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Abstract: With the availability of powerful personal computers, workstations and networking devices, the recent trend in 

parallel computing is to connect a number of individual workstations (PC, PC SMP) to solve computation-intensive tasks 

in parallel way on such typical clusters as NOW, SMP, Grid). In this sense it is not more true to consider traditionally 

evolved parallel computing and distributed computing as two separate research disciplines. Current trends in high 

performance computing (HPC) are to use networks of workstations (NOW, SMP) as a cheaper alternative to traditionally 

used massively parallel multiprocessors or supercomputers and to profit from unifying of both mentioned disciplines. The 

individual workstations could be so single PC (Personal computer) as parallel computers based on modern symmetric 

multiprocessor systems (SMP) implemented within workstation. 

To exploit the parallel processing capability of such cluster, the application program must be paralleled. The effective way 

to do it for (parallelisation strategy) belongs to a most important step in developing effective parallel algorithm 

(optimisation). For behaviour analysis we have to take into account all overheads that have the influence to performance 

of parallel algorithms (architecture, computation, communication etc.). In this article we discuss such complex 

performance evaluation of abstract empty matrix for potential used decomposition strategies. For these decomposition 

strategies we derived analytical isoefficiency functions, which allow us to predict performance although for hypothetical 

parallel computer. 

Keywords: Network of workstations, decomposition strategy, inter process communication, message passing interface, 

performance prediction, issoeficiency function. 

1. INTRODUCTION 

 Distributed computing using cluster of powerful 

workstations (NOW, SMP, Grid) was reborn as a kind of 

“lazy parallelism”. A cluster of computers could team up to 

solve many problems at once, rather than one problem at 

higher speed. To get the most out of a distributed parallel 

system, designers and software developers must understand 

the interaction between hardware and software parts of the 

system. It is obvious that use of a computer network based 

on personal computers would be principal less effective than 

the used typical massively parallel architectures in the world, 

because of higher communication overheads, but a network 

of more and more powerful workstations consisting on 

powerful personal computers (PC, PC - SMP), belongs for 

the future to very cheap, flexible and perspective parallel 

computers. Such a trend we can see in dynamic growth just 

in the parallel architectures based on the networks of 

workstations as a cheaper and flexible architecture in 

comparison to conventional multiprocessors and 

supercomputers. Principles of these conventional parallel 

computers are in this time effective implemented in modern 

symmetric multiprocessor systems (SMP) based on the same 

processors [1] (multiprocessor, multicores). Unifying of both  

 

 

*Address correspondence to this author at the Polytechnic Institute, Dubnica 

nad Vahom, Dukelskastvrt 1404/61, SK - 018 41 Dubnica nad Vahom, 

Slovakia; Tel: +421 42 4424 123; Fax: +421 42 4428436;  

E-mail: phanuliak@gmail.com 

approaches (NOW, SMP) open for the future the new 

possibilities in massive HPC computing. 

 There has been an increasing interest in the use of 

networks of powerful workstations (NOW) connected together 

by high-speed networks for solving large computation-

intensive problems. This trend is mainly driven by the cost 

effectiveness of such systems as compared to parallel 

computer with massive number of tightly coupled processors 

and memories. Parallel computing on a cluster of powerful 

workstations (NOW, SMP, Grid) connected together by high-

speed networks have given rise to a range of hardware and 

network related issues on any given platform. 

 Network of workstations (NOW) [2-4] has become a 

widely accepted form of high-performance parallel 

computing. Basic architecture of NOW is illustrated in Fig. 

(1). As in conventional multiprocessors, parallel programs 

running on such a platform are often written in an SPMD 

form (Single program – Multiple data) to exploit data 

parallelism or in an improved SPMD form to take into 

account also the potential of functional parallelism of a given 

application. Each workstation in a NOW is treated similarly 

to a processing element in a multiprocessor system. 

However, workstations are far more powerful and flexible 

than processing elements in conventional multiprocessors. 

2. PARALLEL ALGORITHMS 

 In principal we can divide parallel algorithms into two 

following classes: 
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• parallel algorithm using shared memory (PA). These 

algorithms are developed for parallel computers with 

dominated shared memory as actual symmetrical 

multiprocessors or multicore systems on motherboard 

(SMP) 

• parallel algorithm using distributed memory (DPA). 

