
 The Open Condensed Matter Physics Journal, 2010, 3, 1-7 1 

 
 1874-186X/10 2010 Bentham Open 

Open Access 

Electronic Structure of AlP Under Pressure Using Semiempirical Method 

Hamad R. Jappor1, Mudar A. Abdulsattar2 and Ahmed M. Abdul-lettif 
3,* 

1College of Education, University of Babylon, Hilla, Iraq 
2Ministry of Science and Technology, Baghdad, Iraq 
3College of Science, University of Babylon, Hilla, Iraq 

Abstract: The effect of pressure on the structural and electronic parameters of zinc-blende aluminum phosphide crystal 
has been investigated using the large unit cell within the framework of complete neglect of differential overlap and the 
linear combination of atomic orbital approximation. Cohesive energy, indirect band gap, valence bandwidth, conduction 
bandwidth, bulk modulus, and valence charge distribution are all obtained. The calculations show a good agreement of 
lattice constant, cohesive energy, valence bandwidth, and bulk modulus with the experimental data. The calculated band 
gap is twice the experimental value. This high value of the band gap is expected in Hartree-Fock method. The effect  
of pressure on the aforementioned properties is investigated. It is found that the indirect band gap, valence bandwidth, 
bulk modulus and cohesive energy increase with increasing pressure, while the conduction bandwidth decreases. The 
maximum value of pressure is taken to be 9 GPa, because beyond this value, the phase of AlP transforms from zinc blende 
phase to nickel arsenic phase. 

PACS: 71.10-w, 71.15-m, 71.15. Ap, 71.15. Nc, 64.10.+h.  
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1. INTRODUCTION 

 Aluminum phosphide (AlP) is a wide-indirect band gap 
semiconductor. At normal conditions, AlP crystallizes in the 
zinc-blende (zb) structure [1]. High-pressure experiments on 
this compound are difficult because of sample handling 
problems; AlP is unstable in air [2]. The zb form has been 
reported theoretically to be metastable. The zinc- blende 
phase is known to transform to the nickel arsenic (NiAs) 
phase at about ((17 – 9.5 GPa [3]. Although other studies 
have placed this transformation at a somewhat smaller pres-
sure (7 - 9.3) GPa [4]. At a pressure of about 36 GPa the 
NiAs phase has been reported to undergo a Cmcm–like dis-
tortion with no significant change in volume. The CsCl 
phase is a possible candidate for AlP at very high pressures 
[2]. AlP is a subject of extensive theoretical studies ranging 
from the semiempirical to the first principles methods [5] 
within the density functional theory (DFT) framework using 
both pseudopotential [2], and all-electron approaches.  
For the bulk phase of AlP, theoretical calculations based on 
the Hartree-Fock [6], and potential model [7] have obtained 
a very good description of its structural and electronic  
properties.  
 Over the last few years, the study of materials under  
high pressure has become an extremely important subject. 
This is primarily due to both theoretical and experimental 
developments, which have facilitated such work [8].  
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 The pressure is a continuously varying parameter that can 
be used in systematic studies of the properties of solids as a 
function of interatomic distances. An interesting phenome-
non that may occur at the applied pressure is a sudden 
change in the arrangement of the atoms, i.e., a structural 
phase transition of atomic arrangement. The ultimate pres-
sures in the experiment can lead to a reduction in the volume 
by a factor of two causing enormous changes in the inter-
atomic bonding [9].  

 In the present work we study the band structure and some 
physical properties of cubic AlP under pressure using large 
unit cell method within complete neglect of differential over-
lap (LUC-CNDO) method [10, 11]. This method has been 
chosen in the present work rather than other methods be-
cause this can be used to give reliable and precise results 
with relatively short time. 

2. CALCULATIONS 
 We have used the large unit cell within complete neglect 
of differential overlap (LUC-CNDO) method in the linear 
combination of atomic orbital (LCAO) approximation [10] 
to obtain a self-consistent solution for the valence electron 
energy spectrum. The iteration process was repeated until the 
calculated total energy of crystal converged to less than 
1meV. The calculations are carried out, on the 8-atom LUC. 
The positions of atoms that constitute this LUC are calcu-
lated in the program according to the zinc-blende structure 
for a given lattice constant. There are four electrons in aver-
age per each atom. Hence we have (32) eigenstates, two 
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electrons per state, half are filled (valence band) leaving  
the other half empty (conduction band) in the ground state. 
We obtained the energy minima against lattice constant 
variation. 

