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Abstract: The determination of pavement layer stiffness is an essential step in evaluating the performance of existing 

road pavements and in conducting pavement design and analysis using mechanistic approaches. Over the years, several 

methodologies involving static, dynamic, and adaptive processes have been developed and proposed for obtaining in-situ 

pavement layer moduli from Falling Weight Deflectometer (FWD) test deflection data through inverse analysis and  

parameter identification routines. In this paper, a novel pavement analysis toolbox combining the strengths of Finite  

Element (FE) modeling, Neural Networks (NNs), and Genetic Algorithms (GAs) is described. The developed  

user-friendly automated pavement evaluation toolbox, referred to as Neuro-Genetic Optimization Toolbox (NGOT) can 

be used on a real-time basis for accurate and rapid transportation infrastructure evaluation. It is shown that the developed 

toolbox backcalculates non-linear pavement layer moduli from actual field data with better accuracy compared to  

regression and conventional backcalculation approaches.  

INTRODUCTION  

 According to recently published data [1], billions of  
U.S. dollars are needed annually to improve transportation 
infrastructure conditions nationally. Thus, consistent, cost-
effective, and accurate monitoring of pavement is necessary 
for improving the performance and serviceability of  
pavements and to schedule proactive pavement repair and 
maintenance activities.  

 About 93% of the paved roads in the US are reported to 
be composed of flexible pavement [2]. Flexible pavements 
are multi-layered, heterogeneous structures that are designed 
to “flex” under repeated traffic loading. A typical flexible 
pavement structure consists of the surface course (typically 
Hot-Mix Asphalt) at the top, underlying base and subbase 
(optional) courses (typically unbound granular material), and 
a subgrade (typically soil) at the bottom.  

 In the field, Non-Destructive Testing (NDT) of in-service 
pavements using a Falling Weight Deflectometer (FWD) 
equipment is carried out to measure the deflection response 
of the pavement structure to applied dynamic load that  
simulates a moving wheel. The deflected shape of the basin 
is predominantly a function of the thickness of the pavement 
layers, the moduli of individual layers, and the magnitude of 
the load. The surface deflections are typically measured at 
radial offsets of 0 mm (D0), 300 mm (D1 or D300), 600 mm 
(D2 or D600), 900 mm (D3 or D900), 1200 mm (D4 or 
D1200), and 1500 mm (D5 or D1500) from the center of 
FWD load plate.  

 “Backcalculation” is the accepted term used to identify a 
process whereby the elastic (Young’s) moduli of individual  
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pavement layers are estimated based upon measured FWD 
surface deflections. As there are no closed-form solutions to 
accomplish this task, a mathematical model of the pavement 
system (called a forward model) is constructed and used to 
compute theoretical surface deflections with assumed initial 
layer moduli values at the appropriate FWD loads (referred 
to as forward calculation). Through a series of iterations, the 
layer moduli are changed, and the calculated deflections are 
then compared to the measured deflections until a match is 
obtained within tolerance limits. Most of the commercial 
backcalculation programs currently in use utilize an Elastic 
Layer Program (ELP) as the forward model to compute the 
surface deflections. Many studies have addressed the inter-
pretation of FWD pavement deflection measurements as a 
tool to characterize pavement-subgrade systems [3-5].  

 The backcalculated in-situ pavement layer moduli from 
measured deflections (inverse analysis) are by themselves 
indicators of pavement layer condition as well as necessary 
inputs for conducting mechanistic pavement structural  
analysis and remaining life calculations [6, 7]. Over the 
years, several techniques have been proposed for  
back-calculation of pavement layer moduli such as the  
least-squares (parameter identification), database search, 
Neural Networks (NNs), neuro-fuzzy systems, and recently 
Genetic Algorithms (GAs) [8-21]. 

