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Abstract:

Background:

Quantification of soil  property spatial  variations is  an important step in any reliability-based design.  Little stochastic parameter
information about the soil in Nasiriyah, which is in southern Iraq, is available.

Methods:

In this paper, the Scale Of Fluctuation (SOF) for the site soil is examined, which is suggested for construction of the refinery fuel
station project as no random parametric quantity has been studied in this region. A Cone Penetration Test (CPT) was performed as
part of the site investigation to a depth of 20 m in the vertical direction, and 24 CPTs were analyzed within the site. The spatial
correlation was computed using four methods, including Single Exponent (SNE), Square Exponent (SQE), Cosine Exponent (CSE)
and Second-Order Markov (SOM). Identification of the soil type depended on the most recent classification chart, which is based on
CPT results. The spatial correlation was evaluated for the vertical direction considering the cone tip resistance (qc) component. Three
trend  functions  were  applied  to  all  CPT  soundings,  including  linear,  quadratic  and  cubic  polynomials,  which  were  utilized  to
transform the non-stationary data to stationary data. Three modes of soil  were employed, including the eight-meter soil  layer, a
twelve-meter soil layer and the entire twenty meters of soil, which includes both layers.

Results and Discussion:

The mean values of SOF were 0.54 m, 0.53 m, and 1.73 m for soil layers 8 m, 12 m, and 20 m, respectively. The high value of the
last mean is attributed to the 20 m of stratification in the ground. This study also indicates that the SOF decreases as the polynomial
degree increases, which is due to enhanced fitting. The coefficient of variation (COV) for the SOF shows little variability for most of
the studied soil cases.

Keywords: The scale of fluctuation, Stochastic soil parameters, Soil, Cone penetration tests, Cone tip resistance, Reliability-based
design.

1. INTRODUCTION

Engineering characteristics of soil show the spatial correlation nature, which is important because the geotechnical
problems currently require full  reliability-based design [1].  The soil  at  a construction site must be statistically well
investigated so that the geotechnical project is correctly designed using a reliability-based design method. Different soil
properties have been studied spatially based on the CPT, such as undrained cohesion [2] and liquefaction potential of
soil [3 - 5]. Field tests have also been successfully used for analyzing soil variabilities including the vane shear test [6],
Standard Penetration Test (SPT) [7] and CPT [8, 9]. Researchers have dealt with different soils such as weathered soil
[10] and soft soil [9]. Most recent design codes require that the variability parameter is included in the reliability-based
design. Many studies demonstrated considerable SOF effects on the geotechnical design problem [11 - 13]. The spatial
correlation is relevant to the inherent soil property, which is an uncertainty that cannot be avoided. This uncertainty is a
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primary uncertainty type, where the primary sources of uncertainty can be classified into three categories: inherent soil
variability, measurement errors and transformation uncertainty [14]. The inherent soil variability, which mostly results
from natural geologic developments, can be modeled as a random field with the scale of fluctuation.

Many researchers analyzed the variation in soil parameters with depth as a time series and changed the time by the
depth. Vanmarcke [15] applied the random field theory to analyze the variability in soil parameters. To describe the soil
stochastic parameters, three parameters have to be quantified: The mean (u), the variance or COV and the SOF [16].
Computation of the mean value and the COV for the soil parameters are relatively simple compared to the computation
of the SOF. SOF can be estimated by numerous methods such as the autocorrelation function based on random field and
time series theory, semivariogram based on geostatistics, local average subdivision area, moment method and maximum
likelihood method [6, 17 - 23]. The simplest and most widely used method used to estimate SOF is by best fitting the
theoretical correlation model to the experimental correlation function. Vanmarcke [24] proposed an alternative method,
based  on  the  concept  of  the  variance  function  [22,  25,  26].  Some  studies  compared  the  semivariogram  and
autocorrelation  [27],  while  others  compared  the  vertical  and  horizontal  SOF  [28].

The SOF for qc is defined as a distance within which values of qc are significantly correlated [15, 19]. The SOF is a
suitable scale for describing the spatial variability of a soil property in a random field. Several types of research have
been performed to indicate the SOF for qc within the soil. For clean sand, the SOF is 3 m; for Mexico clay, it is 1 m
[29], and for silty clay, the SOF is also 1 m [30, 31]. Phoon and Kulhawy [32] observed a SOF range of 0.1-2.2 m for
qc. For sand and clay, the SOF was between 0.13 m and 1.11 m [33]. For the cohesive Auckland residual soil, SOF
ranged between 0.2 m and 0.5 m [34] and 0.15 m and 2 m for stiff clay [16].