 The basic idea of the large unit cell is in computing  
the electronic structure of the unit cell extended in a  
special manner at k=0 in the reduced Brillouin zone (k is the 
lattice wave vector). Using the linear combination of atomic  
orbitals LCAO, the crystal wavefunction in the LUC-CNDO 
formalism is written in the following form [12]:  
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where paC are the orbital expansion coefficients, the Ru is 
the lattice translation vector, and r is a position vector. The 
atomic orbitals used for the LCAO procedure form the  
basis set of the calculation. We expand the wave function in 
a set of Slater-type orbitals (STO), that have the radial form 
[13]: 
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where ζ the orbital exponent. The expectation value of the 
electronic energy is: 
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 The Hamiltonian for a microcrystal consisting of N  
electrons may be written as: 
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where ZA is the core charge, RAB is the distance between the 
atoms A and B, and the summation is over all nuclei. The 
Roothaan-Hall equations can be obtained [14]: 
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 Fpqk represents the Fock matrix elements. Spq is the over-
lap integral for atomic function Φq and  ΦP, and can be writ-
ten as [12]: 
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 The Fock matrix elements may represent the sum of the 
one- and two- electron components:  
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 In equation (5) if k =0 then 
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 The Fock matrix elements in their final forms in the 
LUC-CNDO formalism are used in this work to be [11]: 
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 For p and q on the same atomic center, βAB is the bonding 
parameter and γAB is the average electrostatic repulsion be-
tween any electron on atom A and any electron on atom B, 
and can be written as 
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 Ip and AP are the ionization potential and electron affinity 
respectively, and f(x) is the modulating function that is given 
by [15] 
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For the eight atoms LUC x is given by 

x =
!R

AB

a
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 RAB is the distance between the atom A at the central lat-
tice o and the atom B at the v lattice. 

 In our calculations, we have treated only valence orbitals 
of Al (3s23p1) and P (3s23p3). The coordinates of the P atoms 
are chosen to be (0, 0, 0); (0, 1/2, 1/2); (1/2, 0, 1/2); (1/2, 1/2, 
0) whereas the coordinates of the Al atoms are chosen to be 
(1/4, 1/4, 1/4); (1/4, 3/4, 3/4); (3/4, 1/4, 3/4); (3/4, 3/4, 1/4). 

3. RESULTS AND DISCUSSION  

3.1. Choice of Parameters  

 The number of parameters in the LUC–CNDO method is 
four. These are the orbital exponent (ζ), the bonding parame-
ter (β), the electronegativity of s-orbital (Es), and the electro-
negativity of p-orbital (Ep). The value of the orbital exponent 
determines the charge distribution of electrons around the 
nucleus in the solid 

 These parameters are varied firstly to give nearly an ex-
act value of the equilibrium lattice constant, cohesive energy, 
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indirect bandgap and valence bandwidth. The remaining of 
the output data of the programs is a result of the theory that 
is used in the present work. We found that the investigated 
properties are sensitive to the aforementioned parameters. 
The parameters used for AlP in the present work are summa-
rized in Table 1. 

Table 1. The Adjusted Parameters for AlP in the Zinc-Blende 
Structure 

Parameter Al P  

ζ 3s,3p(a.u)-1 1.4 2.0 

β (eV) -6.0 -4.82 

E3s (eV) 9.75 24.58 

E3p (eV) 8.68 12.086 

3.2. The Electronic and Structural Properties 

 The second step after the choice of parameters is to ex-
amine the structural properties of AlP at the equilibrium lat-
tice constant in order to test the accuracy of the cohesive 
energy, indirect bandgap, and valence bandwidth.  

 Based on the total energy result, we obtained the cohe-
sive energy (Ecoh) as follows: 

Ecoh=Etot/8-Efree-E0             (15) 

where Etot is the total energy, Efree is the free atom sp shell 
energy, and E0 is the zero–point vibration energy. In the pre-
sent work Efree =115.045eV, and this value is taken from the 
ionization potential of AlP, E0= 0.057 eV, is calculated by 
the formula E0= (9/8)kВӨD (per atom) with ӨD is the Debye 
temperature [16], which is equal to 588 K [17].  

 The present value of the cohesive energy is in good 
agreement with the experimental and other calculations 
[16,18,19] as shown in Table 2. Fig. (1) displays the total 
energy versus the lattice constant for AlP. The curve is fitted 
to the equation of state of Murnaghan [20] from which we 
obtained the equilibrium lattice parameter (a0), the bulk 
modulus B and its derivative B′O, and the cohesive energy as 
listed in Table 2.  

 The calculated structural properties of AlP, in compari-
son with experimental results and other computational  
results, are shown in Table 2. We notice that the lattice  

parameter for the zb of AlP of 5.453Å is in good agreement 
with the experimental value of 5.451 Å [6] with an accuracy 
of 0.04%. For the bulk modulus, the accuracy is about 0.2 %. 
Table 2 shows that the calculated value of  is in fair 
agreement with the previous computational [4, 19] and ex-
perimental [18] results. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). The total energy as a function of lattice constant for AlP. 

