
Send Orders of Reprints at bspsaif@emirates.net.ae

38 The Open Cybernetics & Systemics Journal, 2012, 6, 38-47

 1874-110X/12 2012 Bentham Open

Open Access

Analytical Method of Performance Prediction in Parallel Algorithms

Peter Hanuliak
*

Polytechnic Institute, Dubnica nad Vahom, Dukelskastvrt 1404/61, SK - 018 41 Dubnica nad Vahom, Slovakia

Abstract: With the availability of powerful personal computers, workstations and networking devices, the recent trend in

parallel computing is to connect a number of individual workstations (PC, PC SMP) to solve computation-intensive tasks

in parallel way on such typical clusters as NOW, SMP, Grid). In this sense it is not more true to consider traditionally

evolved parallel computing and distributed computing as two separate research disciplines. Current trends in high

performance computing (HPC) are to use networks of workstations (NOW, SMP) as a cheaper alternative to traditionally

used massively parallel multiprocessors or supercomputers and to profit from unifying of both mentioned disciplines. The

individual workstations could be so single PC (Personal computer) as parallel computers based on modern symmetric

multiprocessor systems (SMP) implemented within workstation.

To exploit the parallel processing capability of such cluster, the application program must be paralleled. The effective way

to do it for (parallelisation strategy) belongs to a most important step in developing effective parallel algorithm

(optimisation). For behaviour analysis we have to take into account all overheads that have the influence to performance

of parallel algorithms (architecture, computation, communication etc.). In this article we discuss such complex

performance evaluation of abstract empty matrix for potential used decomposition strategies. For these decomposition

strategies we derived analytical isoefficiency functions, which allow us to predict performance although for hypothetical

parallel computer.

Keywords: Network of workstations, decomposition strategy, inter process communication, message passing interface,

performance prediction, issoeficiency function.

1. INTRODUCTION

 Distributed computing using cluster of powerful

workstations (NOW, SMP, Grid) was reborn as a kind of

“lazy parallelism”. A cluster of computers could team up to

solve many problems at once, rather than one problem at

higher speed. To get the most out of a distributed parallel

system, designers and software developers must understand

the interaction between hardware and software parts of the

system. It is obvious that use of a computer network based

on personal computers would be principal less effective than

the used typical massively parallel architectures in the world,

because of higher communication overheads, but a network

of more and more powerful workstations consisting on

powerful personal computers (PC, PC - SMP), belongs for

the future to very cheap, flexible and perspective parallel

computers. Such a trend we can see in dynamic growth just

in the parallel architectures based on the networks of

workstations as a cheaper and flexible architecture in

comparison to conventional multiprocessors and

supercomputers. Principles of these conventional parallel

computers are in this time effective implemented in modern

symmetric multiprocessor systems (SMP) based on the same

processors [1] (multiprocessor, multicores). Unifying of both

*Address correspondence to this author at the Polytechnic Institute, Dubnica

nad Vahom, Dukelskastvrt 1404/61, SK - 018 41 Dubnica nad Vahom,

Slovakia; Tel: +421 42 4424 123; Fax: +421 42 4428436;

E-mail: phanuliak@gmail.com

approaches (NOW, SMP) open for the future the new

possibilities in massive HPC computing.

 There has been an increasing interest in the use of

networks of powerful workstations (NOW) connected together

by high-speed networks for solving large computation-

intensive problems. This trend is mainly driven by the cost

effectiveness of such systems as compared to parallel

computer with massive number of tightly coupled processors

and memories. Parallel computing on a cluster of powerful

workstations (NOW, SMP, Grid) connected together by high-

speed networks have given rise to a range of hardware and

network related issues on any given platform.

 Network of workstations (NOW) [2-4] has become a

widely accepted form of high-performance parallel

computing. Basic architecture of NOW is illustrated in Fig.