Based  on  previous  studies,  the  SOF  values  are  different  even  for  the  same  soil.  The  SOF  value  obtained
theoretically is different from the actual value. There are several factors affecting the SOF such as the sample interval,
the size of the sample, location of the site, CPT data, trend function, and problem scale [1, 30, 33, 35]. Selecting a
conservative value for SOF for use in random field applications based on previous studies is difficult because of the
high range of SOFs available [36]. Therefore, it is necessary to analyze the data for each specific site and compute the
SOF values to obtain an accurate result. Quantifying the SOF for the soil at the site in Nasiriyah is crucial because there
are no available studies on the soil and several previously mentioned factors may affect the values. The CPT has the
advantage  of  providing  near  continuous  data-based  strength  [37],  which  is  used  in  many  countries  and  has  a  high
theoretical  background.  CPT  can  be  used  even  in  low-risk  projects;  however,  in  some  countries  and  because  it  is
expensive [38], CPT is used only in large projects such as in Iraq. The results obtained through CPT can be analyzed
and used to quantify the SOF for where very few studies on the stochastic nature of soil are available.

In this paper, the SOF of the qc for soil in Nasiriyah is calculated based on data obtained through performing twenty-
four CPT soundings as part of a soil investigation for construction of a refinery station. The vertical SOF is calculated
based on four  types  of  autocorrelation functions  for  all  CPT soundings.  These  types  are  single  exponential,  cosine
exponential, square exponential, and second-order Markov. Trend functions are also suggested to be linear, quadratic
and cubic polynomial to remove the non-stationary from the data and to quantify their effects on the SOF. Comparisons
between the SOF obtained through different methods as well as a comparison with the values reported in the literature
are presented. Since a large range of horizontal SOF values is available in the literature, which ranges from 0.184 to 80
m [39] or from 0.14 to around 600 m [13], it is challenging to precisely quantify the horizontal SOF since the CPT
sounding  values  are  not  to  close  each  other.  This  study  focuses  only  on  the  vertical  SOF  and  the  investigation  of
horizontal SOF will be addressed in a future study. No geotechnical applications are presented in this study based on the
reliability design. The focus of this study is on quantifying parameters utilized in random field applications. The study
addresses the site in a city with no previous statistical information available regarding the soil properties of this region.
This  paper  contributes  essential  information  regarding  reliability-based  design;  however,  no  actual  random  field
application is achieved.

2. STOCHASTIC ANALYSIS

2.1. Spatial Variability of Soil

Spatial variability of soil properties is a term referring to soil properties that are variable from one point to another
point,  which  can  be  defined  as  uncertainty  that  cannot  be  avoided  in  design  [40].  Since  the  properties  of  soils  are
naturally variable due to the complicated processes of physical, chemical and biological decay, they are considered to
be inherently spatially variable soil properties [10]. Two mathematical techniques are used, including geostatics and
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time  series  analysis  or  random  field  when  the  time  is  replaced  by  distance  lag.  The  data  are  stationary,  and  the
probabilistic laws are independent of the sample locations. Modeling of the spatial variability of the soil properties
implies using several statistical parameters, including a trend, deviation from the trend, coefficient of variation COV,
and SOF [20, 32, 41]. The spatial variation in the cone tip resistance (qc) can be decomposed into the trend function and
residual stationary fluctuation components as follows: (Eq. 1)

(1)

(1) where tqc(d) is the trend of qc at depth d, and wqc(d) is the residual of qc at depth d.

Evaluating  the  SOF  of  qc  involves  transforming  the  data  to  stationary  by  removing  the  trend  component  after
simulating the trend with a linear or polynomial function [42]. The required stationary case is weak stationary, and from
a statistical view means the mean and variance are constant with depth, which is also called the second order stationary
[10, 33].

In this study, three types of trend functions are used, including linear, quadratic and cubic polynomials using the
following equations based on the least square method: (Eq. 2-5)

(2)

(3)

(4)

where

(5)

The  ordinary  least  squares  method  implies  computing  the  β  parameters  of  the  model  so  that  the  summation  of
residuals is at a minimum, where the residuals are the difference between the measured qc and predicted qc at a point, as
presented in Eq. (6).

(6)

2.2. Coefficient of Variation

The COV is a dimensionless ratio that can be calculated by normalizing the standard deviation for a statistically
homogeneous variability function q(d)i (inherent standard deviation), which concerns the local mean of qc for inherent
soil  variability  obtained from the  trend function tqc(d).  The COV is  determined for  a  different  property  of  soils  and
widely used in civil engineering [43]. The COV is greater than that for the actual inherent soil variability [32], which
may be attributed to the non-ideal removal of the trend or data of mixed soil layers. The mean value represents the
central  tendency  parameter  (first  moment)  and  the  standard  deviation  (second  statistical  moment)  accounts  for  the
dispersion  parameter  [32],  [40].  Eqs.  (7)  and  (8)  shows  how  to  compute  the  standard  deviation  and  coefficient  of
variation for qc.

