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Abstract: With kernel static tracepoints, it is now possible to add instrumentation to the Linux kernel and obtain a low 

overhead trace of the whole system. However, these static tracepoints may be insufficient to diagnose the source of a 

functional or performance problem. Dynamic instrumentation fills the gap by enabling the insertion of additional 

tracepoints in other locations at run time. 

This article presents a new approach for tracing the Linux kernel with dynamic and static tracepoints. These tracepoints 

will be conditional. Conditions are defined using complex expressions that employ the code variables and make use of 

arithmetic and logic operations. These expressions are written using C-like syntax. 

Both static and dynamic tracepoints will evaluate and collect expressions similar to those used for conditions. In addition, 

static tracepoints will collect the static tracepoint data, as defined by the TRACE_EVENT macro used to define 

tracepoints in the Linux kernel. 

Our tool was implemented based on GDB and KGTP, which is a GDB stub in kernel-space that partially implements 

dynamic tracepoints. 
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1. INTRODUCTION 

 With kernel static tracepoints [1, 2] defined using 

TRACE_EVENT [3] and user-space tracepoints provided by 

the UST [4] library, it is now possible to add instrumentation 

and obtain a low overhead trace of the whole system. 

However, these static tracepoints may be insufficient to 

diagnose the source of a problem. Dynamic instrumentation 

fills the gap by enabling the insertion of additional 
tracepoints in other locations at run time. 

 Recently, GDB [5] was enhanced to support dynamic 

tracepoints in user-space. Using this feature, tracepoints can 

be defined in almost every location in a program. A set of 

actions can be associated to each tracepoint. These actions 

may be used to collect the values of the registers at the time 

the tracepoint was hit or to evaluate user-defined 

expressions. These expressions may be complex and can 

reference all the program variables accessible from the 
tracepoint location. GDB being able to read the program 

debug information and to locate variables, we can refer to 

variables in these expressions by their name without having 

to care about their location. GDB static and dynamic 

tracepoints may be conditional. In this case, expressions can 

be used as conditions. In order to simplify evaluation, GDB 

converts expressions used in conditions and actions to 

bytecode [6, 7] which is interpreted each time the  
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corresponding tracepoint is hit. Moreover, in some 

situations, GDB converts the conditions’ bytecode into 

native code in order to improve performance. 

 More recently, the KGTP (Kernel GDB Tracepoints)[8] 

kernel module was submitted as a contribution to the Linux 

kernel. It uses kprobes [9-11] to insert GDB dynamic 

tracepoints into the kernel, implements the RSP (Remote 
Serial Protocol) to communicate with GDB and can interpret 

the bytecode used by GDB to define conditions and actions. 

However, KGTP is unable to convert this bytecode to native 

code. 

 The goal of this work was to extend the KGTP module 

by implementing a bytecode to native code converter in 

kernel space for both conditions and actions. GDB was also 

integrated with TRACE_EVENT through KGTP in order to 

be able to list, enable and disable the kernel static 
tracepoints. Expressions may be used in conditions and 

additional actions. These expressions are converted to native 

code and may reference any variable accessible from the 

static tracepoint location. 

2. PREVIOUS WORK 

 Dtrace [12, 13] is a tracing tool developed for the Solaris 

kernel and ported to other platforms such as Mac OS, QNX 

and FreeBSB. Static tracepoints can be inserted in the kernel 

source code using a C macro which expands to a non-

existing function call. This function call is replaced by a 

NOP operation at link-time. The linker saves the function 
name and the call address. In order to enable the tracepoint, 

DTrace uses this saved information to replace the NOP by a 

probe which has the same name as the non-existing function. 



12    The Open Cybernetics & Systemics Journal, 2012, Volume 6 Fahem and Dagenais 

 Dynamic tracepoints [14] are used to avoid the overhead 

caused by disabled static tracepoints. They can only be 

inserted in the kernel functions entry and exit points. They 

are implemented on the x86 architecture using a trap [15]. 

When the tracepoint is hit, the instruction transfers control to 

DTrace. 

 Static and dynamic tracepoints [16] in DTrace are 
defined using D scripts. D is a language which has a C-like 

syntax. Conditions can be associated to both tracepoints. D 

scripts are converted to an intermediate code. The 

intermediate language is a RISC instruction set. This code is 

emulated each time the tracepoint is hit. 

 Several efforts were made in the Linux community to 

bring an answer to Dtrace. Some of them are presented in the 

subsequent paragraphs. 

 Systemtap [17-19] is a tracing tool similar to DTrace 

which implements dynamic and static tracepoints in the 

Linux kernel. Systemtap uses scripts in order to define both 

tracepoints. These scripts are compiled into kernel modules 

before tracing starts. 

 Dynamic tracepoints are implemented in Systemtap using 

kprobes. They can be conditional. Conditions are defined 

using C-like complex expressions. All the variables 

accessible from the dynamic tracepoint address can be used 
in these expressions. Dynamic tracepoints are able to 

evaluate and collect expressions that have the same 

characteristics as the expressions used for conditions. 

 Systemtap is also able to connect to the kernel static 

tracepoints defined using TRACE_EVENT. Conditional 

expressions are limited to using the variables passed to the 

Systemtap registered probe, as defined in the 

TRACE_EVENT macro. Static tracing capabilities are 

therefore limited. In addition, Systemtap is unable to list the 

probe points, which makes it require a certain level of 
familiarity with the Linux kernel source code. 

 Ftrace [20, 21] is another Linux kernel tracing tool that is 

part of the mainline kernel. It offers both dynamic and static 

tracepoints. Dynamic tracepoints [22, 23] are based on 

kprobes. Because Ftrace is unable to read the kernel debug 

information, we have to manually specify the exact address 

location of each variable to collect. 

