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Abstract:

Background:

Apolipoprotein E (APOE) gene is a ligand protein in humans which mediates the metabolism of cholesterol by binding to the low-
density  lipoprotein  receptor  (LDLR).  P.Leu167del  mutation  in  APOE  gene  was  recently  connected  with  Familial
Hypercholesterolemia,  a  condition  associated  with  premature  cardiovascular  disease.  The  consequences  of  this  mutation  on  the
protein structure and its receptor binding capacity remain largely unknown.

Objective:

The current study aims to further decipher the underlying mechanism of this mutation using advanced software-based algorithms.
The consequences of disrupting the leucine zipper by this mutation was studied at the structural and functional level of the APOE
protein.

Methods:

3D protein modeling for both APOE and LDLR (wild types), along with APOE (p.Leu167del) mutant type were generated using
homology modeling template-based alignment. Structural deviation analysis was performed to evaluate the spatial orientation and the
stability of the mutant APOE structure. Molecular docking analysis simulating APOE-LDLR protein interaction was carried out, in
order to evaluate the impact of the mutation on the binding affinity.

Result:

Structural deviation analysis for APOE mutated model showed low degree of deviance scoring root-mean-square deviation, (RMSD)
=  0.322  Å.  Whereas  Docking  simulation  revealed  an  enhanced  molecular  interaction  towards  the  LDLR with  an  estimation  of
+171.03 kJ/mol difference in binding free energy.

Conclusion:

This in-silico study suggests that p.Leu167del is causing the protein APOE to associate strongly with its receptor, LDLR. This gain-
of-function  is  likely  hindering  the  ability  of  LDLR  to  be  effectively  recycled  back  to  the  surface  of  the  hepatocytes  to  clear
cholesterol from the circulation therefore leading to FH.
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1. INTRODUCTION

Familial Hypercholesterolemia (FH) is a genetic lipoprotein disorder characterized by elevated serum low-density
lipoprotein cholesterol (LDL-C). It is inherited either as an autosomal dominant (AD) or as an autosomal recessive
(AR) hypercholesterolemia. The worldwide prevalence of the heterozygous form is 1 in 500, while the homozygous is 1
in 1,000,000 [1]. In special populations there is an evidence that it is even more common due to inbreeding (French-
Canadian) and consanguinity (Lebanese) [1]. Excessive levels of LDL-C can increase the risk of premature coronary
heart disease through acceleration of atherosclerosis [2]. Genes associated with AD-FH phenotype involve: the low
density lipoprotein receptor (LDLR) [2, 3], apolipoprotein B (APOB) [4] and proprotein convertase subtilisin/kexin type
9 (PCSK9) [5]. The AR form of FH was found to be caused by the very rare loss-of-function mutations in the low-
density lipoprotein receptor adapter protein 1 (LDLRAP1)gene [6].

Genome-wide  association  studies  (GWAS)  have  reported  that  the  Apolipoprotein  E  (APOE)  gene  as  strongly
associated with LDL-C levels [7]. APOE is a multifunctional plasma protein that is regularly synthesized in several
organs  such  as  the  liver,  brain,  kidney  and  spleen  [8].  It  is  an  essential  component  that  mediates  binding  of  all
lipoproteins [9, 10]. The APOE-LDLR protein complex contributes significantly to cholesterol levels in the regular
cycle  of  lipid  metabolism  [11].  The  APOE  gene  exists  in  3  major  allelic  variants;  E2,  E3  and  E4,  where  E3  is
considered to be the normal form, while other alleles have been associated with various diseases.

The p.Leu167del  mutation was first  reported by Marduel  et  al.  to  be strongly associated with a  large family of
positive  autosomal  dominant  hypercholesterolemia  (ADH)  occurrence  [12].  Later  on,  Awan  et  al.  presented  how
p.Leu167del  structurally  altered  the  LDLR  binding  domain  within  the  APOE  protein.  This  mutation  disrupted  the
leucine zipper near its 4th α-helical structure, which is structurally kown to be highly critical region in the protein. The
previous  observation  was  registered  via  computational  biology  using  established  template-based  protein  modeling,
followed by 3D structure alignment of both the reference and Leu167del proteins [13].

The purpose of the current study is to decipher the underlying mechanism of p.Leu167del mutation using advanced
software-based algorithms. We are aiming to further elucidate the consequences of disrupting the leucine zipper at the
structural and functional levels of the APOE protein.