These algorithms are developed for parallel 

computers with distributed memory as actual NOW 

system and their higher integration forms named as 

Grid systems. 

 The main difference is in form of inter - process 

communication (IPC) among individual parallel processes 

[5]. Generally we can say that IPC communication in parallel 

system with shared memory can use more communication 

possibilities than in distributed systems. 

2.1. Developing Parallel Algorithm 

 To exploit the parallel processing capability the 

application program must be parallelised. The effective way 

to do it for a particular application problem (decomposition 

strategy) belongs to the most important step in developing an 

effective parallel algorithm [5]. The development of the 

parallel network algorithm includes the following activities 

• decomposition - the division of the application into a 

set of parallel processes 

• mapping - the way how processes and data are 

distributed among the nodes 

• interprocess communication - the way of 

corresponding and synchronisation among individual 

processes 

• tuning - alternation of the working application to 

improve performance (performance optimisation). 

 The most important step is to choose the best 

decomposition method for given application problem. To do 

this it is necessary to understand concrete application 

problem, data domain, used algorithm and flow of control in 

given application. When designing a parallel program the 

description of the high-level algorithm must include, in 

addition to design a sequential program, the method you 

intend to use to break the application into processes 

(decomposition strategy) and distribute data to different 

computing nodes (mapping). The chosen decomposition 

method drives the rest of program development. This is true 

is in case of developing new application as in porting serial 

code. The decomposition method tells us how to structure 

the code and data and defines the communication topology 

[2, 6]. 

2.2. Methods of Performance Evaluation 

 To performance evaluation of parallel algorithms we can 

use analytical approach to get under given constraints 

analytical laws or some other derived analytical relations. 

Theoretically we can use following solution methods to get a 

function of complex performance 

• analytical 

 application of queuing theory results [7] 

 order (asymptotic) analyse [8-10] 

 Petri nets [11] 

• simulation methods [12] 

• experimental 

 benchmarks [13] 

 direct measuring [14]. 

 Analytical method is a very well developed set of 

techniques which can provide exact solutions very quickly, 

but only for a very restricted class of models. For more 

general models it is often possible to obtain approximate 

results significantly more quickly than when using 

simulation, although the accuracy of these results may be 

difficult to determine. 

 Simulation is the most general and versatile means of 

modelling systems for performance estimation. It has many 

uses, but its results are usually only approximations to the 

exact answer and the price of increased accuracy is much 

longer execution times. They are still only applicable to a 

restricted class of models (though not as restricted as 

analytic approaches.) Many approaches increase rapidly their 

memory and time requirements as the size of the model 

increases. 

 Evaluating system performance via experimental 

measurements is a very useful alternative for computer 

systems. Measurements can be gathered on existing systems 

by means of benchmark applications that aim at stressing 

specific aspects of computers systems. Even though 

benchmarks can be used in all types of performance studies, 

their main field of application is competitive procurement 

PC 1 PC 2 PC 3 PC n. . .

- switch

s
s

Myrinet 

- Myrinet port
- 1G Ethernet (10G Ethernet) port

 

Fig. (1). Typical architecture of NOW. 
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and performance assessment of existing systems and 

algorithms. 

3. PERFORMANCE EVALUATION METRICS 

 To evaluate parallel algorithms there have been 

developed several fundamental concepts. Tradeoffs among 

these performance factors are often encountered in real-life 

applications. 

3.1. Speed Up 

 Let T(s, p) be the total number of unit operations 

performed by p processor system, s defines size of the 

computational problem. Then T(s, 1) defines execution time 

units for one processor system. Then speedup factor is 

defined as 

S(s, p) =
T (s,  1)

T (s, p)
 

 It is a measure of the speedup factor obtained by given 

algorithm when p processors are available for the given 

problem size s. Since S (s, p)  p, we would like to design 

algorithms that achieve S(s, p)  p. 