(7)

where n is the number of qc in the sample, qc is the cone tip resistance at depth di, and is the mean value of qc.

2.3. Autocorrelation Model Fitting

Characterization of the random field involves presenting the field varying in space by the second moment of the
field's joint distribution, which is represented by the autocovariance function [28]:

(8)

The  experimental  correlation  function  can  be  determined  by  normalizing  the  autocovariance  function  (ck),
represented by Eq. (9) at a separated distance (lag) from the autocovariance function at lag zero, i.e., variance of the
data (co) represented by Eq. (10). First, the sample autocovariance is calculated as ck and co. The ρk versus lag k= 0, 1,
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2,… are drawn to best fit the theoretical correlation. (Eq. 11)

(9)

(10)

(11)

The experimental correlation function is expressed as follows: (Eq. 12)

(12)

The covariance between two excessive qcs values at distance lag for the entire studied depth can be expressed in the
following function: (Eq. 13)

(13)

The autocorrelation function ACF is calculated using the method of moment. Theoretical autocorrelation model
ACM is fitted to the ACF. The SOF is evaluated through the characteristics of the model parameter in the best fit ACM,
as shown in Table 1, to the experimental correlation function (ρjΔτ). Several autocorrelation functions are presented in
some references such as [44]. Four types of autocorrelation models are used: Single Exponential model (SNE) [20] [24]
Cosine Exponential (CSE); Second-Order Markov (SOM); and Squared Exponential (SQE). The single exponential
model  is  widely  used  [6,  24].  The  SOF  is  computed  based  on  four  methods  by  implementing  the  models  using
MATLAB-based code developed in this study with different removal trend types, which will be discussed later.

Table 1. Sample of autocorrelation function.

Model No. Autocorrelation Model Autocorrelation Function

1 Single exponential (SNE)

2 Second order Markov (SOM)

3 Cosine exponential (SQE)

4 Squared exponential (CSE)

3. Test Program

3.1. Site Description

From the  geological  viewpoint,  the  soil  formation encountered south  of  Iraq  (e.g.,  Nasiriyah)  is  Mesopotamian
plain, which belongs to the Holocene and Pleistocene ages [45]. This soil contains alluvial sediment deposits from two
rivers: the Tigers and Euphrates. The sedimentation rates are between 1 and 1.8 mm/years from 8350 years BP until
approximately 3000 years BP through the Holocene, while during the later stage, the rates did not exceed 0.4 mm/year
[46], meaning sedimentation was unstable and fast during the early Holocene and slow during the late Holocene [47].
The  soil  formation  is  classified  as  low  rate  sedimentation  compared  with  other  sediment  deposits  such  as  the
Mississippi Delta,  where the sedimentation rate was 8 mm/year [46,  48].  The sea level more than 10000 years ago
(Holocene) increased in this region and retreated about 6000 years ago [46, 49]. The fluvial and alluvial deposits, from
early Holocene, do not exceed the 12.5 m overlying the marine deposit [47]. Nasiriyah is a part of a floodplain region,
which represents the recent surface formation of Iraq’s geology, as the site is free from erosion of an old rock surface.
On the other hand, there are depression fill deposits that accumulate due to successive floods. These deposits primarily
consist of soft layers of fine sand and silt, and clay and silty clay. These layers are present in several regions of this city,
including the investigated site.

The deposition rate of soil formation plays an important role in the SOF, whether it shows high or low values. The
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alluvial coarse particles may show high SOF values, while the depositional environment with a low energy system may
show low SOFs [50]. Since the soil formation in the Mesopotamia region of southern Iraq is considered to be a low
sedimentation process, the SOF is also expected to be low.

3.2. Testing Methods

In the CPT, a cone attached to the end of a series rods is pushed into the soil at a constant rate and two stresses are
continuously measured: the qc, which is the total cone force divided by the projected area of the cone and the sleeve
stress, which is the total sleeve force divided by the sleeve surface area [51]. Four cone sizes can be used in the CPT
with different projected areas of 2, 10, 15, and 40 cm2. The large projected area of 40 cm2 can be used for gravelly soil
and the small size of 2 cm2 is used for shallow soil [52]. The 10 cm2 size is suitable for this test, as the depth intended to
be reached in the test is 20 m, which does not require a large cone especially for fine soil. The test does not require pre-
drilling since the soil is not compacted soil or hard soil. In the original version, a 60° cone was pressed into the ground
at a standard steady rate of approximately 20 mm/sec. Electric cones record continuous analogue data. Nevertheless,
most systems present the data in a digital format at selected intervals, which are typically no more than 20 cm.