2. MATERIALS AND METHODS

2.1. Data Set

The  reference  genomic  data  for  human  APOE  and  LDLR  genes  were  obtained  from  the  National  Center  for
Biological  Information  (NCBI).  Corresponding  amino  acid  sequences  of  APOE  protein  (CCDS  Transcript  ID:
ENST00000252486.8) and LDLR protein (CCDS Transcript ID: ENST00000558518.5) were retrieved from Ensemble
genome browser (http://www.ensembl.org/index.html).

2.2. 3D Protein Modeling

Crystalized protein structures of both candidate genes were absent from all protein and allied genomic databases.
Therefore,  computational  modeling  based  on  homology  prediction  was  utilized  to  construct  the  reference  protein
structures.  I-Tasser  web  server  (http://zhanglab.ccmb.med.umich.edu/I-TASSER/)  was  employed  in  the  modeling
procedure. Protein models were generated based on multiple sequence alignment and fragment assembly simulations. I-
Tasser generated 5 protein data bank (PDB) formatted models for each sequence. Only the top model with the highest
confidence score (C-score), accompanied with the most reliable measurement of template modeling score (TM-scores)
were selected for the follow-up analysis.

Predicted  reference  models  of  APOE  and  LDLR  were  subsequently  subjected  to  energy  minimization  using
DeepView-Swiss PDB Viewer (http://spdbv.vital-it.ch/). This software depends on GROningen MOlecular Simulation
(GROMOS) 96 force field techniques to release local constraints at their local residues [14]. It is also noteworthy that
the p.Leu167del mutation was manually curated in the referenced protein sequence of APOE before it was submitted
for automodeling using Swiss model: automated homology modeling (https://swissmodel.expasy.org/) [15].

http://www.ensembl.org/index.html
http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://spdbv.vital-it.ch/
https://swissmodel.expasy.org/
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2.3. Protein Structural Divergence Analysis

The level of structural deviance of the mutant APOE protein was homologically established using protein structural
alignment in accordance with the wild-type model. Using Pymol molecular viewer(https://www.pymol.org/), sequence
alignment was performed followed by a structural superposition of the mutant and wild-type PDB files. The bonds of
alpha carbon (Cα) atoms of the backbone peptide are more often considered for their structural alignment. They usually
experience minimal variant confirmations. Pymol proceeded in multiple cycles of refinement and structural screening,
ending with the calculation of Root Mean Square Deviation (RMSD). This score can illustrate the structural drift to the
polypeptide chain level  when both mutant and the wild type models are structurally aligned.  Structural  deformities
induced by genetic mutations as p.Leu167del are usually affecting RMSD scores, and therefore model structures [16].

2.4. Molecular Docking Simulation

The Hex dock server (http://hex.loria.fr/) was used as an interactive molecular program. This server is capable of
calculating docking models of complex protein pairs from their PDB format [17]. Predicted APOE and LDLR protein
models were both submitted to the server into 2 separate protein complex sets; wild (LDLR + wild-type APOE) and
mutant (LDLR + mutated APOE). Initially, polar hydrogen atoms were turned off, while the intermolecular axis was
activated in order to identify the centroids of the protein models. As Hex reads the PDB structure, it uses its all-atom
centre of mass as its centroid. These centroids are used as the local coordinate origin for docking [17].

Ellipsoid axes were assigned to recognise the difference in structural parameters, especially when protein complexes
are  in  binding  mode.  Hex  performed  a  6-dimensional  search  over  the  full  rotational  ranges  around  each  protein
complex. Energy calculations were set at 180°, allowing for total rotational increments for both receptor (LDLR) and
ligand (APOE) around their own centroids. The default grid spacing was set at a high-resolution scoring of 0.5 Å. The
steric scan (n=16) phase of the docking was calculated to proceed at (1+40)/0.75=53 intermolecular separations, in +/-
steps  of  0.75  Å.  The  highest  scoring  scan  orientations  were  applied  to  the  final  search  phase  (n=25)  and  the  final
energies were calculated in Kilojoules units. In the light of the above, any abnormalities regarding the binding affinity
of mutant APOE protein model will be distinguished.