(1). As in conventional multiprocessors, parallel programs

running on such a platform are often written in an SPMD

form (Single program – Multiple data) to exploit data

parallelism or in an improved SPMD form to take into

account also the potential of functional parallelism of a given

application. Each workstation in a NOW is treated similarly

to a processing element in a multiprocessor system.

However, workstations are far more powerful and flexible

than processing elements in conventional multiprocessors.

2. PARALLEL ALGORITHMS

 In principal we can divide parallel algorithms into two

following classes:

Analytical Method of Performance Prediction in Parallel Algorithms The Open Cybernetics & Systemics Journal, 2012, Volume 6 39

• parallel algorithm using shared memory (PA). These

algorithms are developed for parallel computers with

dominated shared memory as actual symmetrical

multiprocessors or multicore systems on motherboard

(SMP)

• parallel algorithm using distributed memory (DPA).

These algorithms are developed for parallel

computers with distributed memory as actual NOW

system and their higher integration forms named as

Grid systems.

 The main difference is in form of inter - process

communication (IPC) among individual parallel processes

[5]. Generally we can say that IPC communication in parallel

system with shared memory can use more communication

possibilities than in distributed systems.

2.1. Developing Parallel Algorithm

 To exploit the parallel processing capability the

application program must be parallelised. The effective way

to do it for a particular application problem (decomposition

strategy) belongs to the most important step in developing an

effective parallel algorithm [5]. The development of the

parallel network algorithm includes the following activities

• decomposition - the division of the application into a

set of parallel processes

• mapping - the way how processes and data are

distributed among the nodes

• interprocess communication - the way of

corresponding and synchronisation among individual

processes

• tuning - alternation of the working application to

improve performance (performance optimisation).

 The most important step is to choose the best

decomposition method for given application problem. To do

this it is necessary to understand concrete application

problem, data domain, used algorithm and flow of control in

given application. When designing a parallel program the

description of the high-level algorithm must include, in

addition to design a sequential program, the method you

intend to use to break the application into processes

(decomposition strategy) and distribute data to different

computing nodes (mapping). The chosen decomposition

method drives the rest of program development. This is true

is in case of developing new application as in porting serial

code. The decomposition method tells us how to structure

the code and data and defines the communication topology

[2, 6].

2.2. Methods of Performance Evaluation

 To performance evaluation of parallel algorithms we can

use analytical approach to get under given constraints

analytical laws or some other derived analytical relations.

Theoretically we can use following solution methods to get a

function of complex performance

• analytical

 application of queuing theory results [7]

 order (asymptotic) analyse [8-10]

 Petri nets [11]

• simulation methods [12]

• experimental

 benchmarks [13]

 direct measuring [14].

 Analytical method is a very well developed set of

techniques which can provide exact solutions very quickly,

but only for a very restricted class of models. For more

general models it is often possible to obtain approximate

results significantly more quickly than when using

simulation, although the accuracy of these results may be

difficult to determine.

 Simulation is the most general and versatile means of

modelling systems for performance estimation. It has many

uses, but its results are usually only approximations to the

exact answer and the price of increased accuracy is much

longer execution times. They are still only applicable to a

restricted class of models (though not as restricted as

analytic approaches.) Many approaches increase rapidly their

memory and time requirements as the size of the model

increases.

 Evaluating system performance via experimental

measurements is a very useful alternative for computer

systems. Measurements can be gathered on existing systems

by means of benchmark applications that aim at stressing

specific aspects of computers systems. Even though

benchmarks can be used in all types of performance studies,

their main field of application is competitive procurement

PC 1 PC 2 PC 3 PC n. . .

- switch

s
s

Myrinet

- Myrinet port
- 1G Ethernet (10G Ethernet) port

Fig. (1). Typical architecture of NOW.

40 The Open Cybernetics & Systemics Journal, 2012, Volume 6 Peter Hanuliak

and performance assessment of existing systems and

algorithms.