Twenty-four vertical CPTs were used for the project to depths of 20 meters throughout the study site. The CPT
distribution  is  presented  in  Fig.  (1),  according to  the  coordinates  of  CPT locations.  Despite  the  significance  of  the
project, the horizontal distance between CPT sounding locations is far since due to the vast area at the site and expense
of the test. The vertical variability is the focus of analysis and the horizontal variability was ignored in this study since
the  distance  is  far.  The  aim  of  this  study  is  to  quantify  the  vertical  SOF  to  reliably  design  the  foundations,  water
treatment and water intake systems for the refinery station project. Intensive information about the soil investigation is
available from the Engineering Consultant of Bureau (ECB) at the University of Thi-Qar. Probability and stochastic
analysis based design are necessary for this type of project. However, very few stochastic analyses or studies have been
conducted  on  the  soil  in  this  city.  This  study  offers  statistical  information  for  the  soil  of  this  town,  which  is  not
otherwise available.

Fig. (1). Layout of vertical CPT soundings at the oil refinery site in Naseriyah.

One of the important CPT applications is soil type prediction, which is referred to as Soil Behavior Type (SBT).
Robertson [53] reported that the soil classification process can be successfully achieved based on qc and fs measured by
CPT performed on uncemented, young (Holocene and Pleistocene), predominately silica-based soil. The results of the
CPT test are analyzed and used to classify soil. The CPT results are presented as two methods: the first is an ordinary
CPT method [54] and the second is a normalized CPT method. Both soil classified charts based on normalized and
ordinary parameters were updated by [56]. Two patterns of cone penetration parameters were suggested, including non-
normalized parameters (SBT) and normalized parameters (SBTn) and the normalized parameters include a variable
stress exponent (n) [37]. The soil classification is based on the soil type behavior index (Ic), and the following cone
penetration dimensionless parameters were proposed by [55]. A soil type behavior index Ic is developed to calculate the
radius of the essentially concentric circles that bound each SBT zone based on Qt and Fr.



418   The Open Civil Engineering Journal, 2018, Volume 12 Ressol R. Shakir

(14)

where the dimensionless Qt1 and Fr are defined as follows:

(15)

(16)

Qt1 is computed assuming n =1 and for the variable stress exponent, the  where (qt
− σvo)/pa = dimensionless net cone resistance, (pa/σ′vo)n = stress normalization factor, n = stress exponent that varies
with SBT, and pa = atmospheric pressure in the same units as qt and σv.

The  soil  classification  method  offered  by  [55]  has  been  widely  used  [57,  58]to  identify  the  soil  type  and  soil
stratification [37]. The classification of soil obtained by the interpretation of CPTs is an indirect process, where through
comparison of the grain size distribution and direct tests, a Unified Soil Classification System (USCU) is developed.
The difference between the results of CPT classification and USCU is an expected matter, for which several discussions
are available [56, 59, 60].

4. RESULTS AND DISCUSSION

4.1. CPT Results

This section focuses on the statistical quantification parameters obtained from the CPT results. Figs. (2a  and b)
show the soil classifications using qc  and normalized cone resistance. Clearly, the soil mainly consists of two layer
types: the first has an approximately 12-m-thickness and the second layer has an 8-m-thickness. Fig. (3a) shows the
relation between qc and the depth of the entire soil formation for all CPTs. The qcs values at depths between 0 and 12
are small and relatively low variability. The Figure also shows that in all CPTs, the qc begins to rapidly increase beyond
a depth of 12 m until it reaches 20-m-depth. The mean qc value for the 24 CPT soundings was recorded at each depth, as
shown in Fig. (3 b). The average qc was plotted against depth. The deviation is also presented in the Figure along with
the qc average. The percentage of the friction ratio (Fr%), which is calculated based on the average qc and average fs
increases gradually with depth until it reaches 12 m, which where the resistance ratio begins to decrease as shown in
Fig. (3c). Between 12-m and 20-m-depth, the Fr is constant and small at approximately 1%.