 The hybrid approach presented in this paper represents 
the latest development in backcalculating the mechanical 
properties of flexible pavement systems. This innovative 
approach takes advantage of the combined efficiency  
and accuracy achieved by integrating advanced pavement 
numerical modeling schemes, computational intelligence 
based surrogate mapping techniques, and heuristics based 
global optimization strategies, and yet provides a user-
friendly pavement evaluation toolbox for the pavement  
engineer to use on a real-time basis for accurate infrastruc-
ture evaluation.  
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PAVEMENT LAYER MODULI BACKCALCULA-
TION 

 Considering the complex nature of the backcalculation 

problem, numerous approaches have been proposed and  

efforts have also been made to develop a standardized  

approach [22, 23]. The discrepancies among the numerous  

backcalculation techniques developed for the backcalculation 

of pavement layer moduli arise from the type of the  

pavement (forward) response model and the optimization 

procedure utilized for the determination of appropriate layer 

modulus values [21]. Existing methods of backcalculation 

rely on some assumptions and simplifications that should be 

made to facilitate the backcalculation process. Some of the 

major difficulties faced by researchers in using the different 

commercial backcalculation programs include: (1) ability to 

handle only limited and idealistic solutions due to closed-

form nature of solutions, (2) longer computational time in 

using conventional optimization techniques for backcalcula-

tion, (3) convergence of backcalculation solutions to local 

optima or non-unique nature of solutions depending on seed 

moduli (initial values), etc. [22]. 

 Most of the conventional commercial backcalculation 

programs involve Multi-Layer Elastic Theory (MLET) in 

their forward calculation routines and assume that pavement 

materials are linear-elastic, homogenous, and isotropic  

resulting in unrealistic backcalculated pavement layer 

moduli. Several research studies have shown that pavement 

geomaterials used in the underlying pavement layers exhibit 

non-linear, stress-sensitive behavior under repeated traffic 

loading. Unbound aggregates used in pavement base/sub-

base course exhibit stress-hardening and fine-grained  

soils show stress-softening-type behavior [24-26]. Research 

studies have shown that non-linear analysis using FE based 

approach increases the precision of the forward model [21]. 

Majority of the commercial backcalculation programs  

employ an iterative approach (see Fig. 3) which is known to 

suffer from limitations such as dependency on the initial 

seed moduli and the possibility of local minimum solutions 

[27]. Other limitations include computational ineffectiveness 

or lack of robustness leading to divergence in some cases 

where no solution is obtained, requiring a high level of user-

involvement during the backcalculation process making it 

less amenable to automation, number and thickness of layers 

used in the analyzed pavement system, etc. [17]. 

 To overcome the limitations associated with existing 

commercial backcalculation programs, a new toolkit referred 

to as Neuro-Genetic Optimization Toolbox (NGOT) was 

developed through FE-based neuro-genetic integrated  

systems approach. Such a hybrid approach towards backcal-

culation has many advantages which include realistic predic-

tion of non-linear pavement layer moduli, rapid prediction 

ability and the provision to model uncertainties in the  

deflection data including noise, errors, etc. and derivation  

of global optimum solutions. In addition, such an intelligent, 

yet user-friendly toolbox can provide pavement engineers 

and designers with the ability to rapidly evaluate the  

infrastructure condition in real-time without requiring them 

to have in-depth knowledge of the actual modeling of the 

problem. 

NEURO-GENETIC OPTIMIZATION 

 The framework of NGOT as discussed in this paper is 
shown in Fig. (2). As mentioned previously, depending on 
the problem under consideration, the inputs and outputs will 
vary. The problem under consideration is to backcalculate 
pavement layer moduli from non-destructive test deflection 
data acquired using the FWD device. The major modules 
integrated into NGOT are the GA module, NN module and 
FE module. Each of these modules with a brief introduction 
and background and the steps involved in developing the 
NGOT toolbox are discussed in the following sub-sections. 

Genetic Algorithms 

 Genetic algorithms are a part of evolutionary computing, 
a rapidly growing area of artificial intelligence. Categorized 
as global search heuristics, GAs use techniques inspired  
by evolutionary biology such as inheritance, mutation,  
selection, and crossover (also called recombination). Being 
robust search and optimization techniques, GAs are finding 
applications in a number of practical problems where  
calculus-based search methods are inefficient in searching 
for the optimal solution in a complex multi-modal search 
space [28-31]. In recent years, researchers started exploring 
the feasibility of using GAs for pavement layer moduli  
backcalculation [14-18, 32, 33]. First, the fundamentals of 
GA theory are briefly discussed. 