3. PERFORMANCE EVALUATION METRICS

 To evaluate parallel algorithms there have been

developed several fundamental concepts. Tradeoffs among

these performance factors are often encountered in real-life

applications.

3.1. Speed Up

 Let T(s, p) be the total number of unit operations

performed by p processor system, s defines size of the

computational problem. Then T(s, 1) defines execution time

units for one processor system. Then speedup factor is

defined as

S(s, p) =
T (s, 1)

T (s, p)

 It is a measure of the speedup factor obtained by given

algorithm when p processors are available for the given

problem size s. Since S (s, p) p, we would like to design

algorithms that achieve S(s, p) p.

3.2. Efficiency Concept

 The system efficiency for processor system with p

computing nodes is defined by

E(s, p) =
S(s, p)

p
=

T (s, 1)

p T (s, p)

 A value of E(s, p) approximately equal to 1 for some p,

indicates that such a parallel algorithm, using p processors,

runs approximately p times faster than it does with one

processor (Sequential algorithm).

3.3. The Isoefficiency Concept

 The workload w of an algorithm often grows in the order

O (s), where symbol O means the used upper limit in

complexity theory and its parameter s is the problem size.

Thus, we denote the workload w = w(s) as a function of s. In

parallel computing is very useful to define an isoefficiency

function relating workload to machine size p needed to

obtain a fixed efficiency when implementing a parallel

algorithm on a parallel system.

 Let h(s, p) be the total overhead involved in the algorithm

implementation. This overhead is usually a function of both

machine size and problem size. The workload w(s)

corresponds to useful computations while the overhead h (s,

p) are useless times attributed to architecture, parallelisation,

synchronisation and communication delays. In general, the

overheads increase with respect to increasing values of s and

p. Thus the efficiency is always less than 1. The question is

hinged on relative growth rates between w(s) and h(s, p).

The efficiency of a parallel algorithm is thus defined as

E(s, p) =
w(s)

w(s)+ h(s, p)

 With a fixed problem size the efficiency decreases as p

increase. The reason is that the overhead h(s, p) increases

with p. With a fixed machine size, the overload grows slower

than the workload. Thus the efficiency increases with

increasing problem size for a fixed-size machine. Therefore,

one can expect to maintain a constant efficiency if the

workload is allowed to grow properly with increasing

machine size. For a given algorithm, the workload might

need to grow polynomial or exponentially with respect to p

in order to maintain a fixed efficiency. Different algorithms

may require different workload growth rates to keep the

efficiency from dropping, as p is increased. The isoefficiency

functions of common parallel algorithms are polynomial

functions of p, i. e. they are O(p
k
) for some k 1. The smaller

the power of p in the isoefficiency function the more scalable

the parallel system. We can rewrite equation for efficiency

E(s, p) as

E(s, p) = 1 / (1+ (h (s, p) / w(s))

 In order to maintain a constant E, the workload w(s)

should grow in proportion to the overhead h(s,p). This leads

to the following relation

w(s) =
E

1 E
h(s, p)

 The factor

C = E / 1-E

is a constant for a fixed efficiency E. Thus we can define the

isoefficiency function as follows

w (s, p) = C. h (s, p)

 If the workload grows as fast as w (s, p) then a constant

efficiency can be maintained for a given parallel algorithm.

4. MODELLING OF COMPLEXITY IN PARALLEL
ALGORITHMS

 To this time known results in complexity modelling on

the in the world used classical parallel computers with

shared memory (supercomputers, SMP and SIMD systems)

or distributed memory (Cluster, NOW, Grid) mostly did not

consider the influences of the parallel computer architecture

and communication overheads supposing that they are lower

in comparison to the latency of executed massive

calculations [1, 9].

 In this sense, analysis and modelling of complexity in

parallel algorithms (PA) are rationalised to the analysis of

complexity of own computations, that mean that the function

of control and communication overheads are not a part of

derived relations for computation time T (s, p). In general

computation time of sequential and parallel algorithms given

through multiplicity product of algorithm complexity

Za(dimensionless number of performed computations steps)

and a constant tc as an average value of performed

computation operations.

