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Abstract:

Objective:

Quasi-static tests of three mid-rise assembled monolithic concrete shear walls, whose aspect ratio is 2.0, were completed in this
paper. The failure mode of three new-type shear walls and the effect of axial compression ratio were studied.

Result and Conclusion:

The result showed that the brittle failure was extinct, and the new-type shear walls had good deformability whose ductility factors
were over 4.3. The axial compression ratio had significant influence on the mechanical properties of the new-type shear walls. As the
increscent of the axial compression ratio, the shear capacity and initial stiffness were improved, but the energy-dissipating capacity
became worst.

Keywords: Mid-rise assembled monolithic concrete shear walls, Axial compression ratio, Vertical joint, Shear behavior, Pre-cast
walls, Concrete slab.

1. INTRODUCTION

Assembled  monolithic  concrete  shear  wall  structure,  which  is  mainly  site-assembled  by  precast  or  half-precast
members subsequently partially pouring concrete in place, plays an important role in housing industrialization of China.
It has virtues of rapid-speed construction, high-quality products, saving costs, etc. The key technology provides the
reliable and convenient connection for each unit, which is the basis of popularizing the application of this wall structure.

Both experimental and theoretical studies on the connection are available in the literature. Rizkalla S H conducted a
test on common horizontal joints applied in the precast shear wall panels, which demonstrated that the shear resistance
of horizontal joints is determined by the shear frictional resistance between the precast wall panels and the performance
of shear keys [1]. Six precast concrete shear walls having joint connecting beam were tested through quasi-static test by
Dun Wang and Xilin Lu, etc. Test results show that the failure mode of precast concrete shear wall specimens is nearly
the same as that of monolithic shear wall, and loads can be effectively transferred by the joint connecting beam [2].
Moreover, 4 pre-cast reinforced concrete shear wall specimens were tested under cyclic reversed loading by Jiaru Qian
and Yuanyuan Peng, etc. The results show that the cast-in-site stripe can connect the pre-cast walls into a unit with the
integrity behavior of the rough interface of the side face of pre-cast wall being better than that of the shear keys [3].
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The  basic  unit  of  assembled  monolithic  concrete  shear  wall  structure  is  the  precast  concrete  slab  which  has
cylindrical holes for vertical and rectangular holes for horizontal. They are connected by vertical and horizontal joints.
The vertical joints consist of transverse reinforcement, cast-in-situ concrete and new-old concrete interface. Researches
show that the assembled monolithic concrete shear wall  exhibits  a  good  seismic  behavior  avoiding  the  brittle  shear
failure [4 - 6]. Additionally, the construction for vertical joints is easily and the connection between different precast
concrete slabs by vertical joints is reliable [7].

Axial compression ratio is a key parameter in the seismic design of shear wall, which has a great impact on walls’
shear behaviors. The researches on the axial compression ratio of the assembled monolithic shear walls always focused
on the low-rise walls, but the researches on mid-rise walls [8] are sparse. In this paper, three assembled monolithic
concrete shear walls with vertical joints were tested under reversed-cyclic lateral loading. Failure pattern, hysteretic
behavior, and deformability were analyzed to investigate the influence of axial compression ratio on the walls’ shear
behavior. Results of this experiment can be a basis for the application of this wall structure.

2. TEST SPECIMEN INFORMATION

The three test wall specimens, which consist of grade beam, wall section, and loading beam, are denoted by 2-DW5-
L2,  2-DW10-LN1 and  2-DW12-LN2.  The  aspect  ratio  of  them was  2.0,  suggesting  that  the  height  from the  upper
surface of the grade beam to the lateral loading location was 3200mm. The rectangular section size of the shear wall
was  1600mm×200mm,  including  the  boundary  element  200mm  and  the  vertical  joint  20mm.Taking  the  axial
compression ratio as changing parameter in the test, the ratios of specimen 2-DW5-L2, 2-DW10-LN1 and 2-DW12-
LN2 were 0.15,  0.10 and 0.25 respectively,  and the corresponding axial  loads were 1575kN, 1072kN and 2693kN,
respectively.

Fig. (1). Dimensions and reinforcement of specimens.
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The dimensions and reinforcement details are depicted in Fig. (1). The shear capacity is larger than flexural capcity
by design. The transverse reinforcements of the shear walls are placed in the horizontal holes rather than the slab, which
can provide shear capacity. Meanwhile, the transverse reinforcements are important components of the vertical joint.