Fig. (2). Soil classification according to Robertson chart (a) soil profile based on SBT and (b) soil profile based on SBTn..
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The average value of the COV was calculated for every layer for both qc and fs. The COV for qc was less than 0.6
based on records of 24 soundings at 20-m-depth. Fig. (3d) shows the COV relationships for the fs and qc against depth.
Notably, the variation coefficient of the sleeve friction (COVfs) is less than the tip resistance COV (COVqc) until depth
equals 12-m, and then, they are relatively same. The COVfs and COVqc can be classified as highly variable [43]. The
COVqc for the first layer of 12 m ranges between 20 and 40% and the mean is between 0.5 and 2. For the second layer
of silty sand, the COV is less than 60, which ranges between 20 and 60. This confirms the conclusion outlined by [41]
that the qc ranges infer the soil to be clay and silty sand.

Fig. (3). Relation between (a) qc versus depth for all CPT soundings, (b) qc average versus depth, (c) COVfs and COVqc versus
depth, and (d) Fr% versus depth.
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Fig. (4). Coefficient of variation of Ic versus Ic mean (a) using SBT method and (b) using SBTn method.

4.2. Homogeneous Soil Unit

An analysis for identifying similar soil units has been performed based on the classification chart proposed by [55].
The classification chart consists of some zones, where every zone represents a soil type. These zones are isolated using
curves developed according to normalized Ic for the normalized classification chart (SBTn) and according to ISBT for the
non-normalized chart (SBT). The two methods show little difference [56]. The studied soil can be classified as the ideal

(a)

(b)
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soil  where  it  is  young  and  uncemented,  and  the  chart  used  still  can  provide  good  results  [53].  The  ISBT  mean  and
coefficient of variation COV of the ISBT were computed. Fig. (4) shows a scatterplot of the relation between the average
Ic versus COV of the Ic. This indicates that the COV is less than 0.1 and the variability of the Ic increases slightly
linearly as the zone number decreases i.e., from silty sand to clay. This finding is in contrast to the conclusion outlined
by [33],  where the COV tends to increase from the clay to sand zones.  The thin soil  layer can be discarded if  it  is
located  at  the  top  or  bottom of  a  thick  layer  of  soil.  Additionally,  thin  layers  can  be  merged  with  other  layers  by
averaging the qc, or by using SBT band or soil group approach proposed by [61]. According to these approaches, the
soil profile at the site can mainly be classified into two similar unit layers: clay soil and silty sand with sandy silt.

4.3. Trend Removal Models

Several  methods  can  transform  the  data  from  non-stationary  to  stationary  data  (e.g.,  differencing,  variance
reduction, and decomposition). The most traditional method applied in geotechnical applications is the decomposition
process, which involves dividing the data into two components: trend and residuals [62]. Therefore, the first step in the
computation of SOF is to remove the trend of the qc with depth (d) from the original data and compute the standard
deviation of the de-trended qc (residuals) for every CPT using the best fit least square method.

Fig.  (5a)  shows  the  linear  trend  of  the  qc  data  for  the  12-m-thick  layer.  The  qc  residuals  with  a  zero  mean  are
presented  in  Fig.  (5b).  Figs.  (6a  and  b)  show the  quadratic  polynomial  trend  with  qc  and  the  residual  with  depth,
respectively.  The cubic trends with depth for  qc and residuals are presented in Figs.  (7a  and b).  The factor for  the
occurrence of a spatial trend in the qc may be the overburden pressure [63]. The best trend function can be selected
visually [29] or by using Kendall tau [64].

Fig. (5). (a) Recorded qc for CPTs with linear trend; (b) De-trend qc versus depth for 12 m layer; (c) variation of autocorrelation
functions for CPTs versus the vertical distance for 12 m layer (linear trend).

Fig. (6). (a) Recorded qc for CPTs with linear trend; (b) De-trend qc versus depth for 12 m layer; (c) variation of autocorrelation
functions for CPTs versus the vertical distance for 12 m layer (quadratic polynomial).
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Fig. (7). (a) Recorded qc for CPTs with linear trend; (b) De-trend qc versus depth for 12 m layer; (c) variation of autocorrelation
functions for CPTs versus the vertical distance for 12 m layer (cubic polynomial).

Fig. (8). The percentage of variance removed by trend and the permanent variance by the residuals for three cases (a, b, c, soil layer
of 12 m thickness); (d, e, f, soil layer of 8 m thickness); (g, h, I, for the whole soil of 20 m soil).
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Fig. (8) shows a pie chart of the variance percentage removed from the qc data, which is conducted by removing the
trend from the data for an average of 24 CPT soundings and is represented by the blue colored section. The yellow color
represents  the  permanent  variance  remaining  with  a  residual.  Figs.  (8a,  b,  and  c)  show  the  variation  due  to  trend
removal using three types of trends. For case 1, where the soil thickness is 12 m, removing the difference due to trend
removal from the data, approximately 31% of the variance is removed when the linear function was chosen to represent
the trend of the qc data. As the polynomial degree increases to a quadratic polynomial, the removed variation increases
from 31% to 39% and increases to 54% when the trend removed is the cubic polynomial trend.