 In this sense the function in the relation for isoefficiency

suppose, that dominates influence to the overall complexity

of the parallel algorithms has complexity of performed

massive calculations. Such assumption has proved to be true

in using classical parallel computers in the world

(Supercomputers, massively multiprocessors – shared

Analytical Method of Performance Prediction in Parallel Algorithms The Open Cybernetics & Systemics Journal, 2012, Volume 6 41

memory, SIMD architectures etc.). To map mentioned

assumption to the relation for asymptotic isoefficiency w(s)

means that

w (s) = max Tcomp , h (s, p) < Tcomp = max Tcomp

 In opposite at parallel algorithms for the actually

dominant parallel computers on the basis NOW (including

SMP systems) and Grid is for complexity modelling

necessary to analyse at least most important overheads from

all existed overheads which are [15, 16]

• architecture of parallel computer (Tarch)

• own calculations (Tcomp)

• communication latency (Tcomm)

 start - up time (ts)

 data unit transmission (tw)

 routing

• parallelisation latency (Tpar)

• synchronisation latency (Tsyn).

 Taking into account all this kinds of overheads the total

parallel execution time is

T (s, p)complex = T (s, p)comp ,T (s, p)arch ,T (s, p)par ,T (s, p)comm ,T (s, p)syn()

where T(s, p)arch, T(s, p)comp, T(s, p)par, T(s, p)comm, T(s, p)syn

denote the individual overheads caused by architecture,

computations, parallelisation, communication and

synchronisation. The more important overhead parts build in

the relation for isoefficiency the used the overhead function

h (s, p), which influence in general is necessary to take into

account in performance modelling of parallel algorithms.

h (s, p) = T (s, p)arch ,T (s, p)par ,T (s, p)comm T (s, p)syn()

 The first part of h(s, p) function Tparch (s, p) (architecture

influence of used parallel computer) is projected into used

technical parameters tc, ts, tw, which are constant for given

parallel computer.

 The second part of h(s, p) function Tpar (s, p)

(parallelisation of solved problem) depend from chosen

decomposition strategy and their consequences are projected

so to computation part Tcomp (s,p) (increased computation

complexity) as to communication part Tcomm (s,p) (increased

number of performed communications)

 The third part of h(s, p) function Tsyn (s, p) we can

eliminate through optimisation of load balancing among

individual computing nodes of used parallel system. For this

purpose we would measure performance of individual

computing nodes for given developed parallel algorithm and

then based on measured results better redistribute input load.

This activity we can repeatuntil we have optimal

redistributed input load (optimal load redistribution based on

real performance results).

 In general nonlinear influence of h (s, p) could be in

performance modelling of parallel algorithms (Fig. 2). Then

for asymptotic isoefficiency analysis is true

w (s) = max T (s, p)comp , h (s, p)

where the most important parts for dominant parallel

computers (NOW, Grid) in overhead function h (s, p) is the

influence of Tcomm (Communication overheads).

 Calculation time T (s, p)comp of parallel algorithm is given

through quotient of sequential running time (Complexity

product of sequential algorithm Zsa and a constant tc as an

average value of performed computation operations) through

number of used calculation nodes of the given parallel

computer. Parallel calculation complexity of T(s,p) as a limit

of a theoretical unlimited number of calculation nodes is

given as

T (s, p)comp = lim p

Zsa . tc
p

 = 0

 Finally the assumed relation between T (s, p)comp and h

(s, p) illustrates Fig. (2). For effective parallel algorithms we

are seeking for the bottom part of whole execution time

according Fig. (2).

Fig. (2). Relations among parts of parallel execution time.