 Ftrace connects to the kernel static tracepoints defined 

with TRACE_EVENT. These tracepoints are only able to 

collect the data defined in the TRACE_EVENT declaration. 

 Ftrace is unable to associate conditions to both 

tracepoints. Only filters can be used. These filters have 

limited capabilities compared to SystamTap and GDB 

conditional expressions. 

 In conclusion, we notice that each tracing tool in the 
Linux kernel lacks some functionality. Some tools, such as 

Ftrace or LTTng offer great performance at the expense of 

flexibility. Indeed, Ftrace is unable to insert conditional 

tracepoints in the kernel. 

 On the other side, Systemtap offers such functionality. It 

is able to insert conditional dynamic and static tracepoints 

based on the kernel debugging information. However, the 

integration between Systemtap and TRACE_EVENT is not 

optimal and a complicated setup is required on the tracing 

target with a compiler and compilation server. 

 In the subsequent sections, we describe the architecture 

of the proposed solution. We explain the implementation of 

the bytecode to native code translator used in both dynamic 
and static tracepoints. We then describe the method used to 

integrate KGTP with the kernel static tracepoints and the 

modifications we had to apply to the existing 

TRACE_EVENT implementation in order to collect the 

registers needed to evaluate expressions. Finally, we will 

discuss how to integrate these tracepoints with LTTng in 

order to increase performance. 

3. METHODOLOGY 

3.1. Bytecode to Native Code Translation 

 Converting the bytecode produced by GDB to native 
code has proved its efficiency in user-space especially for 

conditional tracepoints. Table 1 shows the execution times 

that we collected during the experiments. In order to 

minimize the overhead of executing dynamic and static 

tracepoint probes in kernel space, we implemented the 

translator in KGTP. 

Table 1. Bytecode vs Native Code in User-Space 

 

Processing Bytecode Native 

Condition 444 (ns) 115 (ns) 

Data 3.075 (μs) 2.9 (μs) 

 

 Similarly to what GDBServer does in user-space, KGTP 
translates the bytecode using a one-to-one translation 

scheme, meaning that for each agent expressions opcode, 

there is a corresponding assembly code snippet. 

 Fig. (1) shows the assembly code corresponding to the 

“add” opcode. 

 As Fig. (1) shows, each native code snippet is located in 

a separate function and is produced using inline assembly. 
The assembly code is located between two labels preceded 

by a jump to the second label. The jump instruction is useful 

to avoid executing that code when the function is called and 

the two labels are needed to get the start and end addresses 

of the native code in the program memory space. Having 

these two addresses, we just have to run what is in between 

to execute an “add” instruction. 

 In some situations, inline assembly is not sufficient to 

produce the correct native code. In fact, some opcodes have 

arguments with values changing from an expression to 
another. For example, the “const8” opcode pushes an eight-

bit constant on the stack. This constant is provided in the 

bytecode and cannot be guessed when compiling the KGTP 

module. Thus, we have to overwrite the native code 

produced in order to put the right value. Fig. (2) illustrates 

this case. 
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 This is also the case for the “goto” and “if_goto” 

opcodes. 

 The native code translator that we implemented works in 

five steps: 

• It allocates a virtually contiguous, executable 

memory. This buffer will contain the native code 

produced. It also allocates two other tables. The first 

one is a mapping table used to map the address of 

each opcode in the bytecode to the address of the 

corresponding native code snippet in the executable 

buffer. The second one is used to store the addresses 
of the “goto” and “if_goto” instructions in the 

bytecode. These two tables are used to determine and 

update the target addresses of the jump instructions 

used in the “goto” and “if_goto” opcodes. 

• It starts by copying the function prologue into the 

executable buffer. 

• It iterates over the bytecode and copies the 
corresponding native code snippets into the buffer. 

Overwrites are performed when needed (const8, 

zero_ext...). 

• It copies the function epilogue into the buffer. 

• It updates the jump addresses using the two tables. 

 Because the space allocated for the buffer is 
executable, the native code that it contains can be 

executed by casting the pointer to the buffer into a 

function pointer and calling that function. 

 Both dynamic and static tracepoints should be able to 

verify conditions and collect user defined expressions. 

Therefore, this translation is applied to the conditions and 
actions of all the tracepoints. 

3.2. Listing and Enabling Static Tracepoints 

 The user is not supposed to know the exact location and 

name of every static tracepoint. We then have to be able to 

list the static tracepoints defined in the kernel upon request. 

Besides, because this information may change at any time 

and new static tracepoints can be added to the kernel, we 

cannot statically store it in the KGTP module. It must be 

retrieved at run time from the kernel. 

 Based on what is done in Ftrace, we used a static 

memory area in the kernel to store this information. By 

having the start and end addresses of this memory area, we 

can access it from both the kernel and the KGTP module, to 

read and write the information needed. We defined a 

structure that will contain all that data. For each static 

tracepoint, we have a corresponding instance of that structure 

that we called “kgtp_event_call” in the static memory area. 

Fig. (3) shows that structure. 

 The collect_regs and collect_sdata members are used to 

determine whether or not we have to collect the registers and 

the static tracepoint data before executing the KGTP probe. 

The gentry pointer is used internally in KGTP and stores, 

among other things, the pointers to the KGTP buffers. The 

event_name and trace_system contain the trace event name 

and system as defined in the TRACE_EVENT macro call. 