For  the  second  case  of  8  m,  the  general  notice  presented  in  the  first  case  shows  compatible  results  when  the
precedence of variance removed is different. The percentage of variance removed from the qc for the 8-m-thick layer
was 52% when the trend was considered linear, while it increases to 59% for the quadratic trend removal and 65% for
cubic trend removal Figs. (8d, e and f). The trend removal enhances the variance elimination of qc for the entire 20-m-
layer of soil, where 76%, 86%, and 88% represent linear to cubic polynomial removals, as shown in Figs. (8g, h and i),
respectively. The variance removal from the original qc data increases as the polynomial degree of the trend increases.
Removing a second order polynomial reduces the residual variance by more than 50%.

4.4. Vertical SOF

The qc residuals were computed based on the three cases of trend functions: linear, quadratic polynomial and cubic
polynomials, as presented in the previous section. Four ACFs were fitted on the experimental qc data using the least
square method. Table 2 shows the computed SOF using four ACFs for CPT soundings with linear de-trended qc for the
three cases of soil layers having thicknesses of 12 m, which is a sample of the results. This Table contains the values of
the vertical SOF computed by four ACFs in addition to the statistical parameters of the SOF, which are represented by
the mean value of the SOF, standard deviation and COV. The average value of the SOF and statistical parameters for all
CPTs are presented in the last row of Table 3.

The SOF is very important and has an impact on the reliability of a geotechnical system, such as slope stability [65]
and the SOF can be included in the MCS and finite element methods. The behavior of geotechnical problems is more
complex when using the SOF compared to some characteristic dimensions of the problem. For example, when the SOF
equals  the  width  of  the  foundation,  it  records  the  worst  case.  The  SOF  reduces  uncertainties  and  decreases  the
probability  of  failure  [13].  When the SOF is  low,  the variability  is  high,  which may affect  failures  in  geotechnical
applications.

Table 2. Scale of fluctuation for cone tip resistance using four methods of theoretical auto correlation function with statistics
description for 12 m layer for data off linear trend.

CPT No. SNE SOM SQE CSE μSOF σSOF COV% Min Max Range
1 0.51 0.53 0.47 0.52 0.50 0.03 5.06 0.47 0.53 0.06
2 0.88 0.91 0.72 0.91 0.86 0.09 10.65 0.72 0.91 0.19
3 1.02 0.84 1.24 0.68 0.94 0.24 25.61 0.68 1.24 0.56
4 1.32 1.43 1.38 1.48 1.40 0.07 4.77 1.32 1.48 0.16
5 0.84 0.87 0.69 0.88 0.82 0.09 10.81 0.69 0.88 0.19
6 1.23 1.34 1.20 1.38 1.29 0.09 6.65 1.20 1.38 0.18
7 0.55 0.50 0.47 0.43 0.49 0.05 10.47 0.43 0.55 0.12
8 1.03 0.99 0.78 0.95 0.94 0.11 11.35 0.78 1.03 0.24
9 0.34 0.35 0.26 0.34 0.32 0.04 13.36 0.26 0.35 0.09
10 0.33 0.33 0.24 0.31 0.30 0.04 13.54 0.24 0.33 0.09
11 0.39 0.40 0.35 0.37 0.38 0.02 5.50 0.35 0.40 0.05
12 1.04 1.09 0.93 1.11 1.05 0.08 7.75 0.93 1.11 0.18
13 0.34 0.36 0.28 0.35 0.33 0.04 11.37 0.28 0.36 0.08
14 0.38 0.39 0.37 0.35 0.37 0.02 4.83 0.35 0.39 0.04
15 0.99 0.96 0.93 0.91 0.95 0.03 3.48 0.91 0.99 0.08
16 0.51 0.54 0.44 0.54 0.51 0.05 9.56 0.44 0.54 0.10
17 0.82 0.78 0.75 0.73 0.77 0.04 5.02 0.73 0.82 0.09
18 0.45 0.47 0.41 0.45 0.44 0.03 6.03 0.41 0.47 0.06
19 0.88 0.80 1.02 0.70 0.85 0.14 16.15 0.70 1.02 0.32
20 0.59 0.62 0.53 0.64 0.59 0.05 7.88 0.53 0.64 0.10
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CPT No. SNE SOM SQE CSE μSOF σSOF COV% Min Max Range
21 1.03 0.99 0.78 0.95 0.94 0.11 11.35 0.78 1.03 0.24
22 0.18 0.21 0.15 0.23 0.19 0.03 17.58 0.15 0.23 0.08
23 0.45 0.48 0.46 0.47 0.46 0.01 2.49 0.45 0.48 0.03
24 0.63 0.68 0.54 0.70 0.64 0.07 11.02 0.54 0.70 0.16