 In relation to previous steps the kernel of asymptotic

analyse of h(s, p) is analysis of communication part Tcomm

(s,p) including projected consequences of used

decomposition methods. This analysis comes out from

application isoefficiency concept to derived communication

complexity in an analytical way for used decomposition

strategies. In general derived isoefficiency function w(s)

could have non-linear character at gradually increasing

number of computing nodes. Analytical deriving of

isoefficiency function w(s) allow us performance prediction

of given parallel algorithm so for existed real as for

hypothetical parallel system. So we have possibility to

consider potential efficiency of given algorithm.

Communication time T (s, p)comm is given through number of

performed communication for considered decomposition

strategy. Every communication within NOW is characterised

Number of processors

Communication
timeProcessing

time

Execution time

42 The Open Cybernetics & Systemics Journal, 2012, Volume 6 Peter Hanuliak

through two following communication parameters, which are

illustrated at Fig. (3).

• ts is defined parameter for communication

initialisation

•
tw is defined parameter for data unit latency.

Fig. (3). Illustration of basic communication parameters.

 These communication parameters are constant for

concrete parallel system. At Table 1 we have illustrated

some typical parallel computer examples with concrete

values for their basic communication parameters.

Table 1. Technical Parameters of Parallel Computers (PC)

PC ts [s] tw [s]

IBM SP2 35 0,23

Intel DELTA 77 0,54

Intel Paragon 64 0,07

Meiko CS-2 87 0,08

NCUBE-2 154 2,40

ThinkingMachine CM-5 82 0,44

NOW on FDDI 1 150 1,10

NOW on Ethernet 1 500 5,00

Cray T3E 3 0,063

 Communication overheads are given through two basic

following components

• f1(ts) function as the whole number of initialisation of

performed communication

• f2(tw) as function of whole performed data unit

transmission usually time of word transmission for

given parallel computer.

 These two components limited performance of used

parallel system based on NOW. Illustration of these

communication parameters is at Fig. (3). These parameters

are when using superposition we can write

Tcomm (s,p) = f1(ts) + f2(tw)

 Communication time T (s, p)comm is given through the

number of performed communication operations in concrete

parallel algorithm and depends from used decomposition

model. To the practical illustration of communication

overheads we used the possible matrix decomposition

models.

 For more complex parallel system named as Grid

(network of NOW) accesses third component (f3 (th),

whichdetermine potential multiple crossing used NOW

networks. This component is characterised through

multiplying hopslhamong NOW networks and average

latency time jumped NOW networks (NOW networks with

the same communication speed) or a sum of individual

latencies for jumped NOW networks (NOW networks with

different same communication speed). Then for whole

latency in Grid is valid

Tcomm (s,p) = f1 (ts) + f2 (tw) + f3 (ts, lh).

 In general latency f3 (ts, lh), that is time to send message

with m words among NOW networks, which have lhhopsis

given asts+ lhth m tw, where the new parameters are.

• lh is the number of network hops

•
m is the number of transmitted data units (usually

words)

•
this average communication time for one hop (we

suppose the same communication speed).

 The new parameters th,lh depend from a concrete

architecture of Grid communication network and used

routing algorithm in Grid.

 For the analyse purposes it is necessary to derive for

given parallel algorithm or a group of similar algorithms (in

our case matrix algorithms) derived necessary

communication functions and that always for given

decomposition strategy) isoefficiency functions and basic

constants for used parallel computer (NOW, Grid).

5. MATRIX MODELS

 For analysing isoefficiency function of parallel

algorithms, which are using matrix, we would analyse

communication models in abstract form that means for

empty matrix. Then we are considering the typical following

n x m matrix

a , a , . . . , a

a , a , . . . , a

 . . .
 . . .
 . . .

a , a , . . . , a

11 12 1n

21 22 2n

m1 m2 mn

A =

 To reduce number of variables in deriving process of

issoefficiency function we will consider matrix with m = n

(square matrix). For this purpose there are also following

causes.