#define EMIT_ASM(BUFFER,INDEX,NAME, INSNS)                      \ 
  do                                    \ 
     [                                   \ 
      extern unsigned char start_ ## NAME, end_ ## NAME;        \ 
      __asm__ ("jmp end_" #NAME "\n"                \ 
           "\t" "start_" #NAME ":"                  \ 
           "\t" INSNS "\n"                      \ 
           "\t" "end_" #NAME ":");                  \ 
    copy_into_buffer(BUFFER,INDEX,&start_ ## NAME,&end_ ## NAME);\ 
    } while (0) 

 
static void emit_add(unsigned char *dest, int *offset) 
 [ 

    EMIT_ASM (dest,offset,add, 
            "add (%rsp),%r15\n\t" 
            "lea 0x8(%rsp),%rsp\n\t" 
            "dec %r14"); 
} 

Fig. (1).  "Add" assembly code. 

static void emit_const8(unsigned char *dest, int *offset,LONGEST arg) 
 [ 

    EMIT_ASM (dest,offset,const8_1, 
            "movabs $0xffffffffffffffff,%r15"); 
    *((LONGEST*)(dest+*offset-8)) = arg; 
} 

Fig. (2). Overwriting the native code. 
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The address member contains the location of the static 

tracepoint in the kernel address space. Finally, the 

condition_function and probe function pointers contain the 

pointers to the condition function and KGTP probe 

respectively. 

 The structure data is written only at compile-time or by 

KGTP before starting the tracing session. Therefore, there is 

no data corruption risk in case we have several threads 

accessing that data at the same time. 

 The structure is created at the static tracepoint call site. 

Fig. (4) shows the code to create that structure. First of all, 

the tracepoint and the trace system names are stored in the 

corresponding sections. After that, we move to the 

_kgtp_event_calls section and create the kgtp_event_call 

structure. At that time, we can only write the tracepoint and 

trace system name, and the tracepoint address which 
corresponds to the address from which the tracepoint 

condition is verified. 

 As shown in Fig. (4), the kgtp_event_call structures are 

created in a section called _kgtp_event_calls. Knowing the 

size of the structure and the start and end addresses of that 

section, we can iterate to list the static tracepoints. In order to 

struct kgtp_event_call 

 [ 

    long int collect_regs; 
    long int collect_sdata; 
    void (*probe)(struct kgtp_event_call*, struct pt_regs, char*); 
    void *gentry; 
    char *event_name; 
    char *trace_system; 
    void *address; 
    int (*condition_function)(struct kgtp_event_call*, struct pt_regs); 
}; 

Fig. (3). Structure used to store the tracepoint information. 

asm volatile( \ 
    ".ifndef __mstrtab_" __stringify(name) "\n\t" \ 
    ".section ___kgtp_event_calls_strings1,\"aw\",@progbits\n\t" \ 
    "__mstrtab_" __stringify(name) ":\n\t" \ 
    ".string \"" __stringify(name) "\"\n\t" \ 
    ".previous\n\t" \ 
    ".endif\n\t" \ 
    ); \ 
\ 
asm volatile( \ 
    ".ifndef __mstrtab_" __stringify(TRACE_SYSTEM) "\n\t" \ 
    ".section ___kgtp_event_calls_strings2,\"aw\",@progbits\n\t" \ 
    "__mstrtab_" __stringify(TRACE_SYSTEM) ":\n\t" \ 
    ".string \"" __stringify(TRACE_SYSTEM) "\"\n\t" \ 
    ".previous\n\t" \ 
    ".endif\n\t" \ 
    ); \ 
\ 
asm volatile( \ 
    ".section _kgtp_event_calls,\"aw\",@progbits\n\t" \ 
    "1:\n\t" \ 
    _ASM_PTR "0\n\t" \ 
    _ASM_PTR "0\n\t" \ 
    "19:\n\t" \ 
    _ASM_PTR "0\n\t" \ 
    _ASM_PTR "0\n\t" \ 
    _ASM_PTR "(__mstrtab_" __stringify(name) ")\n\t" \ 
    _ASM_PTR "(__mstrtab_" __stringify(TRACE_SYSTEM) ")\n\t" \ 
    _ASM_PTR "(18f)\n\t" \ 
    _ASM_PTR "0\n\t" \ 
    ".previous\n\t" \ 

Fig. (4). Creating the kgtp_event_call structure. 
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do that, we had to modify the system image layout by adding 

the _kgtp_event_calls section to the linker script. We are 

then able to get the start and end addresses by calling the 

get_start_kgtp_event_calls and get_stop_kgtp_event_calls 

functions. Fig. (5) shows the modifications brought to the 

include/asm-generic/vmlinux.lds.h file. 

 Listing the static tracepoints is done in GDB using the 
“info static-tracepoint-markers”. Because GDB has no direct 

access to the tracepoint data in the static memory area, it 

communicates with KGTP using the appropriate requests to 

get that information. The two requests used in this case are 

“qTfSTM” and “qTsSTM”. The first request asks the remote 

stub, which is KGTP in our case, to return the information 

about the first static tracepoint. If the response that we return 

to GDB is successful, then GDB keeps sending “qTsSTM” 

requests and waiting for the response in order to get the 

information about the next static tracepoint. This process 

stops when we get to the end of the static memory area. In 

that case, we return an empty message to GDB. 

3.3. Collecting the Registers 

 In addition to the case where the user asks GDB to 

collect the registers using the “collect $regs” command, 

GDB may need the values of the registers at the moment the 

tracepoint was hit, in order to evaluate a condition or to 

evaluate an expression. GDB is able to find which register is 

used to store the value of a certain variable at that exact 

moment. Therefore, we have to collect the registers before 

calling the KGTP probe. 

 In order to avoid compiler inserted code which may 
modify the values of general purpose registers, the tracepoint 

address that is returned to GDB corresponds to the 

instruction that follows the code that does the collection. 

That way, we are always sure that the values recorded from 

the registers correspond to what GDB is asking for. Register 

collection is done using extended inline assembly. A pt_regs 

structure is provided as an input operand. That structure is 

created on the stack, and not in the static memory area 

corresponding to that tracepoint, in order to avoid memory 

corruption issues in case it is hit by multiple threads. 