Mean 0.70 0.70 0.64 0.68 0.68 0.06 9.68 0.60 0.74 0.15

Based  on  the  results  displayed  in  Table  3,  the  SOF  obtained  using  every  method  gives  different  results.  This
conclusion  was  attained  with  the  mean,  standard  deviation  and  the  COV.  Notably,  the  location  of  the  CPT  gives
approximately  the  same results.  The  average  value  of  SOF (µSOF)  for  all  CPTs  is  0.64  m.  The  linear  function  with
nonlinear experimental results does not reflect good consistency, which is an unsuccessful attempt to obtain the weak
stationary data. Using the quadratic function may provide highly consistent results. Table 3 shows the results of the data
residual with the second polynomial function. SOF equals 0.55 m, which means that the SOF decreases as the degree of
polynomial increases. Fig. (9) shows a histogram of the SOF to compare the three trending methods. Clearly, the two
methods  of  trending  second  and  third  polynomials  are  better  than  linear  trending.  The  data  became  close  to  weak
stationary as the higher degree of the polynomial was used.

Based on Table 3, the average SOF for the qc data of the linear detrend was 0.64 m, while it was 0.55 m for case 2
and 0.52 m for case 3. These values are in the SOF range obtained by [14]. For sand and clay, the vertical SOF was
between 0.13 and 1.11 [33]. The average value of COVs for all CPTs for every case were 11%, 6%, and 9%. They show
a low level of variation for SOF.

Fig. (9). Estimate scale of fluctuation using deferent de-trended methods (linear, second and third degree polynomial) for the CPT
sounding (12m). M represents the average value of SOF.

Considering the eight-meter soil layer, the SOF was calculated using four ACFs and the data was transformed using
three trending methods. The µSOF for all CPT soundings was 0.63 m between a minimum of 0.32 and maximum of 1.01
m, which are located between the 0.1 and 2.2 m reported by [41, 32]. The SOF average is linearly reduced with an
increasing trend function degree. The SOF decreases to 0.53 m when using the residual data of the polynomial function,
and it becomes 0.47 m with a minimum of 0.24 and maximum of 0.6 for the third-degree polynomial. The SOF results
indicate  that  the  values  of  SOF  decrease  as  the  trend  function  degree  increases  i.e.,  the  fitting  is  enhanced.  This
conclusion confirms that which was reported by [2]. Fig. (9) shows the apparent effect of the de-trending method, in
which a bar chart  was used to demonstrate the height of the first  bar showing the small  degree of trend removal is
mostly greater than for the other types. The high degree of polynomial trend removal shows a minimum SOF value. The
correlation  function  effect  used  in  this  study  of  the  SOF  was  relatively  small.  As  an  average  range  for  all  CPT
soundings, which is the difference between maximum and minimum, SOF was 0.12 for the linear de-trend, decreased to
0.11 for the second polynomial and 0.094 for the third polynomial removal of data. The COV% for SOF as an average

(Table 1) contd.....
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for all CPTs were 9.17 for linear, 9.51 for quadratic polynomial and 9.65 for the cubic polynomial. It slightly increases
with an increasing degree of trending removal. The COV obtained in this study for qc can be classified as low variability
for SOF as provided by [43], where the COV is low if it is less than 15% and moderate between 15% and 30%.

Table 3. Statistics of scale of fluctuation (SOF) for different layers, different off trend, SOF mean for all CPTs.

Item Trend type Thickness (m) SNE SOM SQE CSE μSOF σSOF COVSOF% Min Max Range
1 Linear trend 8 0.60 0.66 0.56 0.68 0.62 0.06 9.18 0.56 0.68 0.12
2 Second degree 8 0.51 0.57 0.50 0.59 0.54 0.05 9.49 0.49 0.60 0.11
3 Third degree polynomial 8 0.43 0.49 0.43 0.51 0.46 0.04 9.65 0.42 0.51 0.09
4 Linear trend 12 0.70 0.70 0.64 0.68 0.68 0.06 9.68 0.60 0.74 0.15
5 Second degree 12 0.51 0.54 0.47 0.54 0.51 0.04 8.56 0.46 0.55 0.09
6 Third degree polynomial 12 0.39 0.42 0.38 0.42 0.40 0.03 8.21 0.37 0.43 0.06
7 Linear trend 20 2.57 2.78 2.65 2.86 2.72 0.21 7.90 2.51 2.97 0.46
8 Second degree 20 1.29 1.37 1.26 1.40 1.33 0.09 7.23 1.23 1.42 0.20
9 Third degree polynomial 20 1.12 1.18 1.10 1.19 1.15 0.07 6.68 1.06 1.22 0.16