Length

Time

21 3 4 5 6

ts

tw

Analytical Method of Performance Prediction in Parallel Algorithms The Open Cybernetics & Systemics Journal, 2012, Volume 6 43

• we can transform any matrix n x m to n x n matrix

through expanding rows (if m < n) or columns (if m >

n)

• derivation process will be the same only when

considering the workload instead of n
2
 (square

matrix) we should consider n x m (oblong matrix).

5.1. Decomposition Matrix Models

 In general square matrix n x n in halts n
2
 elements. In

order to achieve effective parallel algorithm it is necessary to

map every parallel process more than one matrix element.

Then for mapping a cluster of matrix elements there are in

principal two ways

• mapping of p columns or p rows as illustrated at Fig.

(4).

• mapping of square blocks to every parallel process as

illustrated at Fig. (5).

Fig. (4). Decomposition strategy to strips (rows).

Fig. (5). Decomposition strategy to blocks.

5.1.1. Matrix Decomposition to Strips

 Depending of used decomposition methods there are

derived needed communication activities. In general square

matrix in two dimensions n x n in halts n
2
 elements. To

decompose such matrix we map one or more matrix strips

(parallel process) to computing node of the used parallel

system. So in this way square matrix is equally divided to p

build parallel processes, that mean every parallel process get

n/ p rows.

 For mapping matrix elements in strips (rows) inter

process communication is performed on two neighbouring

strips (Fig. 6). So it is necessary in computation flow to

exchange values of all board rows. Every parallel process

therefore sends message with n matrix elements (row) and in

the same way they receive message with n matrix elements

(row) from its neighbouring row supposing that all data in

row (n matrix elements) are sent as a part of any sending or

receiving message.

Fig. (6). Communication consequences for decomposition to strips
(rows).

 The requested communication time for decomposition

method to strips (rows) is given according illustration at Fig.

(6) as

T (s, p)comm = Tcoms = h (s, p) = 4 (ts + n tw)

 And the derived final relations for performance

evaluation as following

• execution time of sequential square matrix algorithm

T (s, 1)

T (s, 1) = n2 tc

• for computation execution time of parallel algorithm

T (s, p) including overhead function

 h (s, p)

 T (s, p) = T (s, p)comp + h (s, p) =
n2tc

p
+ 4 ts + n tw()

• parallel speed up S (s, p)

 S(s, p) =
T (s,1)

T (s, p)
=

n2 p tc

n2tc + 4 p (ts + n tw)

• efficiency E (s, p)

 E(s, p) =
S(s, p)

p
=

n2 tc

n2tc + 4 p (ts + n tw)

• constant C (this constant we need in process of

deriving an isoefficiency function w (s))

E

1 E
= C =

n2tc
4 p (ts+ n tw)

n

 .
 .
 .

n

S1

S2

Sp

B1 B2

n

. . .

Bp
. . .

 .
. . .
 .

n

n

 .
 .
 .

 .
 .
 .

44 The Open Cybernetics & Systemics Journal, 2012, Volume 6 Peter Hanuliak

5.1.1.1. Deriving Issoeficiency Functions (Scalability)

 To deriving issoeficiencyfunction w (s) we used the

general defined criterion. For their asymptotic magnitude is

valid

w (s) = max T (s, p)comp , h (s,p)

 Input load complexity of sequential analysed matrix is

given as w (s) = n
2
tc. The defined criterion of efficiency E (s,

p) allow us to derive final dependency for constant

efficiency as

E

1 E
= C =

n2tc
4 p (ts+ n tw)