3.2. Efficiency Concept 

 The system efficiency for processor system with p 

computing nodes is defined by 

E(s, p) =
S(s, p)

p
=

T (s,  1)

p T (s, p)
 

 A value of E(s, p) approximately equal to 1 for some p, 

indicates that such a parallel algorithm, using p processors, 

runs approximately p times faster than it does with one 

processor (Sequential algorithm). 

3.3. The Isoefficiency Concept 

 The workload w of an algorithm often grows in the order 

O (s), where symbol O means the used upper limit in 

complexity theory and its parameter s is the problem size. 

Thus, we denote the workload w = w(s) as a function of s. In 

parallel computing is very useful to define an isoefficiency 

function relating workload to machine size p needed to 

obtain a fixed efficiency when implementing a parallel 

algorithm on a parallel system. 

 Let h(s, p) be the total overhead involved in the algorithm 

implementation. This overhead is usually a function of both 

machine size and problem size. The workload w(s) 

corresponds to useful computations while the overhead h (s, 

p) are useless times attributed to architecture, parallelisation, 

synchronisation and communication delays. In general, the 

overheads increase with respect to increasing values of s and 

p. Thus the efficiency is always less than 1. The question is 

hinged on relative growth rates between w(s) and h(s, p). 

The efficiency of a parallel algorithm is thus defined as 

E(s, p) =
w(s)

w(s)+ h(s, p)
 

 With a fixed problem size the efficiency decreases as p 

increase. The reason is that the overhead h(s, p) increases 

with p. With a fixed machine size, the overload grows slower 

than the workload. Thus the efficiency increases with 

increasing problem size for a fixed-size machine. Therefore, 

one can expect to maintain a constant efficiency if the 

workload is allowed to grow properly with increasing 

machine size. For a given algorithm, the workload might 

need to grow polynomial or exponentially with respect to p 

in order to maintain a fixed efficiency. Different algorithms 

may require different workload growth rates to keep the 

efficiency from dropping, as p is increased. The isoefficiency 

functions of common parallel algorithms are polynomial 

functions of p, i. e. they are O(p
k
) for some k 1. The smaller 

the power of p in the isoefficiency function the more scalable 

the parallel system. We can rewrite equation for efficiency 

E(s, p) as 

E(s, p) = 1 / (1+ (h (s, p) / w(s)) 

 In order to maintain a constant E, the workload w(s) 

should grow in proportion to the overhead h(s,p). This leads 

to the following relation 

w(s) =
E

1 E
h(s, p)  

 The factor 

C = E / 1-E 

is a constant for a fixed efficiency E. Thus we can define the 

isoefficiency function as follows 

w (s, p) = C. h (s, p) 

 If the workload grows as fast as w (s, p) then a constant 

efficiency can be maintained for a given parallel algorithm. 

4. MODELLING OF COMPLEXITY IN PARALLEL 
ALGORITHMS 

 To this time known results in complexity modelling on 

the in the world used classical parallel computers with 

shared memory (supercomputers, SMP and SIMD systems) 

or distributed memory (Cluster, NOW, Grid) mostly did not 

consider the influences of the parallel computer architecture 

and communication overheads supposing that they are lower 

in comparison to the latency of executed massive 

calculations [1, 9]. 

 In this sense, analysis and modelling of complexity in 

parallel algorithms (PA) are rationalised to the analysis of 

complexity of own computations, that mean that the function 

of control and communication overheads are not a part of 

derived relations for computation time T (s, p). In general 

computation time of sequential and parallel algorithms given 

through multiplicity product of algorithm complexity 

Za(dimensionless number of performed computations steps) 

and a constant tc as an average value of performed 

computation operations. 

 In this sense the function in the relation for isoefficiency 

suppose, that dominates influence to the overall complexity 

of the parallel algorithms has complexity of performed 

massive calculations. Such assumption has proved to be true 

in using classical parallel computers in the world 

(Supercomputers, massively multiprocessors – shared 
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memory, SIMD architectures etc.). To map mentioned 

assumption to the relation for asymptotic isoefficiency w(s) 

means that 

w (s) = max Tcomp , h (s, p) < Tcomp = max Tcomp  

 In opposite at parallel algorithms for the actually 

dominant parallel computers on the basis NOW (including 

SMP systems) and Grid is for complexity modelling 

necessary to analyse at least most important overheads from 

all existed overheads which are [15, 16] 

• architecture of parallel computer (Tarch) 

• own calculations (Tcomp) 

• communication latency (Tcomm) 

 start - up time (ts) 

 data unit transmission (tw) 

 routing 

• parallelisation latency (Tpar) 

• synchronisation latency (Tsyn). 