Because we need at least one register to store the address of 

the pt_regs structure, we had to push the RAX register on the 
stack. After moving the reference to the pt_regs structure to 

that register, we pop the stored value directly to its 

corresponding location in the structure. We then copy the 

#define KGTP_EVENT_CALLS() 
VMLINUX_SYMBOL(__start_kgtp_event_calls)=.;\ 
    *(_kgtp_event_calls)                \ 
    VMLINUX_SYMBOL(__stop_kgtp_event_calls) = .; 

 
#define DATA_DATA                           \ 
    *(.data)                            \ 
    *(.ref.data)                            \ 
    *(.data..shared_aligned) /* percpu related */           \ 
    DEV_KEEP(init.data)                     \ 
    DEV_KEEP(exit.data)                     \ 
    CPU_KEEP(init.data)                     \ 
    CPU_KEEP(exit.data)                     \ 
    MEM_KEEP(init.data)                     \ 
    MEM_KEEP(exit.data)                     \ 
    . = ALIGN(32);                          \ 
    VMLINUX_SYMBOL(__start___tracepoints) = .;          \ 
    *(__tracepoints)                        \ 
    VMLINUX_SYMBOL(__stop___tracepoints) = .;           \ 
    /* implement dynamic printk debug */                \ 
    . = ALIGN(8);                           \ 
    VMLINUX_SYMBOL(__start___verbose) = .; \ 
    *(__verbose) \ 
    VMLINUX_SYMBOL(__stop___verbose) = .;               \ 
    LIKELY_PROFILE()                            \ 
    BRANCH_PROFILE()                        \ 
    TRACE_PRINTKS()                         \ 
                                    \ 
    STRUCT_ALIGN();                         \ 
    FTRACE_EVENTS()                         \ 
    KGTP_EVENT_CALLS();                     \ 
                                    \ 
    STRUCT_ALIGN();                         \ 
    TRACE_SYSCALLS() 

Fig. (5). Modifications brought to the linker script. 
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rest of the registers. 

 Collecting the registers is not always necessary. In fact, if 

the tracepoint is disabled or no tracepoint condition is 

specified, and only the tracepoint static data is collected, the 

registers collected will not be useful. We thus check if the 

tracepoint is enabled and KGTP needs the registers before 

collecting them. This is done using the “probe” and 
“collect_regs” fields in the kgtp_event_call structure. If the 

“probe” function pointer is NULL, this means that the KGTP 

probe is not registered and therefore, the tracepoint is 

disabled. 

 Because the assembly “TEST” instruction accepts only 

register operands, we used the same RAX register. After 

saving its value on the stack, we load the field in the register 

and call the test instruction. If saving the registers is needed, 

we then execute the code described in the previous 

paragraph. Otherwise, we directly call the KGTP probe 

without even restoring the RAX register. In fact, this register 

is listed as a clobbered register and therefore, the compiler 

will consider these changed. The same technique is used to 

test if the tracepoint is enabled. 

3.4. Extracting the TRACE_EVENT Data 

 Each TRACE_EVENT defines the parameters passed to 

the registered probes. The number and the types of these 

parameters vary from a tracepoint to another. Using a single 

probe for all tracepoints is therefore unfeasible. 

#undef __array 
#define __array(type, item, len)    type    item[len]; 
 

#undef __field 
#define __field(type, item)     type    item; 
 

#undef __field_ext 
#define __field_ext(type, item, filter_type)    type    item; 
 

#undef __dynamic_array 
#define __dynamic_array(type, item, len) \ 
    type* item;\ 
    int item##_len; 
 

#undef __string 
#define __string(item, src) char* item; 
 

#undef TP_STRUCT__entry 
#define TP_STRUCT__entry(args...)   args 
 

#undef TP_PROTO 
#define TP_PROTO(args...) 
 

#undef TP_ARGS 
#define TP_ARGS(args...) 
 

#undef TP_fast_assign 
#define TP_fast_assign(args...) 
 

#undef TP_printk 
#define TP_printk(args...) 
 

#undef TP_perf_assign 
#define TP_perf_assign(args...) 
 

#undef TRACE_EVENT 
#define TRACE_EVENT(name, proto, args, tstruct, assign, print) \ 
    struct kgtp_event_##name##__entry [ \ 
        tstruct \ 
    }; 
 

#undef DECLARE_EVENT_CLASS 
#define DECLARE_EVENT_CLASS(name, proto, args, tstruct, assign, print)\ 
    struct kgtp_event_##name##__entry [ \ 
        tstruct \ 
    }; 
 

#undef DEFINE_EVENT 
#define DEFINE_EVENT(template, name, proto, args) 
 

#include TRACE_INCLUDE(TRACE_INCLUDE_FILE) 

Fig. (6). Creating the __entry structure. 
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 Therefore, each static tracepoint needs its own function 

that will accept the parameters and extract the appropriate 

fields. Writing such a function for each TRACE_EVENT 

manually can solve the problem but, in that case, KGTP 

won't be able to connect to the new static tracepoints added 

to the kernel, and we will find ourselves writing a new 

function each time we define a TRACE_EVENT. 

SystemTap suffers from this limitation. That function will 

extract the fields defined in the TRACE_EVENT from the 
parameters passed to it. 

 Based on the integration between TRACE_EVENT and 

Ftrace, we defined the functions to connect to the static 

tracepoints and the intermediate data we need using two 

stages. Figs. (6, 7) illustrate this. 

 In the first stage, we define the __entry structure as 

declared in the TRACE_EVENT. This structure contains all 

the fields that will be extracted from the parameters passed 

to the probe. As Fig. (6) shows, because we are only defining 

the structure here, we had to consider only the “name” and 

“tstruct” parameters of the TRACE_EVENT macro. The 
other tokens are simply ignored. 

 The first token is used as part of the structure name. The 

second one declares the fields inside the structure. By putting 

the tstruct token between the brackets( [}), the preprocessor 

will define the structure fields using the corresponding 

macros (__array, __field, __dynamic_array... etc). 