 In the Simple Genetic Algorithms (SGA) evolutionary 
search process (see the ‘GA module’ in Fig. 4), the popula-
tion size is selected and all the individuals in the population 
are randomly initialized. During each generation, the  
solution represented by each individual is evaluated, and 
solutions are selected for reproduction based on their fitness. 
Selection embodies the principle of ‘survival of the fittest’, 
wherein good solutions are selected for reproduction while 
bad solutions are eliminated. The fitness value determines 
the ‘goodness’ of a solution. The selected solutions then  
undergo recombination under the action of the crossover and 
mutation operators. The iterative process of evaluation and 
genetic manipulation is continued until convergence is 
reached [30]. 

 In his original work, Holland [31] established the basic 
theoretical foundation of the genetic algorithms by the use  
of the schema theory. The Schema Theorem first divides  
the search space into subspaces and then quantifies the  
subspaces and explains the movement mechanism of  
individuals between subspaces.  

 The overall framework for NGOT is constructed  
in MATLAB

®
 and the GA module in NGOT is based on  

the Genetic Algorithm Optimization Toolbox (GAOT)  
developed at North Carolina State University and imple-
mented in MATLAB

®
 [34].  

 Backcalculation of pavement layer moduli from FWD 
deflections can be treated as a global optimization problem 
where the objective is to determine the unknown pavement 
layer moduli that minimize the difference between measured 
and computed deflections. In this paper, the implementation 
of NGOT is discussed for a three-layered flexible pavement 
structure (see Fig. 1) although it can be used for other  
pavement types with varying number of layers owing to its 
flexible and integrated modular systems approach. Although 



Backcalculation of Non-Linear Pavement Moduli Using Finite-Element The Open Civil Engineering Journal, 2009, Volume 3    85 

the deflection-based objective function can be defined in a 
number of ways, a simple objective function representing 
sum of the squared differences between measured and  
computed deflections as shown in Eq. 11 was selected for 
this study (where n = 6): 
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Fig. (1). Trailer-mounted Falling Weight Deflectometer (FWD) 

equipment. 

 The input variables to NGOT (see Fig. 4) include six 
FWD measured deflections (see Fig. 2), AC surface and base 
layer thicknesses and the corresponding ranges of pavement 
layer moduli. The use of ranges of values for the optimized 
unknowns rather than seed values used in the conventional 
backcalculation approach makes the search for an optimal 
solution more powerful in the GA approach since a global 
solution can be obtained and divergence or local optima can 
be prohibited when compared to conventional methods.  

 

 

 

 

 

 

 

 

 

 

Fig. (2). Neuro-genetic hybrid optimization framework. 

 The GA module implemented in this study is capable  

of using either a floating point representation or a binary 

representation. First, the starting population is randomly 

generated. Each individual in the population, representing  

a set of pavement layer moduli, is passed on to the  

ANN module (which is described in the next section) for 

computing deflections which are then passed back to the  

GA module for fitness evaluation. Using the fitness function 

(Eq. 12), the GA module performs simulated evolution to 

determine the fitness of the solution strings. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). NN surrogate forward model training progress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). ANN surrogate forward model prediction accuracy. 

 In the current GA implementation, it is possible to use a 
variety of crossover and mutation functions which include 
arithmetic crossover, heuristic crossover, simple crossover 
for crossover operator and boundary mutation, multi-non-
uniform mutation, non-uniform mutation, and uniform  
mutation for mutation operator. Similarly, the implemented 
selection schemes include: roulette wheel, normalized  
geometric select, and tournament [34].  
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 References [17, 18], and [35] discuss the selection of 
optimal GA parameters for the pavement moduli backcalcu-
lation problem. These studies provided some guidelines in 
optimizing the GA parameters and operators for the current 
study. Apart from that, a preliminary sensitivity study was 
conducted to determine the optimal settings for the GA 
module. The current study described in this paper was con-
ducted using the normalized geometric selection scheme 
with a probability of 0.08, arithmetic crossover and non-
uniform mutation operators with variable probabilities. The 
size of the population and generation size were set to 80  
and 100, respectively. Since, the ANN and FE modules are 
interlinked, they are presented together in the next section. 