 Taking into account all this kinds of overheads the total 

parallel execution time is 

T  (s, p)complex = T (s, p)comp ,T (s, p)arch ,T (s, p)par ,T (s, p)comm ,T (s, p)syn( )
 

where T(s, p)arch, T(s, p)comp, T(s, p)par, T(s, p)comm, T(s, p)syn 

denote the individual overheads caused by architecture, 

computations, parallelisation, communication and 

synchronisation. The more important overhead parts build in 

the relation for isoefficiency the used the overhead function 

h (s, p), which influence in general is necessary to take into 

account in performance modelling of parallel algorithms. 

h (s, p) = T (s, p)arch ,T (s, p)par ,T (s, p)comm T (s, p)syn( )
 

 The first part of h(s, p) function Tparch (s, p) (architecture 

influence of used parallel computer) is projected into used 

technical parameters tc, ts, tw, which are constant for given 

parallel computer. 

 The second part of h(s, p) function Tpar (s, p) 

(parallelisation of solved problem) depend from chosen 

decomposition strategy and their consequences are projected 

so to computation part Tcomp (s,p) (increased computation 

complexity) as to communication part Tcomm (s,p) (increased 

number of performed communications) 

 The third part of h(s, p) function Tsyn (s, p) we can 

eliminate through optimisation of load balancing among 

individual computing nodes of used parallel system. For this 

purpose we would measure performance of individual 

computing nodes for given developed parallel algorithm and 

then based on measured results better redistribute input load. 

This activity we can repeatuntil we have optimal 

redistributed input load (optimal load redistribution based on 

real performance results). 

 In general nonlinear influence of h (s, p) could be in 

performance modelling of parallel algorithms (Fig. 2). Then 

for asymptotic isoefficiency analysis is true 

w (s) = max T (s, p)comp , h (s, p)
 

where the most important parts for dominant parallel 

computers (NOW, Grid) in overhead function h (s, p) is the 

influence of Tcomm (Communication overheads). 

 Calculation time T (s, p)comp of parallel algorithm is given 

through quotient of sequential running time (Complexity 

product of sequential algorithm Zsa and a constant tc as an 

average value of performed computation operations) through 

number of used calculation nodes of the given parallel 

computer. Parallel calculation complexity of T(s,p) as a limit 

of a theoretical unlimited number of calculation nodes is 

given as 

T (s,  p)comp = lim p

Zsa . tc
p

 = 0  

 Finally the assumed relation between T (s, p)comp and h 

(s, p) illustrates Fig. (2). For effective parallel algorithms we 

are seeking for the bottom part of whole execution time 

according Fig. (2). 

 

Fig. (2). Relations among parts of parallel execution time. 

 In relation to previous steps the kernel of asymptotic 

analyse of h(s, p) is analysis of communication part Tcomm 

(s,p) including projected consequences of used 

decomposition methods. This analysis comes out from 

application isoefficiency concept to derived communication 

complexity in an analytical way for used decomposition 

strategies. In general derived isoefficiency function w(s) 

could have non-linear character at gradually increasing 

number of computing nodes. Analytical deriving of 

isoefficiency function w(s) allow us performance prediction 

of given parallel algorithm so for existed real as for 

hypothetical parallel system. So we have possibility to 

consider potential efficiency of given algorithm. 

Communication time T (s, p)comm is given through number of 

performed communication for considered decomposition 

strategy. Every communication within NOW is characterised 

Number of processors

Communication
timeProcessing

time

Execution time
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through two following communication parameters, which are 

illustrated at Fig. (3). 

• ts is defined parameter for communication 

initialisation 

• 
tw is defined parameter for data unit latency. 

 

Fig. (3). Illustration of basic communication parameters. 