#undef __dynamic_array 
#define __dynamic_array(type, item, len) \ 
    __entry->item##_len = len; 
 

#undef __string 
#define __string(item, src) 
 

#undef __array 
#define __array(type, item, len) 
 

#undef __field 
#define __field(type, item) 
 

#undef __field_ext 
#define __field_ext(type, item, filter_type) 
 

#undef __assign_str 
#define __assign_str(dst, src) __entry->dst = (char*)src; 
 

#undef tp_assign 
#define tp_assign(dest, src)        __entry->dest = src; 
 

#undef tp_memcpy 
#define tp_memcpy(dest, src, len)   memcpy(__entry->dest, src, len); 
 

#undef tp_memcpy_dyn 
#define tp_memcpy_dyn(dest, src, len) __entry->dest = src; 
 

#undef tp_strcpy 
#define tp_strcpy(dest, src)        __assign_str(dest, src); 
 

#undef TP_fast_assign 
#define TP_fast_assign(args...) args 
 

#undef TP_PROTO 
#define TP_PROTO(args...) args 
 

#undef TP_ARGS 
#define TP_ARGS(args...) args 
 

#undef TRACE_EVENT 
#define TRACE_EVENT(name, proto, args, tstruct, assign, print) \ 
  void get_##name##_kgtp_string(char* buffer, proto) [ \ 
   struct kgtp_event_##name##__entry global__entry_##name; \ 
   struct kgtp_event_##name##__entry *__entry = &global__entry_##name;\ 
        struct trace_seq __maybe_unused *p = &kgtp_seq_struct; \ 
        tstruct; \ 
        assign; \ 
        snprintf(buffer,500,print); \ 
    } \ 
    EXPORT_SYMBOL(get_##name##_kgtp_string); 

Fig. (7). Function to extract the tracepoint data. 
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 In the second stage, we create our function. The “name” 

token is pasted to the function name. The “proto” token is 

used to declare the function arguments list. The “tstruct” 

token is used to save dynamic arrays lengths if any. The 

“assign” token is used to generate the code to fill in the 

__entry structure. All the fields in the structure are a copy of 

the original parameters, except for dynamic arrays and 

strings. For these two cases, we wanted to avoid dynamically 

allocating memory, especially as these fields will be used 
only to generate the string and will no longer be needed 

afterwards. That is why we only copy the pointers to 

dynamic arrays and strings and use the original data without 

copying it. Finally, the “print” token is used to define the 

format string and to pass the appropriate arguments to the 

snprintf function that generates the function and copies it to a 

buffer. 

 Basically, the function creates the structure 

corresponding to that TRACE_EVENT, fills it using the 

parameters passed, generates the string using that structure 
and finally copies it to the buffer specified as a parameter to 

the function. 

3.5. Condition Evaluation and Data Collection 

 Recall that generating the string from the tracepoint 

parameters can only be done in the tracepoint site and cannot 

be moved to the KGTP module. In a previous 

implementation, we called the KGTP probe and passed the 

string we generated to it as a parameter. Because the 

condition was verified inside that probe, we found ourselves 

extracting the data for nothing in the case the condition was 
false. That is why we split the KGTP probe and implemented 

it in two functions. 

 The first function takes the pt_regs structure containing 

the saved registers and verifies if the condition is true. Then, 

depending on the result returned, we generate the 

TRACE_EVENT data and finally call the second KGTP 

function. Once again, in order to be thread safe, that data is 

passed to the function on the stack and not in the static 

memory area. Fig. (8) shows the stack when this function is 

called. 

Start of stack 

… 

Calling function 

stack frame 

Instrumented function 

stack frame 

TRACE_EVENT arguments 

Buffer address 

unused stack space 

... 

Fig. (8). Calling the first function. 

 The second function executes the actions defined by the 

user one by one, similarly to what is done with dynamic 

tracepoints. In the case of the “collect $_sdata” action that 

collects the TRACE_EVENT data, KGTP copies the string 

collected on the tracepoint site to the buffers. First of all, 

KGTP needs to insert a frame head in that space to be able to 

identify that data when reading it afterwards. After that, it 

copies the string collected preceded by its length. Fig. (9) 

shows the stack when the KGTP probe is called. 

3.6. Algorithm Description 

 In the previous sub-sections, we described the different 

parts of the algorithm used to collect TRACE_EVENTs data 
and to evaluate expressions in KGTP. In this sub-section, we 

will put these pieces together. The following pseudocode 

presents the modifications we had to apply to the static 

tracepoints sites in order to integrate KGTP with the Linux 

kernel: 

Start of stack 

… 

Calling function 

stack frame 

Instrumented function 

stack frame 

Buffer address 

Registers 

kgtp_event reference 

... 

Fig. (9). Calling the second function. 

 

create the kgtp_event_call structure 

   if (tracepoint_enabled) 

      if (need_to_collect_the_registers) 

         save the registers in the pt_regs structure 

     if (no_condition OR condition_is_true) 

        if (need_to_collect_TRACE_EVENT_data) 

           call function to extract the data 

        call the KGTP probe 

call the old trace function 

 

 Other tracing tools like Ftrace are able to connect to 

static tracepoints using the functions provided by 
TRACE_EVENTs. Our situation was a bit more 

complicated. In fact, we needed to save the registers in order 

to be able to verify conditions and to evaluate expressions. 

These features are not implemented in Ftrace. We could try 

to recover the registers from the call stack, but we have to 

note that calling the function that extracts the data from the 

tracepoint parameters cannot be called from inside the probe, 

and thus we cannot avoid altering the code in the tracepoint 

site. 

4. RESULTS 

 The following section shows the results of running 

KGTP in both dynamic and static tracing modes. These 

results are compared with those obtained with Systemtap. 