3. RESULTS

3.1. Protein Models

I-Tasser server predicted the models of complete peptide chains of APOE wild and LDLR via homological protein
structures.  The  criteria  for  selecting  the  best  models  for  further  analysis  depends  on  the  confidence  C-scores  that
typically ranges from -5 to 2. In addition to the highest TM-score, which usually ranges from 0 to 1. The score >0.5
resembles a model featuring similar structural characteristics to its template-based model.

C-score  predicted  by  I-Tasser  were  equal  to  -0.50  and  0.04  for  wild  APOE  and  LDLR  models  respectively.
However, the estimated TM-score for wild APOE resulted in 0.65±0.13, while 0.72±0.11 for the LDLR model. Energy
minimization helped to repair distorted geometries and eliminate bad contacts in targeted proteins. Such analysis is
usually recommended prior to performing computational docking simulations. Energy minimized models of APOE wild
and LDLR are shown in (Fig. 1).

The mutated file  of  APOE model  was  generated instantly  and by automation using wild  type PDB file  of  wild
APOE.

3.2. Structural Deviation Analysis

Aligned APOE models (wild/mutant) have yielded RMSD scores. Normally, RMSD is estimated to be <2.0 Å in the
deviation  analysis  of  protein  structure.  Computed  RMSD  values  represent  the  average  distance  between  the  Cα
backbone atoms (Fig. 2). A considerable degree of structural deviance with RMSD equalling to 0.322 Å was obtained
from this analysis.

https://www.pymol.org/
http://hex.loria.fr/
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Fig. (1). (A). Protein 3D model of wild type APOE with emphasis on the Leu167aa position (B). Protein 3D model of the APOE
p.Leu167del with emphasis on Leu167aa deletion from the model (C). Protein 3D model of the LDLR.
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Fig. (2). APOE wild and mutated form are in a superimposed position.

3.3. Docking Analysis

Docking the wild type APOE model revealed an enhanced binding activity toward its  receptor;  LDLR, with an
estimated binding energy of -643.33 kJ/mol. However, docking simulation of the mutated APOE model to the LDLR
revealed an estimation binding energy of -472.30 kJ/mol. Interestingly, the docking simulation has revealed that the
mutated APOE model is showing an increased molecular interaction towards the LDLR receptor with an estimation of
+171.03 kJ/mol difference in binding free energy. Hex binding calculation results for both protein complexes are shown
in (Table 1).

Table 1. Calculated binding energy of both wild-type and mutated protein complexes as predicted by the hex doc server.

Interacting Protein Complex
Total Docking Energy (kJ/mol) Differences in Docking Energy Level of Binding Affinity

Receptor Protein Ligand Protein

LDLR
APOE wild type -643.33 - -

APOE p.Leu167del -472.3 171.03 ↑↑

4. DISCUSSION

The field of structural analysis has significantly evolved in the quest to propose a systematic and cost-effective
answer to some ambiguous issues related to biological systems. The consequence of some genetic mutations on these
systems  is  one  of  the  main  issues  that  have  been  addressed  [18].  Nowadays,  the  computational  pipeline  is  widely
supported  with  software-based  algorithms.  Protein-protein  interaction  simulation  programs  can  confidently  predict
functional abrogation.

Regarding FH, computational biology has proven to be effective to illustrate a plausible variation in the genome
which might indicate some pathogenicity to cause the disease phenotype [19, 20] [21, 22]. APOE protein, in particular,
has been the subject of structural analysis in multiple studies [23, 24]. Awhile after the GWAS report of a locus in
APOE gene to be highly associated with ADH, several separate studies investigated cases and families with the similar
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condition [12, 13, 25]. However, p.Leu167del mutation did not undergo extensive computational interpretation. The
impact of this mutation on the structure and function of the protein can go through further investigation using advanced
in-silico  software specifically trained to test  the effects of genetic mutations at  the protein level.  The current study
provides additional insights on p.Leu167del mutation which has been reported to cause ADH and FH. Following our
previous  work  [13],  we  adopted  herein  an  approach,  alternative  to  the  traditional  in-vivo  and  in-vitro  studies,  to
elucidate the consequences of p.Leu167del mutation in APOE protein attributes at the molecular and cellular levels.