The SOF computation for the two-layered soil is considered to be one layer with a thickness of 20 m, and based on
qc,  shows high SOF values.  The average for all  values of the CPTs equals 2.68 m and the standard deviation, σSOF,
equals 0.21, which is out of the data range for the SOF values reported by [32], where the SOF in the vertical direction
is between 0.1 and 2.1. The increase in the SOF compared to the values previously obtained and presented in the last
paragraph for every individual layer may be attributed to the nature of qc, which represents a different type of soil and
reflects different behaviors, making the linear trend removal insufficient for obtaining the weak stationary data. Using
the second order polynomial removal, which represents the qc data well, shows a decrease in the SOF. It will equal 1.36
as an average value and range between 0.74 and 1.992. Applying the cubic polynomial function for trend removal of
data decreases the SOF to 1.17 as an average for the values of all the CPT between 0.67 and 1.8 with the σSOF equal to
0.07. One can conclude that the cubic polynomial is required for data that show as strong stationary, which requires data
manipulation to transform it to weak stationary. The COVSOF equals 6.44% as an average value for all CPTs, which is
located between the minimum value of 1.52% and the maximum value of 13.34%.

Fig. (10). Estimate scale of fluctuation using deferent de-trended methods (linear, second and third degree polynomial) for the CPT
sounding (8m). M represents the average value of SOF.

Histograms of computed SOF based on de-trended qc utilized three trend functions, including linear, quadratic and
cubic polynomials, and are shown for every CPT (Figs. 9, 10 and 11). The adjacent bars in all histograms for every CPT
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indicates that SOF decreases as the degree trend function is increased. For example, Fig. (9) shows how the SOFs for qc

were de-trended with the linear trend function removal and indicates high values compared to SOF for qc de-trended
with quadratic and cubic polynomial functions. The SOF mean obtained using four approaches was 0.37 for the second
polynomial removal with a thick layer of 20 m. Comparing this value to that of the 12 m and 8 m layers indicates that
the SOF for the entire layer with stratigraphic layers reveals a high SOF. It is recommended that the SOF be evaluated
for every layer to obtain accurate results. When the cone resistance from the entire depth of 20 m is considered, the cone
resistance is strongly correlated to an average distance of 1.149 m.

Fig. (11). Estimate scale of fluctuation using deferent de-trended methods (linear, second and third degree polynomial) for the CPT
sounding (20 m). M represents SOF average value.

CONCLUSION

A refinery oil enhancement unit is being constructed in Nasiriyah and reliability of the geotechnical design (e.g.,
foundation engineering) is necessary, and thus, computation of the soil spatial correlation is conducted. Twenty-four
CPT soundings for  the Nasiriyah site  were utilized to compute the SOF for qc.  No soil  information with stochastic
analysis was available for Nasiriyah. Three modes of soil are used in this study: the first is considering the soil as two
layers of clay and silty sand and the second is considering the entire layer as one layer. Four correlation functions are
used to compute the scale of the fluctuation and three approaches of de-trending are used: linear of residual and the
second and third polynomials. The following conclusions are drawn from this research.

The mean SOF value obtained using different correlation function procedures for total CPTs performed on soil1.
in Nasiriyah were 0.68, 0.51, and 0.4 utilizing 12 m thickness layer for three trend functions; 0.62, 0.54, and
0.46 for a layer of 8m thickness; and 2.72, 1.33, and 1.15 for the entire 20-m thick layer.
De-trended qc based on three functions were performed on the soil in Nasiriyah and showed a clear effect on the2.
scale of the fluctuation. The degree of polynomial increases, the µSOF decreases and the fitting is better for the 12
m soil layer case and for the other layers of 8 m and 20 m.
The COV% for the SOF obtained using a different approach for each of the three soil models was 9.62, 8.64,3.
and 8.37 for the model 1 soil with a 12-m-thickness; 9.17, 9.51, and 9.65 for model 2; and 7.86, 6.87, and 6.44
for the entire soil formation. Comparing the COVSOF value of this study with that of the literature indicated that
there is a small range of variability.
The variance reduction percentage of the qc data increases as the polynomial trend function degree increases.4.
Removing the linear trend from the qc data leads to 31% removal of variance due to the trend and the percentage
increases to 39% for the quadratic polynomial trend and 54% for the cubic polynomial trend removal.
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