 To visualize the nature of the bond character and to  
explain the charge transfer and the bonding properties of  
zb-AlP, we calculate the total charge density. The total  
valence charge densities for AlP are displayed along the  
Al-P bonds in the (100), (110), (200), and (400) planes in 
Fig. (2). From this figure, it is apparent that the phosphorous 
ions are larger than the aluminum ions. This figure also 
shows the charge density accumulated at the P site. Fig. (2a) 
shows the charge density of the (100) plane, where a buildup 
of charge density along the AlP bond on the plane is clearly 
visible. This figure reveals that LUC-CNDO calculations 
give a reasonable description of the partially ionic bonding 
character in regions between atoms of different affinities.  

3.3. The Band Structure and Energy Eigenvalues 

 The electronic band structure of a solid shows the eigen-
values associated with the valence and conduction bands 
along specific directions in the Brillouin zone. We will start 
our discussion of calculations on the band structure by the 
energy eigenvalues for AlP crystal at various high symmetry 
points of the Brillouin zone. The results are listed in Table 3. 
Eight atom LUC results Г and Χ points of the FCC Brillouin 

Table 2. Structural Properties of zb-AlP at Zero Pressure Determined by LUC-CNDO Compared to other Theoretical  
Calculations and Experimental Data 

 Present Work Computational Experimental 

A0 (Å) 5.453 5.45 [2], 5.436 [19] 5.451 [6] 

Ecoh(eV) -8.33 -7.94 [16], -9.62 [19] -8.34 [18] 

B (GPa) 87.8 86.5 [4], 89 [19] 90 [2], 86 [6] 

!
!"
#

 3.852 4.18 [4], 4.14 [19] 4.34 [18] 
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zone. They are the valence band states Г1v, Г15v, X1v, and X5v, 
and the conduction band states X1c, X5c, Г15c, and Г1c.  

 The direct bandgap in the zb structures of AlP is due to 
the Al 3s and P 3s orbital interaction, which forms the lower-
energy bonding state (Γ15v) and the antibonding state (Γ1c). 
The bonding state is lowered and antibonding states is risen, 
relative to the P 3s and Al 3s orbital energies, by the same 
amount of s-s interaction energy in AlP. In zb-AlP the con-
duction-band minimum (CBM) is located away from the Γ 
point, at the X point. AlP has an indirect minimum gap with 
the CBM at X. Thus, we obtain an indirect bandgap (Eg

ind) of 
6.6075 eV which is larger than the results of others [21, 22] 
(see Table 4 for comparison), this is, mainly, a consequence 
of two approximations made in the present calculations. 
First, the core structure was ignored, through some compen-
sation results from using semiempirical parameters. Second, 
using minimal basis set atomic orbitals (without considering 
any excited levels). However, the CNDO method predicts  
a one-electron eigenvalue band gap that is too large and  
conduction band that is much narrower than the band model 
values. 

 The total valence bandwidth (VBW) or the difference 
between the top of the valence band (Γ15v) and the lowest 
energy of valence band (Γ1v) is 13.492 eV for zb-AlP. The 
obtained total valence bandwidth is in fair agreement with 
previous results as shown in Table 4. The maximum level of 
the valence band is splitted only by spin-orbit interaction Δso, 
giving rise to two states at the Brillouin zone centre: Γ8v and 

Γ7v. In the absence of spin orbit splitting, these levels be-
come a triply degenerated Γ15v. The spin-orbit interaction Δso 
is taken into account in this paper, averaging the theoretical 
results from different Refs. to be 0.06eV [21, 23, 24]. There-
fore, we added the relativistic correction to the band gap, 
which is equal to 0.019 [23]. Our work gives a value of the 
conduction bandwidth (CBW) to be 14.728 eV (Table 4), but 
no experimental results are found to the CBW of the zb of 
AlP. 

4. THE EFFECT OF PRESSURE ON THE PHYSICAL 
PROPERTIES 

 The effect of pressure on the electronic structure and 
other properties can be calculated from the present computa-
tional procedure. By the use of our calculated values of the 
bulk modulus B and its derivative B′O, the volume change 
(V) with applied pressure was calculated using the following 
equation [26]: 
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 P is the pressure and V0 is the equilibrium volume at zero 
pressure. We use pressures up to 9 GPa, because this struc-
ture transforms to another phase, the nickel arsenic phase 
(NiAs), when pressure exceeds nearly 9 GPa [27]. The calcu-
lated lattice constant as a function of pressure is shown in 
Fig. (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The valence charge density (in electron/Å3) of zb-AlP at zero pressure in (a) (100) plane, (b) (110) plane, (c) (200) plane, and (d) 
(400) plane. 
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 The pressure dependence of the bulk modulus and the 
cohesive energy is illustrated in Figs. (4 and 5), respectively. 
It is shown that the bulk modulus increases linearly with the 
pressure. On the other hand, the absolute value of the cohe-
sive energy decreases as the pressure increases.  