 These communication parameters are constant for 

concrete parallel system. At Table 1 we have illustrated 

some typical parallel computer examples with concrete 

values for their basic communication parameters. 

Table 1. Technical Parameters of Parallel Computers (PC) 

 

PC ts [ s] tw [ s] 

IBM SP2 35 0,23 

Intel DELTA 77 0,54 

Intel Paragon 64 0,07 

Meiko CS-2 87 0,08 

NCUBE-2 154 2,40 

ThinkingMachine CM-5 82 0,44 

NOW on FDDI 1 150 1,10 

NOW on Ethernet 1 500 5,00 

Cray T3E 3 0,063 

 

 Communication overheads are given through two basic 

following components 

• f1(ts) function as the whole number of initialisation of 

performed communication 

• f2(tw) as function of whole performed data unit 

transmission usually time of word transmission for 

given parallel computer. 

 These two components limited performance of used 

parallel system based on NOW. Illustration of these 

communication parameters is at Fig. (3). These parameters 

are when using superposition we can write 

Tcomm (s,p) = f1(ts) + f2(tw) 

 Communication time T (s, p)comm is given through the 

number of performed communication operations in concrete 

parallel algorithm and depends from used decomposition 

model. To the practical illustration of communication 

overheads we used the possible matrix decomposition 

models. 

 For more complex parallel system named as Grid 

(network of NOW) accesses third component (f3 (th), 

whichdetermine potential multiple crossing used NOW 

networks. This component is characterised through 

multiplying hopslhamong NOW networks and average 

latency time jumped NOW networks (NOW networks with 

the same communication speed) or a sum of individual 

latencies for jumped NOW networks (NOW networks with 

different same communication speed). Then for whole 

latency in Grid is valid 

Tcomm (s,p) = f1 (ts) + f2 (tw) + f3 (ts, lh). 

 In general latency f3 (ts, lh), that is time to send message 

with m words among NOW networks, which have lhhopsis 

given asts+ lhth m tw, where the new parameters are.
 

• lh is the number of network hops 

• 
m is the number of transmitted data units (usually 

words) 

• 
this average communication time for one hop (we 

suppose the same communication speed). 

 The new parameters th,lh depend from a concrete 

architecture of Grid communication network and used 

routing algorithm in Grid. 

 For the analyse purposes it is necessary to derive for 

given parallel algorithm or a group of similar algorithms (in 

our case matrix algorithms) derived necessary 

communication functions and that always for given 

decomposition strategy) isoefficiency functions and basic 

constants for used parallel computer (NOW, Grid). 

5. MATRIX MODELS 

 For analysing isoefficiency function of parallel 

algorithms, which are using matrix, we would analyse 

communication models in abstract form that means for 

empty matrix. Then we are considering the typical following 

n x m matrix 

a ,  a ,   .  .  .   , a

a ,  a ,   .  .  .   , a

  .      .                   .
  .      .                   .
  .      .                   .

a , a ,   .  .  .   , a

11 12 1n

21 22 2n

m1 m2 mn

A =

 

 To reduce number of variables in deriving process of 

issoefficiency function we will consider matrix with m = n 

(square matrix). For this purpose there are also following 

causes. 

Length

Time

21 3 4 5 6

ts

tw
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• we can transform any matrix n x m to n x n matrix 

through expanding rows (if m < n) or columns (if m > 

n) 

• derivation process will be the same only when 

considering the workload instead of n
2
 (square 

matrix) we should consider n x m (oblong matrix). 

5.1. Decomposition Matrix Models 

 In general square matrix n x n in halts n
2
 elements. In 

order to achieve effective parallel algorithm it is necessary to 

map every parallel process more than one matrix element. 

Then for mapping a cluster of matrix elements there are in 

principal two ways 

• mapping of p columns or p rows as illustrated at Fig. 

(4). 

• mapping of square blocks to every parallel process as 

illustrated at Fig. (5). 

 

Fig. (4). Decomposition strategy to strips (rows). 

 

Fig. (5). Decomposition strategy to blocks. 