Finite Element Modeling and Neural Networks 

 The NN module is an important component of the NGOT 

which significantly reduces the computational time required 

for forward calculation of deflections for each of the  

individuals in the generation. A brief discussion on the ANN 

background is first presented followed by details related  

to the development of NN based surrogate forward models 

incorporated into NGOT. 

 NNs are parallel connectionist structures constructed to 

simulate the working network of neurons in human brain. 

They attempt to achieve superior performance via dense  

interconnection of non-linear computational elements operat-

ing in parallel and arranged in a pattern reminiscent of a  

biological neural network. The perceptrons or processing 

elements and interconnections are the two primary elements 

which make up a neural network. A single perceptron is 

mathematically represented as follows [36]: 
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where xi is input signal, wij is synaptic weight, bj is bias 
value, vj is activation potential, () is activation function, yk 
output signal, n is the number of neurons for previous layer, 
and k is the index of processing neuron. 

 Multilayer perceptrons (MLPs), frequently referred to as 

multi-layer feedforward neural networks, consist of an input 

layer, one or more hidden layer, and an output layer. Learn-

ing in a MLP is an unconstrained optimization problem, 

which is subject to the minimization of a global error func-

tion depending on the synaptic weights of the network [21]. 

For a given training data consisting of input-output vectors, 

values of synaptic weights in a MLP are iteratively updated 

by a learning algorithm to approximate the target behavior. 

This update process is usually performed by backpropagat-

ing the error signal layer by layer and adapting synaptic 

weights with respect to the magnitude of error signal [21]. 

Reference [37] presented the first backpropagation (BP) 

learning algorithm for use with MLP structures. A general 

schematic of a multi-layer feedforward neural networks with 

one output neuron trained using error BP learning algorithm 
is displayed in Fig. (5). 

 The backpropagation training algorithm for a simple 

three-layer MLP structure (one input layer, one hidden layer, 

and one output layer) is described as follows. The network  

is initially presented with an input vector (x1, x2, x3,… xN) 

augmented by a bias x0 = 1. The net activations of the hidden 

neurons and the outputs from the hidden layer are calculated 

as follows: 
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where i varies from 0 to N and j varies from 1 to L hidden 
neurons. The synaptic weights of the interconnections  
between the inputs and the hidden neurons are represented 
by vji. Among the nonlinear activation functions, the sigmoid 
(logistic) function is the most usually employed in ANN 
application. The presence of a nonlinear activation function, 

(), is important because, otherwise, the input-output relation 
of the network could be reduced to that of a single-layer  
perceptron. The computation of the local gradient for each 
neuron of the multilayer perceptron requires that the function 

() be continuous. In other words, differentiability is the 
only requirement that an activation function would have  
to satisfy. The sigmoid function is a bound, monotonic, non-
decreasing function that provides graded, nonlinear response 
within a specified range, 0 to 1. The sigmoid nonlinear  
activation function is given by: 
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where  is a parameter defining the slope of the function. 
The net activations for the neurons in the output layer and 
the outputs are calculated as follows: 
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where k varies from 1 to M output neurons. The synaptic 

weights of the interconnections between the hidden neurons 

and the output neurons are represented by wkj. The system 

error is then computed by comparing the actual outputs (yk) 

with the desired outputs (dk). The error terms for the output 

neurons (
o

k ) and the hidden neurons (

h

j ) are given by: 
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where the sigmoid activation function is differentiated as 
follows: 
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 Then, the synaptic weights are updated for each neuron 
in the hidden layer and the output layer. The backpropaga-
tion algorithm essentially changes synaptic weights along the 
negative gradient of error energy function; thus, weight 
changes are proportional to the magnitude of error energy. 
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The formulations for weight updates in the output layer and 
the hidden layer are given as: 
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where  is the learning rate parameter that can be selected 
from the range [0,1] and  indicates momentum term varying 
within [0,1]. 