The precast concrete slab used in the assembled monolithic concrete shear walls is shown in Fig. (2). In order to
ensure the connection between the shear  wall  and the grade beam, the keyway was designed at  the bottom of then
precast concrete slab, and the same purpose for the vertical dowel rebars inserted into each hole of 410mm (which were
embedded into the foundation). The length of standard precast concrete slab was 2700mm, the width was 1180mm, and
the thickness was 200mm. In order to achieve the designed aspect ratio 2.0, there was cast-in-sit concrete zone at the top
of the shear wall whose height was 500mm (Fig. 3). The precast concrete with a height of 100mm chiseled off at the top
of the precast concrete slab, and the vertical reinforcements stretched into the loading beam to ensure the connection
between the loading beam and the shear wall. For fabricating the specimen, each precast concrete slab was cut along the
longitudinal  center  into  two  slabs  with  the  width-height  of  590mm×2700mm,  and  a  20mm-wide  gap  was  reserved
between the two parts when they were assembled. The two slabs turned over and connected by vertical joint. Some
other details are shown in Fig. (3).

Fig. (2). Precast concrete slab.

Fig. (3). Construction details of specimens.
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3. MATERIALS

Six standard concrete test cubes were reserved while making both the specimens and the precast slabs to measure
the compressive strength, and the curing conditions were the same with the specimens. The compressive strength of
concrete, which is listed in Table 1, was measured on the day of testing.

Grades of 400 (fy = 400Mpa) hot-rolled ribbed steel bars were used in the walls. Measured yield strength and the
ultimate strength of steel bars which are denoted by fy and fu are shown in Table 2, respectively.

Table 1. Measured compressive strength of concrete and axial compressive ratio.

Test unit f1
cu,m

/MPa
f2

cu,m

/MPa
nt

N
/kN

2-DW5-L2 41.4 44.2 0.15 1575
2-DW10-LN1 41.4 45.6 0.10 1072
2-DW12-LN2 49.7 41.2 0.25 2692

1. Cubic compressive strength of concrete of the precast slab.
2. Cubic compressive strength of concrete of the cast-in-situ.
Note: nt stands for the test axial compression ratio. The axial force N is calculated by the formula of N=nt(f

1
cu,mδ1/δ + f2

cu,mδ2/δ), where δ1 is the volume
of precast concrete, δ2 is the volume of cast-in-situ concrete, and δ is the total volume.

Table 2. Measured strength of reinforcement.

Diameter fy/Mpa fu/Mpa Type
8 338 504 Stirrup, dowel bar, longitudinal reinforcement
10 356 542 Transverse reinforcement
25 447 601 Bending reinforcement

4. TYPICAL INSTRUMENTATION LAYOUTS

The force,  displacement  and strain  of  steel  bars  were  measured in  the  test.  Force  transformers  were  adopted to
measure the vertical and horizontal load. The layouts of linear variable differential transformers (LVDT) are shown in
Fig. (4a). They are the same for all specimens. Displacement measuring items involved top lateral deformation, sliding
and rotation of the foundation, etc.  In addition, positions of longitudinal reinforcement inside the precast slabs and
bilateral side of the vertical joint were predicted to form visible vertical cracks in the literature [7], so was the location
between boundary element and precast wall section. Hence, LVDTs of MH1~MH6 and MV1~MV6 were employed to
measure both the relative vertical and horizontal deformations at the vertical cracks.

Fig. (4). Layout of measuring points.
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Strain gages were attached to the transverse reinforcement (HR1~HR15) and bending reinforcement in the wall
boundaries (VR1~VR6), which are shown in Fig. (4b). In order to study the connection between the wall and rigid
foundation, 5 strain gages were placed on the lower dowel bars. All the test data were analyzed by real time monitoring
through DH3816 static strain measurement system on computer.

4.1. Loading Scheme

The axial load and horizontal load were applied by hydraulic jacks. The axial stress was applied prior to imposing
lateral displacements, and it held constant throughout the test. The “Push” of horizontal hydraulic jack mounted to a
reaction  wall  is  regarded  as  the  positive  orientation.  The  horizontal  load  was  controlled  by  the  load-displacement
system. Initially, it was controlled by the load magnitude with the differential of 200kN, and then by the displacement.
After the appearance of the first diagonal crack, the differential was determined by the multiple displacement of this
load cycle. Every control displacement was reversed twice until the specimen failed.

5. OBSERVED RESPONSE

All  the  specimens  exhibited  a  similar  process  of  failure,  which  involved  horizontal  cracking  of  concrete  at  the
bottom of the walls, oblique cracking at lower parts of the walls, slightly cracking at the vertical joints, and vertical
cracking at the position between boundary elements and wall section, and the spalling of concrete. The walls failed in
the bend-shear pattern, with tensile yielding of transverse reinforcement and longitudinal reinforcement in boundary
elements.