5.1.1. Matrix Decomposition to Strips 

 Depending of used decomposition methods there are 

derived needed communication activities. In general square 

matrix in two dimensions n x n in halts n
2
 elements. To 

decompose such matrix we map one or more matrix strips 

(parallel process) to computing node of the used parallel 

system. So in this way square matrix is equally divided to p 

build parallel processes, that mean every parallel process get 

n/ p rows. 

 For mapping matrix elements in strips (rows) inter 

process communication is performed on two neighbouring 

strips (Fig. 6). So it is necessary in computation flow to 

exchange values of all board rows. Every parallel process 

therefore sends message with n matrix elements (row) and in 

the same way they receive message with n matrix elements 

(row) from its neighbouring row supposing that all data in 

row (n matrix elements) are sent as a part of any sending or 

receiving message. 

 

Fig. (6). Communication consequences for decomposition to strips 
(rows). 

 The requested communication time for decomposition 

method to strips (rows) is given according illustration at Fig. 

(6) as 

T (s,  p)comm = Tcoms = h (s, p) = 4 (ts + n tw )  

 And the derived final relations for performance 

evaluation as following 

• execution time of sequential square matrix algorithm 

T (s, 1) 

 
T (s,  1) = n2 tc  

 

• for computation execution time of parallel algorithm 

T (s, p) including overhead function 

 h (s, p) 

 T (s, p) = T (s, p)comp + h (s, p) =
n2tc

p
+ 4 ts + n tw( )  

• parallel speed up S (s, p) 

 S(s, p) =
T (s,1)

T (s, p)
=

n2 p tc  

n2tc +   4 p (ts + n tw)
 

• efficiency E (s, p) 

 E(s, p) =
S(s, p)

p
=

n2 tc  

n2tc +   4 p (ts + n tw)
 

• constant C (this constant we need in process of 

deriving an isoefficiency function w (s)) 

 
E

1 E
= C =

n2tc
4 p (ts+ n tw)

 

 

 

 

n

   .
   .
   .

n
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S2
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B1 B2
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5.1.1.1. Deriving Issoeficiency Functions (Scalability) 

 To deriving issoeficiencyfunction w (s) we used the 

general defined criterion. For their asymptotic magnitude is 

valid 

w (s) = max T (s, p)comp ,   h (s,p)
 

 Input load complexity of sequential analysed matrix is 

given as w (s) = n
2
tc. The defined criterion of efficiency E (s, 

p) allow us to derive final dependency for constant 

efficiency as 

E

1 E
= C =

n2tc
4 p (ts+ n tw)

 

 To win a closed form of issoeficiency function we have 

used an approach in which we performed at first the analysis 

of increasing input load influenced the analysed expression 

contained tsin relation to p so to keep this growth constant 

(we supposed thattw = 0). Then we get 

E

1 E
= C =

n2tc
4 p ts

 

 From this expression for the wished function w (s) = n
2 

tc 

we get 

w(s) = n2 = 4 C p
ts
tc

 

 With a similar approach we have been analysed the 

influence growth of input load caused the another part of 

expression fromtwin relation to p so to keep this growth 

constant (we supposed that tw = 0). Then we get 

E

1 E
= C =

n2tc
4 n p tw

 

 From this expression for the wished function w (s) = n
2 

tc 

we get 

w(s) = n2 = 4 C n p
tw
tc

 

 The whole asymptotic isoefficiency function w (s)for 

assumed decomposition to matrix strips is given as 

w (s)strips = max
n2tc

p
,   4 C p

ts
tc

, 4 C n p
tw
tc

 

 Based on analysis of computer technical parameters ts, tw, 

tcfor some parallel computers in the world they are valid 

following inequalitiests>>tw>tc. Alike is valid that p  n. 

Using these inequalities it is necessary to analyse dominancy 

influence of the all derived expressions. From this analysis 

comes out that 

• a value of first expression depends of both variables 

n, p. For given values of n (p n) is the value of first 

expression a decreasing function of p (parallel 

computation) 

• a second expression is a growing function of variables 

n, p 

• a third expression is a growing function of variables 

n, p where a size of input load is given as s = n
2
 and 

from a size of parallel system p. 