 In the BP learning algorithm, the error energy used  
for monitoring the progress toward convergence is the  
generalized value of all errors that is calculated by the least-
squares formulation and represented by a Mean Squared  
Error (MSE) as follows [36]: 
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where M is the number of neurons in the output layer and P 
represents the total number of training patterns. Other  
performance measures such as the Root Mean Squared Error 
(RMSE), Average Absolute Error (AAE), etc. are also used. 

 A NN-based forward calculation procedure was devel-
oped to map the relation between input layer thicknesses  
and moduli and output surface deflections for passing on to 
the GA module during fitness evaluation. The goal is to 
simulate FWD loading using a numerical model for a wide 
variety of layer thicknesses and combinations of layer 
moduli encountered in the field resulting in a comprehensive 
synthetic solution set. A 2-D axi-symmetric FE program  
[38] commonly used in the structural analysis of flexible 
pavements was employed to generate a comprehensive  
synthetic database of moduli-deflection solutions for wide 
ranges of layer thicknesses and layer moduli. Numerous  
research studies have validated that this FE model [38]  
provides a realistic pavement structural response prediction 
for both highway and airfield pavements by incorporating 
stress-sensitive geomaterial models, the typical hardening 
behavior of nonlinear unbound aggregate bases and soften-
ing nature of subgrade soils under increasing stress states, 
and Mohr-Coulomb failure criteria to limit material strength 
[39]. 

 The synthetic database of FE solutions constituted the 
training and testing sets for developing NN-based models for 
rapid forward analysis of flexible pavements. A generic 
three-layer flexible pavement structure consisting of Asphalt 
Concrete (AC) surface layer, unbound aggregate base layer, 
and subgrade layer was modeled using the FE software [38].  

 The top surface AC layer was characterized as a linear 
elastic material with Young’s Modulus, EAC, and Poisson 
ratio, . The K-  model [40] was used as the non-linear  
characterization model for the unbound aggregate layer: 
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where ER is resilient modulus (MPa),  = 1 + 2 + 3 = 1 + 
2 3 = bulk stress, and K and n are multiple regression  
constants obtained from repeated load triaxial test data on 
granular materials. Based on the work reported in [41], K 
and n model parameters can be correlated to characterize the 

non-linear stress dependent behavior with only one model 
parameter. Thus, good quality granular materials, such as 
crushed stone, show higher K and lower n values, whereas 
the opposite applies for lower quality aggregates. 

 Fine-grained subgrade soils were modeled using the 
commonly used bi-linear resilient modulus model [4]: 
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where ERi is the breakpoint resilient modulus, d is the 
breakpoint deviator stress ( d = 1 - 3), di is the breakpoint 
deviator stress, and K1 and K2 are statistically determined 
coefficients from laboratory tests. ERi can be used to classify 
fine-grained subgrade soils as being soft, medium or stiff. 

 Thus, asphalt concrete modulus, EAC, granular base K-  
model parameter K, and the subgrade break-point resilient 
moduli, ERi, were used as the layer stiffness inputs for all the 
FE runs. The 40-kN wheel load was applied as a uniform 
pressure of 552 kPa over a circular area of radius 150 mm 
simulating the FWD loading. A comprehensive FE synthetic 
database was generated by varying the AC layer thickness 
(in the range of 75 to 700 mm), aggregate base layer  
thickness (in the range of 100 to 550 mm), EAC (in the range 
of 6.9 to 41.5 GPa), K (in the range of 21 to 82 MPa),  
and ERi (in the range of 7 to 105 MPa) for NN training and 
testing. Independent datasets were used for NN training and 
testing. 

 A range of (-0.2, +0.2) was used for random initialization 
of all synaptic weight vectors in the network for this study. A 
smooth learning curve was achieved with a learning-rate 
parameter ( ) of 0.001. Several simulation runs were  
performed on the network to study its behavior with respect 
to varying network parameters. More details related to  
the development of optimal NN configuration for forward 
analysis can be found in [13]. In this study, the 5-40-40-6 
architecture was chosen as the best architecture for the  
NN forward model based on its lowest training and testing 
MSEs for all six deflection output variables. The five inputs 
correspond to three layer stifnesses, AC layer thickness and 
base layer thickness. The NN training progress is shown  
in Fig. (3) for all six predicted output deflections. Fig. (4) 
depicts the prediction ability of the 5-40-40-6 network at  
the 10,000th epoch. Average Absolute Errors (AAEs) were 
calculated as sum of the individual absolute relative errors 
divided by the number of independent testing patterns (1,500 
in this case). 
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 Where i is the ith testing pattern among n testing patterns. 
The AAE values for NN predicted output deflections were  
in the range of 0.2% - 0.4% with R

2
 values above 0.999, in-

dicating proper training and excellent prediction perform-
ance of the NN surrogate forward calculation model.  

