elements for 2D case and the total number of nodes is far less than that in ANSYS. For different frictional
coefficients, the results obtained from both methods are in good agreement. It can be drawn from the analysis that with
the increase of friction coefficient, tangential contact displacement reduces gradually, while tangential contact force
increases little by little, but normal contact force and contact displacement are almost constant.

It also can be found from the previous analysis that if the contact algorithm is introduced to the fracture analysis of
structure, the contact between the crack surfaces will be considered reasonably.
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