The crack distribution is shown in Fig. (5). It can be drawn that the spacing of diagonal cracks decreased obviously
with the increased axial compression ratio. Vertical compression cracks appeared at the local position of the walls when
the axial compression ratio lifted to 0.25. The widths of the horizontal cracks at the bottom were 1.7mm, 2mm, and
1.5mm  for  2-DW5-L2,  2-DW10-LN1,  and  2-DW12-LN2  at  the  peak  load,  respectively,  which  indicates  that  the
connection behavior of wall section and rigid foundation improved by lifting the axial compression ratio. The horizontal
relative deformations at the vertical joints were 1.16mm, 0.16mm, and 2.0mm, at the same time, which indicated that
the connection behavior of vertical joints weakened with the increased axial compression ratio.

Fig. (5). Crack distribution at peak load.

6. RESULTS AND DISCUSSION

6.1. Hysteretic Curves and Skeleton Curves

Hysteretic and skeleton curves specimens are given in Fig. (6 and 7), respectively. Where x axis of V/fcbh is the
shear-compression ratio, and y axis of Δ/H is the drift ratio.

Before the appearance of the first crack, the slopes of the hysteretic curves were approximately constant and the1.
walls worked in the elastic range. With the progressing of the test, the diagonal cracks opened along their entire

   
a. 2-DW5-L1 b. 2-DW10-LN1 c. 2-DW12-LN2 
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length and therefore, the resistance against relative deformation decreased when unloaded. The phenomenon of
“pinching” was observed in the hysteretic loops.
The “pinching” aggravated with the increased axial compression ratio.2.
At the initial stage of the test, the skeleton curves of all the specimens nearly overlapped. The axial compression3.
ratio had a little impact on the walls’ stiffness. With the increased ratio, the impact increased along with the
walls’ stiffness.

Fig. (6). Hysteretic curves of shear compressive ratio-drift ratio.

6.2. Lateral Bearing Capacity and Ductility

Table 3 shows the lateral force and deformation of specimens at typical points, where θp and θu are the maximum
drift and the ultimate drift, respectively. The nominal yield point was determined by method of geometric drawing [9],
and  the  ultimate  point  was  assumed  to  be  where  the  peak  load  degraded  to  its  85% or  at  the  end  of  the  test.  The
coefficient of displacement ratio μΔ=Δu/Δy was calculated to assess the ductility of the walls, as shown in Table 3. For
the results presented herein, the following can be drawn:
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Fig. (7). Skeleton curves of all specimens.

Table 3. Lateral force, deformation and ductile coefficient of specimens at typical points.

Test Unit Direction
Nominal yield point Peak point Ultimate point

μΔFy /kN Δy /mm Fp /kN Δp /mm θp Δu /mm θu

2-DW5-L2
push 721

741
12.52

10.02
1083

1148
62.70

1/60
69.47

1/48 6.63
pull 761 7.51 1213 46.99 63.27

2-DW10-LN1
push 604

677
7.82

8.74
970

1037
41.30

1/71
67.31

1/47 7.86
pull 751 9.65 1104 48.95 70.10

2-DW12-LN2
push 775

808
10.84

10.55
1090

1160
42.49

1/96
50.81

1/70 4.38
pull 841 10.26 1230 27.28 41.62

Compared to 2-DW5-L2, the axial compression ratio of 2-DW10-LN1 decreased 33.3% and of 2-DW12-LN2, it1.
increased  66.7%.  The  yielding  load  decreased  8.6%  and  increased  9.0%  correspondingly.  Lateral  bearing
capacity decreased about 9.6% when the axial compression ratio varied from 0.15 to 0.1, while increased about
only 1% by lifting it to 0.25. Therefore, the lateral bearing capacity and yielding load improved effectively by
increasing  the  axial  compression  ratio.  While  the  magnitude  exceeded  to  0.15,  the  influence  of  axial
compression  ratio  on  the  peak  load  and  yielding  load  weakened.
The ultimate drift ratios were all greater than 1/96 at the peak load, which exhibited good deformability and met2.
the requirement of the current design code of China.
The  magnitudes  of  ductile  coefficient  were  all  greater  than  4.3  and  decreased  with  the  increased  axial3.
compression ratio.

CONCLUSION

The following conclusions were drawn based on the study presented herein:

All the specimens failed in the bending-shear mode, with the tensile yielding of longitudinal reinforcement in1.
the wall boundaries and light crushing of concrete at the bottom the wall’s corners. Final damage of the walls
was induced by the rhombic spalling of concrete in the compression zones.
The lateral bearing capacity decreased with the axial compression ratio while did not increase the other way2.
around. The ultimate drift ratios were all greater than 1%, which met requirement of the current design code.
Diagonal cracks developed across the precast wall section and the cast-in-situ zone, meanwhile, dowel rebars in3.
the upper part of the walls were in tension yet free from yielding throughout the duration of the tests. As a result,
stress was effectivel transferred by the dowel rebars, which offered a reliable connection.
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