Finally, we discuss the performance of combining KGTP 
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and LTTng [24, 25] in static tracing mode with the 

performance of Systemtap. 

 In order to make sure the results are repeatable and 

accurate, we inserted dynamic and static tracepoints in a 

dummy function that does nothing but incrementing a 

counter. The function, called kgtp_test_function, was 

defined in kernel/module.c. The benchmark was executed 
with KGTP and GDB running on the same machine. This 

machine contains an Intel Xeon E5405 (4 cores, 4 threads) at 

2GHz and 8GB of memory. 

 The probes execution times were measured in cycles, 

with a kernel module that calls the test function 10.000 

times. Fig. (10) shows the test function and Fig. (11) shows 

the loop used. 

4.1. Dynamic Tracepoints with Native Code Support 

 The goal of this test case is to compare the performance 
increase obtained by converting the bytecode produced by 

GDB into native code in dynamic tracing mode. The results 

are then compared to those produced by SystemTap, where 

the probes are converted to C code and compiled by GCC. 

 The test probe was inserted at the address of the 

instruction following the test function prologue for both 

KGTP and Systemtap. We first measured the execution time 

of the condition alone. In order to do that, we had to make 

sure the condition was always false. The second step was to 
measure the time needed to evaluate and store an expression. 

The last one was a combination of a true condition and an 

expression. The expressions used employ the two parameters 

of the dummy function (counter1 and counter2). 

 Fig. (12) shows the GDB commands used to configure 

tracing and to output the trace for the third test case. 

 The two tools use Kprobes to connect dynamic 

tracepoints to the kernel. The tracepoint address was chosen 
so that Kprobes was able to optimize the probe and use a 

jump instead of the int3 interrupt. The execution times 

presented in the table below were calculated from the 

moment the jump instruction was met until the execution of 

the original instruction. This was done by calculating the 

difference between the dummy function execution time with  

and without a kprobe connected. Thus, the numbers 

presented below include the overhead added by kprobes. 

Table 2. Execution Times for Dynamic Tracepoints 

 

Computation KGTP with Native Code  

(Cycles) 

Systemtap  

(Cycles) 

False condition: 

2xarg1+3xarg2<0 

202 351 

Expression only: 

2xarg1+3xarg2 

500 1035 

Condition + expression: 

2xarg1+3xarg2>0 

602 1061 

 

 Table 2 shows that KGTP is always faster than Systemtap, 

whether to evaluate conditions or to store the expressions. 

 Based on these results, we may think that executing the 

native code produced by KGTP from the bytecode is faster 

than the optimized native code produced from the Systemtap 

script by the compiler. After analyzing the temporary C files 

produced by Systemtap, we discovered that the tool adds 

some “setup code” that is always executed at the start of the 

probe. 

 For KGTP, the execution time in the third test case is 

nearly the sum of the execution times of the first two test 

cases, if we substract the time taken to setup the kprobe(115 
cycles for an optimized kprobe). That is not true in the case 

of Systemtap because of the setup code that is always 

executed. 

 Assuming that evaluating the conditions in the first and 

third cases takes nearly the same time, we can conclude that 

executing the native code produced by our implementation 

takes 102 cycles for the two expressions. For Systemtap, the 

second and third cases let us conclude that the native code 

produced takes 26 cycles to be executed. This big difference 
may be explained by two reasons. 

int kgtp_counter=1; 
int kgtp_test_function(int counter1, int counter2) 
 [ 

    kgtp_counter++; 
    __trace(kgtp_module_event,counter1,counter2); 
} 

Fig. (10). Test function. 

set_current_state(TASK_INTERRUPTIBLE); 
 
time1 = get_timestamp(); 
for (i = 0; i < NR_LOOPS; i++)  [ 
    counter1++; 
    kgtp_test_function(counter1, counter2); 
    counter2++; 
} 

Fig. (11). Loop used to calculate the execution times. 
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 The first one is that the native code produced by KGTP is 

put in a function. Thus, we cannot neglect the execution time 

of the function prologue and epilogue. In the case of 

Systemtap, the condition evaluation and the data collection 
are done directly in the body of the kprobe handler. 

 The second one is that the native code produced by 

KGTP is a strict translation of the bytecode that GDB 

generated. Thus, its performance depends on how optimized 

the bytecode is. For example, the condition used in the third 

test (2*param1+3*param2>0) is translated by GDB into the 

bytecode shown in Table 3. 

 If we look at the five “ext” instructions, they all pop the 

value that was pushed in the previous instruction. Thus, we 

have five successive pop/push operations that could be 

avoided. In addition, the three “ext” instructions that follow 

the “const8” instruction are unnecessary because the 

constants that we pushed are already sign-extended to zero. 

We can then conclude that the bytecode produced by GDB 

could be optimized, improving the native code significantly. 

Intermediate code optimization is not a new concept. It is 

used for example in Valgrind to make the intermediate 

representation of the original binary code more efficient. 

 Finally, we have to note the impact of the bad 

performance of KGTP buffers. In fact, the expression 

collected in the second test case is very similar to the 

condition evaluated in the first case. The main difference 
between their bytecodes is that the expression collected 

contains additional trace opcodes. These opcodes trace the 

values of the variables used in the expression. We notice that 

these opcodes are the main cause of the significant difference 

between these two cases. Thus, by using more efficient data 

structures, like ring buffers to store the trace, the time taken 

to execute the “trace” and “trace_quick” opcode can be 

reduced. Moreover, by integrating KGTP with other tracing 

tools like LTTng, we can make use of their fast tracing 

capabilities. Storing the trace would then be performed by 

LTTng. 

4.2. Static Tracepoints 

 The static tracepoint was created by defining a new 

TRACE_EVENT, as shown in Fig. (13). The expression 

defined in this static tracepoint is very similar to the one 

defined in the dynamic tracepoint test. It collects the two 

parameters passed to the dummy function. 