Although in-frame genetic mutations (small indels or insertions and deletions) do not alter the sequence of amino
acid  in  the  protein  chain,  Human  Gene  Mutation  Database  (HGMD  Professional  release  2015.4)  reported  >4000
disease-causing  in-frame  indels,  corresponding  to  2.2%  of  all  mutations.  The  1000  Genomes  Project  Consortium
reported that 1.4% of detected exonic variants were indels [26]. Notably, functional and population annotations for
these  in-frame  indels  are  becoming  increasingly  available  [27].  Our  current  research  also  revealed  that  in-frame
p.Leu167del has a significant, possibly pathogenic impact on its protein.

Fig. (3). An illustration of the wild-type protein complex of APOE-LDLR docking simulation.

In a former study [13], we have initially assessed the impact of this deletion on the 3D structure of APOE using
online protein function prediction tools (SIFT and PolyPhen). The study hypothesized that the changed leucine zippers
motif might weaken the lipoprotein particle, and prevent it from binding properly with its receptor, LDLR [13]. Leucine
zippers  are  common helical  motifs  with  periodic  segments  containing  leucine  residues  in  protein  compounds  [28].
Mainly they are featured in eukaryotic transcription factors as they contain highly conservative regions for DNA-protein
binding activity [29]. However, they are also being annotated as one of the critical protein modules for protein-protein
interactions [30].  Many tools such as SIFT and PolyPhen can predict  the likely pathogenicity of certain mutations.
However, the low specificity of these programmes undermines the level of their accuracy prediction [31].

Structural  deviation analysis  is  often utilised to properly evaluate the spatial  orientation of the mutant  proteins,
where certain degrees of residual deviance can compromise the stability and the dynamical state of protein structures,
which  in  turn,  can  affect  their  biological  function  [32].  Herein,  the  structural  deformity  induced  by  this  mutation,
although disrupting the leucine zipper at the 4th α-helix, had a very minimal effect on the protein. RMSD is only a
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quantitative measurement of the degree of similarity of protein structures [33]. The threshold of structural deviance is
usually considered as <2.0 Å [34]. Therefore, p.Leu167del does not seem to impact the APOE at a critical level.

The presence of deformed abnormalities can also affect the binding affinity of targeted protein when interacting
with partner molecules [35].  Therefore,  computational molecular docking has been a highly desirable method. It  is
specifically aimed to predict a 3-dimensional simulation of complex protein-protein interaction [36]. As shown above,
this approach can simulate the actual ligand-receptor interaction to predict calculated energies that define the strength of
their association [37].

The increased difference, around +171 kJ/mol in the binding energy between the mutated form of the APOE protein
and  LDLR  was  remarkable  Fig.  (3).  While  most  deletion  mutations  altering  proteins  binding  affinity  may  cause
significant disturbance to the function of the protein, p.Leu167del on the other hand was interestingly found to influence
APOE oppositely. The detected protein is strongly attached to its receptor protein; LDLR. Note that the LDLR protein
is the only member of the LDL receptor superfamily to demonstrate high affinity for binding with the wild type APOE
protein [38]. This makes our mutation of interest to be classified as a gain-of-function (GOF) mutation.

The interaction activity of the APOE-LDLR complex has been pointed as an essential cellular activity for mediation
of cholesterol metabolism, as the functional interaction between both proteins had already been associated with the risk
of CVD [39].

The results of the present study are consistent with a recently published report [40]. Cenarro et al. proposed that the
association of p.Leu167del with ADH appears to be due to the down-regulation of the LDL receptor [40]. This can
indicate that p.Leu167del resembles the characteristics of a GOF mutation in APOE protein. Similar to APOE (E4)
isoform, that also negatively modulate the recycling capacity of the LDLR preventing cholesterol clearance from the
circulation [41].

Eventually,  the  impact  of  p.Leu167del  mutation  on  the  binding  activity  of  APOE  might  initiate  a  quest  for
investigating  a  possible  therapeutic  target.  Further  research  is  needed  to  better  understand  APOE  gene  normal  and
variant-related biological aspects leading to FH.

CONCLUSION

The  mechanism  of  p.Leu167del  in  regards  to  hypercholesterolemia  was  demonstrated  here  by  this  advance
computational analysis. The p.Leu167del mutation was shown to exert an increased force of attraction, which triggers
the mutated APOE protein to strongly associate with the LDLR protein. This can hinder the ability of the LDLR to be
effectively recycled back to the surface of hepatic cells.  Subsequently, a decrease in LDL endocytosis results in an
increase  in  LDL  particles  circulating  in  the  plasma.  These  high  cholesterol  levels  will  increase  the  risk  of
atherosclerosis.
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