 Then the asymptotic issoefficiency function is limited 

through dominancy conditions of second and third 

expressions. From their comparison comes out 

• based on real conditiontw  tsa third expression is 

bigger or equal than a second expression and 

a issoefficiency function is limited through the third 

expression (for assumed technical parameters ts = 35 

s, tw= 0,23 s) is the settled condition valid for n  

152 

• for n < 152 and for technical constants ts = 35 s, tw= 

0,23 sissoefficiency function is limited through 

a second expression 

• a third expression depends on the variable n (p  n), 

that is for n  152 issoefficiency function is given for 

individual given value of efficiency E (s, p) for 

a needed value of parameter n (p  n). 

5.1.2. Matrix Decomposition to Blocks 

 For mapping matrix elements in blocks a inter process 

communication is performed on the four neighbouring edges 

of blocks (Fig. 7), which it is necessary in computation flow 

to exchange. Every parallel process therefore sends four 

messages and in the same way they receive four messages at 

the end of every calculation step supposing that all needed 

data at every edge are sent as a part of any message). 

 

Fig. (7). Communication consequences for decomposition to 
blocks. 

 Then the requested communication time for this 

decomposition method is given as 

Tcomb = 8 (ts +
n

p
tw )  

 This equation is correct for p  9, because only under this 

assumption it is possible to build at least one square because 

only then is possible to build one square block with for 

communication edges. Using these variables for the 

communication overheads in decomposition method to 

blocks is correct 

n/  p

   .
   .
   .

   .
   .
   .

.  .  ..  .  .

√
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T (s,  p)comm = Tcomb = h (s, p) = 8 (ts +
n

p
tw )  

• for computation execution time of parallel algorithm 

T (s, p) including overhead function 

 h (s, p) 

 

T (s,  p) = T (s, p)comp + h (s, p) =
n2 . tc
p

+ 8 (ts +
n

p
tw ) 

 

• parallel speed up S (s, p) 

 S(s, p) =
T (s,1)

T (s, p)
=

n2 p tc  

n2tc +   8 (p ts + p n tw)
 

• efficiency E (s, p) 

 E(s, p) =
S(s, p)

p
=

n2 tc  

n2tc +    8 (p ts + p n tw)
 

• constant C (this constant we need in process of 

deriving an isoefficiency function w (s)) 

 
E

1 E
= C =

n2tc
 8 (p ts + p n tw)

 
5.1.2.1. Isoeffectivity Function 

 In the process of deriving needed isoeffectivity function 

we come out from derived function h(s, p) for analysed 

decomposition method as h (s,p) = Tcomb according the 

relation 

Tcomb = 8 (ts +
n

p
tw )  

 After appropriate modifications we get for isoefficiency 

following final relations 

w (s)blocks = max
n2tc

p
,   8 C p

ts
tc

, 8 C n p
tw
tc

 

5.1.3. Comparison and Evaluation of Isoefficiency 

 The whole asymptotic isoefficiency function w (s) for 

assumed decomposition to matrix strips is given as 

w (s)strips = max
n2tc

p
,   4 C p

ts
tc

, 4 C n p
tw
tc

 

 The whole asymptotic isoefficiency function w (s) for 

assumed decomposition to matrix strips is given as 

w (s)blocks = max
n2tc

p
,   8 C p

ts
tc

, 8 C n p
tw
tc

 

 For p  9 (condition to build a block)the third expression 

we substitute with the expression, which is greater and is a 

part of derived asymptotic isoefficiency function w (s) 

decomposition to matrix strips. After this substitution we get 

w (s)blocks = max
n2tc

p
,   8 C p

ts
tc

, 4 C n p
tw
tc

 

 As we compare the second and the third expressions we 

get the condition under which is the third expression greater 

than the second one 

 n  2 ts/ tw 

that is for technical parameters ts = 35 s, tw= 0,23 s is this 

condition valid for n  304. Generally at validity of this 

condition for given values tc, ts, tw, is issoeficiency function 

so for strips as blocks given as 

w (s)blocks,strips = 4 C n p
tw
tc

 

 From the comparisons of both result expression for strips 

and blocks result following results 

• the first expressions in both derived issoeficiency 

function are logically the same, because the respond 

to parallel computation part Tcomp (s, p), which could 

be dominant only for small values of p (the derived 

limit for this expression for unlimited growth of p is 

zero 

• from the comparison of both second expressions 

comes out that the second expression of isoefficiency 

to blocks is greater than corresponding expression for 

strips 

• from the comparison of both third expressions comes 

out that the third expression of isoefficiency to strips 

is greater than corresponding expression for blocks. 