 KGTP is able to connect to the static tracepoint and 

collect the data as defined by the TP_printk macro 

Fig. (12). GDB dynamic tracepoints. 
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automatically. On the other side, Systemtap is only able to 

trace the parameters given to the probe registered to the 
tracepoint automatically. In order to get the same results with 

the two tools, we have to redefine the way to extract the data 

in the Systemtap script. Figs. (14, 15) show the KGTP and 

Systemtap scripts used to connect to the tracepoint. 

 As a first step we tried to measure the overhead of a 

disabled static tracepoint in the kernel. After that, we 

compared the performances of KGTP and Systemtap. 

4.2.1. KGTP Kernel Overhead 

 In order to avoid collecting the registers when the KGTP 

tracepoint is disabled, we check if the KGTP probe was 

registered in the static memory area corresponding to the 

tracepoint that was hit. We wanted to measure the overhead 

caused by this additional code. In order to do that, we 

calculated the execution time of the dummy function before 

and after the changes were applied to the kernel. Table 4 

shows the results. 

Table 4. KGTP Kernel Overhead 

 

 Function Execution Time (Cycles) 

Before 12 

After 19 

 We may conclude that a disabled static tracepoint costs 
an extra 7 cycles. This can be explained by the fact that we 

need at least one register to proceed with the check. This is 

why we are saving the RAX register before calling the TEST 

instruction. 

 Saving the RAX register was unavoidable. We may want 

to put it in the clobbered registers list to force the compiler to 
use other registers for the kernel variables, but if we asked 

GDB to collect the registers using the « collect $regs » 

command in the same static tracepoint, the traced value of 

RAX would be incorrect. 

4.2.2. KGTP vs Systemtap 

 As for dynamic tracepoints, we calculated the results for 

the three test cases. Table 5 shows the results. We have to 

note that our proposed extended KGTP with static 

tracepoints also supports our proposed bytecode to native 
code translator. 

Table 5. KGTP vs Systemtap 

 

 KGTP (Cycles) Systemtap (Cycles) 

Condition 154 223 

Data 1216 1252 

Condition and Data 1368 1336 

 

 Table 5 shows that KGTP is faster than Systemtap in the 

cases where the condition is false or there is no condition. 

We may think that the execution time for a probe with a true 

condition will nearly be the sum of the two first cases. This 

is only true for KGTP. Indeed, as for dynamic tracepoints, 

the Systemtap probe always executes the « setup code ». 

This explains the fact that Systemtap is faster than KGTP in 

the third case. 

Table 3. Bytecode for the Condition Expression 

 

Instructions Description 

0x22 0x02 const8: push the 8-bit integer 2 on the stack, without sign extension 

0x26 0x00 0x05 reg: push the value of the register 5, without sign extension 

0x16 0x20 
ext: pop an unsigned value from the stack. All bits to the left of bit 31(where the least significant bit is bit 0) are set to the value of bit 
31. 

0x04 mul: pop two integers from the stack, multiply them, and push the product on the stack. 

0x16 0x20 ext 

0x22 0x03 const8 

0x26 0x00 0x04 reg 

0x16 0x20 ext 

0x04 mul 

0x16 0x20 ext 

0x02 add: pop two integers from the stack, and push their sum, as an integer. 

0x16 0x20 ext 

0x22 0x00 const8 

0x2B swap: exchange the top two items on the stack. 

0x14 
less_unsigned: pop two signed integers from the stack. If the next-to-top value is less than the top value, push the value one. Otherwise, 
push the value zero. 

0x27 end: stop executing bytecode.The result should be the top element of the stack. 
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 We also notice that the two tools are slow to extract and 

save the data. In the case of KGTP, this is caused by how the 

data is generated and stored in the buffers. Unlike more 

optimized tools like Ftrace or LTTng, KGTP fills the __entry 

structure and then pretty prints it to generate a string, as 

defined in the TP_printk macro. 

 Once the string is generated, it is copied in the KGTP 

buffers after the appropriate space is allocated. It is clear that 

KGTP is not well suited for high performance tracing and 

TRACE_EVENT(kgtp_module_event, 
    TP_PROTO(int counter1, int counter2), 
    TP_ARGS(counter1, counter2), 
    TP_STRUCT__entry( 
        __field(    int,    counter1    ) 
        __field(    int,    counter2    ) 
    ), 

Fig. (13). TRACE_EVENT used for the test. 

Fig. (14). GDB static tracepoints. 
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that storing the binary __entry structure instead of the string, 

and using more efficient data structures to record the trace, 

will improve the performance of the tool. 

 We ran a similar benchmark for Ftrace to show the 

difference of performance between storing strings in simple 

buffers and storing binary data in more efficient ring buffers. 

We used the same test module to run three test cases on our 

static tracepoint. In the first one, only the data was recorded. 

In the second and third ones, we associated a filter with the 
tracepoint. We could not use the same expression as with 

KGTP and Systemtap, because arithmetic operators are not 

suppported by Ftrace. We used a simpler expression instead. 

Table 6 shows the results. 

Table 6. Ftrace Execution Time 

 

 Execution Time (Cycles) 

Data only 297 

False filter 360 

True filter 370 

 

 Table 6 shows that Ftrace is nearly four times faster than 

KGTP when collecting and storing the trace data in the ring 

buffer. This proves that the current implementation of KGTP 

is not optimized. 

 Moreover, static tracepoint conditions suffer from the 

same optimization problems, as discussed in the dynamic 
tracepoints section. By implementing the native code 

optimizer, we shall have faster execution times for 

expressions in static tracing mode. 