 Such NN forward surrogate models integrated into  
the inversion process offer a number of advantages over the 
traditional methods, due to their generalization capabilities, 
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massive parallelism and potential to offer real-time solutions, 
thus making them perfect tools for rapidly analyzing the  
routinely collected FWD deflection data.  

 In NGOT, the developed ANN models, which have  

inherited the sophistication and non-linear, stress-sensitive 

modeling capabilities of the FE module, replace the need to 

run the FE software for fitness evaluation of each individual 

in the population, thus resulting in significant savings in 

terms of time and computational resources. 

Performance of Neuro-Genetic Optimization Approach 
Using Synthetic and Field Data 

 The performance of NGOT was first evaluated using 

hypothetical data covering wide ranges of layer thicknesses 

and FWD deflections commonly encountered in the field. A 

total of about 100 datasets were independently selected from 

the comprehensive synthetic FE solutions database to assess 

the prediction accuracy of NGOT. The performance of 

NGOT in backcalculating flexible pavement layer moduli is 

reported in Fig. (5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (5). NGOT prediction accuracy - asphalt concrete moduli and 

subgrade moduli. 

 Representative fitness curves depicting the growth of 
individual fitnesses through generations for typical pavement 
sections are displayed in Fig. (6). These progress curves con-
firm that no premature convergence was reached during the 
analyses. It is seen that the AC and non-linear subgrade 
moduli values predicted by NGOT compare very well with 
the actual moduli as demonstrated by very high R

2
 values 

(above 0.99). These results demonstrate the feasibility of 
using intelligent evolutionary optimization approach for 
backcalculating non-linear pavement layer moduli from 
NDT deflection data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (6). Neuro-genetic algorithms’ representative fitness curves 

using synthetic test data. 

 The next step is to assess the performance of developed 

Neuro-Genetic Optimization Toolbox using actual field data. 

FWD data collected from a typical flexible pavement in 

Henry County, Illinois [12] was used. The thicknesses of AC 

surface layer and granular base layer were 90 mm (3.5 in.) 

and 560 mm (22 in.), respectively for the analyzed pavement 

section. A total of 79 FWD drops at 40 kN (9 kip) force  

amplitude was carried out along the length of the in-service 

county road. FWD deflection data for only the first four  

radial offsets (D0, D300, D600, and D900) were available. 

The recorded maximum FWD deflections (D0) along  

the pavement section are plotted in Fig. (7). The data shows 

considerable variability with D0 values ranging from 0.51 

mm to 1.32 mm and is therefore considered a good case for 

examining the robustness of NGOT.  

 The Area Under Pavement Profile (AUPP) (see Fig. 8)  

is a Deflection Basin Parameter (DBP) that has been  

successfully used as a measure of pavement stiffness (lower 

AUPP corresponds to higher stiffness and vice versa) as well 

as to relate to horizontal strain at the bottom of the AC layer 

( AC). Based on FE synthetic database [42], the AC has been 
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correlated with the AUPP term for conventional and  

full-depth flexible pavements. References [43] and [44]  

validated the AC - AUPP relations based on the analyses  

of Mn/ROAD field data (FWD testing and AC strain gauge 

readings). They were found to be valid at various load levels. 

The AUPP values (converted from inches to mm) at the  

corresponding FWD drop locations are plotted on Fig. (9).  

 

 

 

 

 

 

 

 

 

 

Fig. (7). Variability in maximum FWD surface deflection in Henry 

County FWD data. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Area Under Pavement Profile (AUPP). 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Variability in AUPP deflection basin parameter in Henry 

County FWD data. 