 The effect of pressure on the high symmetry points (Г1v , 
Г15v , X1v , X5v , X1c, X5c, Г15c, and Г1c) is shown in Fig. (6). 
From this figure one can notice that the eigenvalues at con-
duction band (X5c , Г15c , Г 1c , X1c) increase with pressure, 
whereas eigenvalues at valence band (X5v , X1v , Г 1v ) de-
crease with pressure, However, the decrease of X5v , X1v , 
and Г1v with pressure is small. 

 Fig. (7) shows the pressure dependence of the indirect 
band gap of the zb phase of AlP from the present energy 
band structure calculations. The indirect bandgap increases 
with the increase of pressure; because the minimum conduc-
tion energy level rises and the top valence energy level low-
ers with the increase of pressure. However, in most cases the 
first pressure-induced phase transition corresponds to the 
closing of the bandgap and metallization of the sample. In 
the present work, the pressure derivative of the indirect 
bandgap is computed to be ~ 4.2 meV/GPa. 

 The predicted effect of pressure on the conduction band-
width and valence bandwidth is illustrated in Fig. (8). The 

Table 3. Eigenvalues (in Electron Volts) at Γ and Χ High-Symmetry Points of Brillouin Zone 

 Present Work Computational Experimental 

Γ1v -13.492 -11.46 [6] --- 

Γ 15v 0.0 0.0 0.0 

Γ1c 7.206 3.25 [6] --- 

Γ15c 8.187 --- --- 

Χ1v -12.925 -9.73 [6] ---- 

Χ5v -12.921 --- --- 

Χ1c 6.662 1.51 [6] 3.63 

Χ5c 21.39 --- --- 

 
Table 4. Calculated LUC-CNDO Indirect Band Gap, Valence Bandwidth, and Conduction Bandwidth of AlP Compared to other 

Theoretical Calculations and Experiments. All Energies are in eV 

 Present Computational Experimental 

Eg
ind 6.6075 3.73 [7], 2.77, 2.86 [ 25] 3.63 [21], 2.45 [22] 

VBW 13.492 11.46 [6]     --- 

CBW 14.728 ---     --- 

 

 

 

 

 

 

 

 

 

Fig. (3). The effect of pressure on the lattice constant of AlP. 

 

 

 

 

 

 

 

 

     Fig. (4). The bulk modulus as a function of pressure for AlP. 
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conduction bandwidth decreases with the increase of pres-
sure, while the valence bandwidth increases with the increase 
of pressure. Our calculations give a pressure derivative of ~ -
1.9 meV/GPa for the conduction bandwidth, and 22 
meV/GPa for the valence bandwidth. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (5). The effect of pressure on the cohesive energy of AlP. 

5. CONCLUSIONS  

 In this paper, a study of some properties of AlP is pre-
sented. The cohesive energy, lattice constant, bulk modulus, 
and its pressure derivative have been calculated by (LUC-
CNDO) method. The calculated results indicate that this 
model gives results in good agreement with the correspond-
ing experimental results, and this shows the possibility of 
using this model in qualitative study of some materials. The 
LUC-CNDO method is shown to be time efficient and  
retains many of the essential features of ab initio Hartree-
Fock theory. A reasonable agreement of the valence band-

width is shown in comparison with the available theoretical 
result. However, there is a large difference between the cal-
culated indirect band gap and the corresponding experimen-
tal value. The effect of pressure on these properties is inves-
tigated. It is found that the conduction bandwidth decreases 
with increasing the pressure, whereas the indirect bandgap, 
valence bandwidth, and cohesive energy increase with the 
increase of pressure. The maximum value of pressure is 
taken to be 9 GPa, because beyond this value of pressure, the 
phase of AlP transforms from zb to rock salt phase. Relativ-
istic effect is added to the calculation of the band gap, also 
zero point energy is added to the calculation of the cohesive 
energy. Finally, this model is shown to give a good descrip-
tion to the charge density of AlP and it is expected that this 
method could give reliable description for other materials 
that have zinc blende and cubic structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Variation of the indirect band gap versus pressure for AlP. 

 

 

 

 

 

 

 

 

 

 

Fig. (6). The effect of pressure on the high symmetry points in the (a) conduction band (X5c , Г 15c , Г 1c , X1c) , and (b) valence band  
(X5v , X1v , Г1v ). 
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Fig. (8). Effect of pressure on the (a) conduction bandwidth, and (b) valence bandwidth. 