 The derived relations for issoeficiency function of matrix 

algorithms mean that for given value of efficiency E (s, p) is 

their quotient E / 1 - E in the relation for isoefficiency 

constant (named as C) and the isoefficiency function is the 

function of two variables n and p. 

 The parameters tc, ts, tware for given parallel computer 

architecture constants, which are known for typical parallel 

computers architectures or we can determine them through 

experimental measurements (parallel computer technical 

parameters). 

 Then for the given concrete value of E (s, p) and for 

given values of parameters p, n we can in analytical way the 

thresholds, for which growth of isoefficiency function means 

decreasing of efficiency of given parallel algorithm with 

assumed typical decomposition strategies. This means the 

minor scalability of the assumed algorithm. In case of 

decomposition strategy the approach is similar to analysed 

practical used decomposition matrix strategies. 

6. RESULTS 

 From achieved results we illustrate at Fig. (8) 

isoefficiency functions for individual constant values of 

efficiency (E = 0,1 a  0,9) for n < 152 using the published 

technical parameters tc, ts, twcommunication constants of 

used NOW (tc= 0,021 s, ts = 35 s, tw= 0,23 s,). 
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 At Fig. (9), we have illustrated isoefficiency functions for 

individual constant values of efficiency (E = 0,1 to 0,9) for n 

= 1024 and for communication parameters of parallel 

computer Cray T3E (tc= 0,011 s, ts = 3 s, tw= 0,063 s,). 

 From both pictures (Figs. 8, 9) we can see that to keep a 

given value of efficiency we need step by step increasing 

number of computing processors and higher value of 

workload (useful computation) to balance higher 

communication overheads. 

7. CONCLUSIONS 

 Performance evaluation as a discipline has repeatedly 

proved to be critical for design and successful use of 

operating systems. At the early stage of design, performance 

models can be used to project the system scalability and 

evaluate design alternatives. At the production stage, 

performance evaluation methodologies can be used to detect 

bottlenecks and subsequently suggests ways to alleviate 

them. Queuing networks and Petri nets models, simulation, 

experimental measurements, and hybrid modelling have 

been successfully used for the evaluation of system 

components. Via the extended form of isoefficiency concept 

for parallel algorithms we illustrated its concrete using to 

predicate the performance in typical matrix parallel 

algorithms. Based on derived issoeficiency function for 

matrix model the paper deals with the actual role of 

performance prediction in parallel algorithms. 

 To derive isoefficiency function in analytical way it is 

necessary to derive al typical used criterion for performance 

evaluation of parallel algorithms including their overhead 

Fig. (8). Isoefficiency functions for n < 152. 

Fig. (9). Isoefficiency functions (n = 1024). 
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function (parallel execution time, speed up, efficiency). 

Based on this knowledge we are able to derive issoefficiency 

function as real criterion to evaluate and predict performance 

of parallel algorithms also oh the hypothetical parallel 

computers. So in this way we can say that this process 

includes complex performance evaluation including 

performance prediction. 

 Due to the dominant using of parallel computers based on 

the standard PC in form of NOW and their massively 

integration named as Grid (integration of many NOW), there 

has been great interest in performance prediction of parallel 

algorithms in order to achieve optimised parallel algorithms 

(effective parallel algorithms). Therefore this paper 

summarises the used methods for complexity analysis which 

can be applicable to all types of parallel computers 

(supercomputer, NOW, Grid). Although the use of NOW 

and Grid parallel computers should be in some parallel 

algorithms less effective than the in the world used 

massively parallel architectures (supercomputers) the parallel 

computers based on NOW and Grid belong nowadays to 

dominant parallel computers. 
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