 In a previous University of Illinois study, Reference [45] 
developed direct plot procedures and algorithms for backcal-

culating pavement layer and subgrade moduli from 40-kN 
(9-kip) FWD test results using comprehensive FE synthetic 
database. The AC thicknesses ranged from 25 to 200 mm (1 
to 8 in.) and the granular base thicknesses ranged from 100 
to 600 mm (4 to 24 in.). For a conventional AC pavement, 
the regression algorithms are [45]: 
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 Where 

EAC = AC modulus (ksi) 

ERi = Subgrade soil resilient modulus at a  
repeated deviator stress of 6.2 psi (ksi) 

D0 = surface deflection @ 0 inches from center 
of loading plate (mils) 

D12 = surface deflection @ 12 inches from center 
of loading plate (mils) 

D24 = surface deflection @ 24 inches from center 
of loading plate (mils) 

D36 = surface deflection @ 36 inches from center 
of loading plate (mils) 

TAC = thickness of the AC layer (inches) 

AREA = a deflection basin parameter (inches)  

[AREA (in.)  = 6(1 + 2(D12/D0) + 2(D24/D0) + (D36/D0))] 

 The NGOT pavement layer moduli predictions for  

the Henry County FWD data are plotted against the  

statistical model predictions in Fig. (10). It is seen that 

NGOT predictions are consistent with the statistical  

model predictions for the analyzed field data which show 
considerable variability.  

 The developed NGOT backcalculation tool was also 

validated using actual field data acquired from an airport 

flexible pavement test section referred to as MFC at the U.S. 

National Airport Pavement Test Facility (NAPTF). MFC is a 

conventional granular base flexible pavement resting over a 

medium-strength subgrade. It consists of 127-mm (5-in.) 

thick HMA surface course, 200-mm thick crushed  

stone granular base, 307-mm thick granular subbase on top 

of the subgrade. A CL-CH soil classification (ASTM Unified 

Soil Classification System) material known as Dupont  

Clay (DPC) was used for the medium-strength subgrade 

(target California Bearing Ratio of 8). The naturally-

occurring sandy-soil material (SW-SM soil classification)  

at the full-scale test site underlies the subgrade layer.  

Detailed information related to NAPTF flexible test  

sections, material properties, and analysis of NDT data  

are found in reference [46]. The MFC NDT data referenced 

in this paper is accessible for download at the Federal  

Aviation Administration (FAA) Airport Technology  

Website: www.airporttech.tc.faa.gov. 
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Fig. (10). Comparison of statistical algorithm and neuro-genetic 

moduli predictions - Henry County FWD data. 

 The NGOT pavement layer moduli predictions for MFC 
test section are shown in Fig. (11). The NGOT backcalcula-

tion results were then compared with three existing backcal-

culation methods: (1) FE-based Statistical Algorithms  
(see Eq. 17) [45], (2) BAKFAA [47], and (3) WESDEF [48]. 

Both BAKFAA and WESDEF are conventional deflection-

basin matching backcalculation programs based on elastic 
layered theory. 

 The NGOT backcalculated flexible pavement layer 

moduli for MFC are plotted against those predicted by  

the other three methods in Fig. (12). The neuro-genetic 

moduli predictions seem to be consistent and agreeable with 

those predicted by the existing approaches. Note that  

the ELP-based backcalculation programs, BAKFAA and 

WESDEF, assume the subgrade to be linear elastic while 

both the Regression Algorithms and the NGOT prediction 

methodology consider the non-linear stress-dependent  

subgrade properties. However, the NGOT methodology  

is based on a population-based stochastic optimization  

technique which is different from the approach employed by 
all the other three methods. 

 A major advantage of the proposed integrated systems 

approach is that emerging concepts and methodologies that 

are continually evolving in the individual modular  

applications can be easily incorporated within the overall 

framework to enhance the overall robustness of the toolbox. 

It was demonstrated that NGOT can successfully predict  

the flexible pavement surface layer moduli and non-linear 

subgrade moduli using both hypothetical data as well as  

actual field data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Neuro-genetic pavement layer moduli predictions for 

MFC test section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). Comparison of neuro-genetic pavement layer moduli 

predictions with other methods - MFC FWD data. 
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