 Finally, we have to note that KGTP has another 

advantage compared to all the other tacing tools. In fact, 

thanks to the changes we applied to the kernel in order to 

collect the registers at the tracepoint site, and because GDB 

is able to read the debugging information generated at 

compile-time, static tracepoint conditions may use all the 
global and local variables accessible from the tracepoint 

address. Moreover, in addition to the static tracepoint data 

defined in the TRACE_EVENT call, GDB static tracepoints 

are able to execute other actions like collecting the registers 

and evaluating user defined expressions, as for dynamic 

tracepoints. Other tracing tools have limited capabilities 

compared to KGTP. Systemtap is limited to using the 

parameters passed to the registered function in the condition 

and in the expressions to collect. Ftrace and LTTng do not 

even implement conditions and are only able to collect the 

static tracepoint string. 

 

4.2.3. KGTP-LTTng Integration 

 Currently, the time taken to have the static tracepoint 

data written in the KGTP buffers, from the moment the 

tracepoint is hit, can be calculated using the following 

equation: 

T = Treg + Tcond + Tgen+ Tbuf 

 Treg is the time needed to verify whether the static 

tracepoint is enabled and to collect the registers if needed. 

 Tcond is the time taken to check if a condition is 

associated to the tracepoint and to evaluate it. 

 Tgen is the execution time of the 

get_##name##_kgtp_string function. Finally, Tbuf is the 

time needed to store the string in the KGTP buffers. 

 Knowing that the lack of performance of our 

implementation is primarily caused by how we are 

generating and storing data, we thought about combining the 

flexibility of GDB agent expressions and the high 

performance of LTTng. Instead of generating strings, LTTng 

is able to store the __entry structure into its ring buffers 

directly. Similarly to the way we defined the function that 

generates the string from the TRACE_EVENT, using macro 

redefinitions, LTTng is able to store the __entry structure 

metadata for every static tracepoint. It is thus able to extract 
the appropriate data from the structure and produce the pretty 

printed string when the user is reading the trace. 

 For each static tracepoint, LTTng defines a function that 

is used to extract and record the trace static data. These 

functions can replace the get_##name##_kgtp_string probes 

used in the current implementation, and also the KGTP 

probe that stores the data, in case we want to collect only the 

tracepoint static data. The algorithm used at the tracepoint 

site becomes: 

create the kgtp_event_call structure 

   if (tracepoint_enabled) 

      if (need_to_collect_the_registers) 

         save registers in the pt_regs structure 

      if (no_condition OR condition_is_true) 

         call the old trace function 

 

 In that case, KGTP is in charge of generating the 

tracepoint condition native code and evaluating it using the 

registers collected. By registering the LTTng function to the 

tracepoint, it will be called by the old trace function. Based 

on the results presented in Table 4, and assuming that 
evaluating the true condition (2*counter1+3*counter2>0) 

takes the same time as a false condition (2*counter1+3* 

 

probe kernel.trace("kgtp_module_evnet") 
 [ 
    if(2*$counter1+3*$counter2>0) 
        printf ("time=%d count=%d\n",$counter1,$counter2) 
} 

Fig. (15). Systemtap script. 
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counter2<0), we can conclude that the time needed to 

evaluate the registers and to evaluate the condition at the 

tracepoint site is equal to the execution time presented in 

Table 4 in the case we have a false condition, which is 154 

cycles. We can then extrapolate these results to measure the 

new execution time. The equation above becomes: 

T = Treg + Tcond + Tlttng 

 Treg + Tcond is the time needed to collect the registers 

and to evaluate the condition by KGTP and Tlttng is the time 

taken by LTTng to collect the tracepoint data. Tlttng was 

measured on a vanilla kernel where we defined the same 

static tracepoint used for the other test cases. The same test 

module was used to make the measurements. Table 7 

presents the extrapolated results. 

Table 7. KGTP-LTTng Integration 

 

 KGTP+LTTng (Cycles) Systemtap (Cycles) 

Condition 154 223 

Data 333 1252 

Condition and data 487 1336 

 

 With this implementation, the call to the original trace 

function is performed only if the KGTP condition is true. 

Therefore, this mechanism can be used by all the tracing 
tools that can register to TRACE_EVENT and is not limited 

to LTTng. 

 Integrating KGTP with LTTng lets us benefit from the 

conditional dynamic and static tracing capabilities of KGTP 

and the great performance of LTTng ring buffers. Therefore, 

this solution is more flexible than Systemtap and, at the same 

time, offers better performance. 

5. CONCLUSION 

 We have described an implementation based on the 
existing KGTP kernel module and GDB that offers 

conditional dynamic and static tracepoints. Conditions are 

defined using complex C-like expressions that can use all the 

variables accessible from the tracepoint address. All the 

arithmetic and logic operations are supported by KGTP. 

Both dynamic and static tracepoints are able to evaluate and 

save the values of user-defined expressions similar to those 

used in the conditions. 

 Additionally, the tool is able to collect static tracepoints 
data as defined by the TRACE_EVENT macro. Unlike 

Systemtap, our implementation is able to extract the data 

manually without the need to redefine that data. With the 

ability of inserting dynamic tracepoints or reusing static 

tracepoints, and to specify arbitrary conditions and data 

collection expressions, our initial objectives have been 

achieved. 

 Even though we showed that our implementation is faster 

than Systemtap for dynamic tracepoints and has comparable 

execution times for static tracepoints, we suffered from the 
low performance of KGTP buffering scheme and some 

optimizations are required in order to reach the performance 

of other tools such as Ftrace and LTTng. 

 The bytecode produced by GDB, for the expressions used 

in the conditions and actions, could easily be further 

optimized by eliminating unneeded operations. 

 Static data extraction can also be optimized. Instead of 

generating and copying strings into the trace buffers, we can 

simply save the intermediate structure used to extract the 

data and use it to generate the string only when the user is 

viewing the trace. 

 Finally, the results also show that the data structures used 

to store the trace are not optimized and can be replaced by 

more efficient structures like ring buffers. 
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