 To win a closed form of issoeficiency function we have

used an approach in which we performed at first the analysis

of increasing input load influenced the analysed expression

contained tsin relation to p so to keep this growth constant

(we supposed thattw = 0). Then we get

E

1 E
= C =

n2tc
4 p ts

 From this expression for the wished function w (s) = n
2

tc

we get

w(s) = n2 = 4 C p
ts
tc

 With a similar approach we have been analysed the

influence growth of input load caused the another part of

expression fromtwin relation to p so to keep this growth

constant (we supposed that tw = 0). Then we get

E

1 E
= C =

n2tc
4 n p tw

 From this expression for the wished function w (s) = n
2

tc

we get

w(s) = n2 = 4 C n p
tw
tc

 The whole asymptotic isoefficiency function w (s)for

assumed decomposition to matrix strips is given as

w (s)strips = max
n2tc

p
, 4 C p

ts
tc

, 4 C n p
tw
tc

 Based on analysis of computer technical parameters ts, tw,

tcfor some parallel computers in the world they are valid

following inequalitiests>>tw>tc. Alike is valid that p n.

Using these inequalities it is necessary to analyse dominancy

influence of the all derived expressions. From this analysis

comes out that

• a value of first expression depends of both variables

n, p. For given values of n (p n) is the value of first

expression a decreasing function of p (parallel

computation)

• a second expression is a growing function of variables

n, p

• a third expression is a growing function of variables

n, p where a size of input load is given as s = n
2
 and

from a size of parallel system p.

 Then the asymptotic issoefficiency function is limited

through dominancy conditions of second and third

expressions. From their comparison comes out

• based on real conditiontw tsa third expression is

bigger or equal than a second expression and

a issoefficiency function is limited through the third

expression (for assumed technical parameters ts = 35

s, tw= 0,23 s) is the settled condition valid for n

152

• for n < 152 and for technical constants ts = 35 s, tw=

0,23 sissoefficiency function is limited through

a second expression

• a third expression depends on the variable n (p n),

that is for n 152 issoefficiency function is given for

individual given value of efficiency E (s, p) for

a needed value of parameter n (p n).

5.1.2. Matrix Decomposition to Blocks

 For mapping matrix elements in blocks a inter process

communication is performed on the four neighbouring edges

of blocks (Fig. 7), which it is necessary in computation flow

to exchange. Every parallel process therefore sends four

messages and in the same way they receive four messages at

the end of every calculation step supposing that all needed

data at every edge are sent as a part of any message).

Fig. (7). Communication consequences for decomposition to
blocks.

 Then the requested communication time for this

decomposition method is given as

Tcomb = 8 (ts +
n

p
tw)

 This equation is correct for p 9, because only under this

assumption it is possible to build at least one square because

only then is possible to build one square block with for

communication edges. Using these variables for the

communication overheads in decomposition method to

blocks is correct

n/ p

 .
 .
 .

 .
 .
 .

.

√

Analytical Method of Performance Prediction in Parallel Algorithms The Open Cybernetics & Systemics Journal, 2012, Volume 6 45

T (s, p)comm = Tcomb = h (s, p) = 8 (ts +
n

p
tw)

• for computation execution time of parallel algorithm

T (s, p) including overhead function

 h (s, p)

T (s, p) = T (s, p)comp + h (s, p) =
n2 . tc
p

+ 8 (ts +
n

p
tw)

• parallel speed up S (s, p)

 S(s, p) =
T (s,1)

T (s, p)
=

n2 p tc

n2tc + 8 (p ts + p n tw)

• efficiency E (s, p)

 E(s, p) =
S(s, p)

p
=

n2 tc

n2tc + 8 (p ts + p n tw)

• constant C (this constant we need in process of

deriving an isoefficiency function w (s))

E

1 E
= C =

n2tc
 8 (p ts + p n tw)

5.1.2.1. Isoeffectivity Function

 In the process of deriving needed isoeffectivity function

we come out from derived function h(s, p) for analysed

decomposition method as h (s,p) = Tcomb according the

relation

Tcomb = 8 (ts +
n

p
tw)

 After appropriate modifications we get for isoefficiency

following final relations

w (s)blocks = max
n2tc

p
, 8 C p

ts
tc

, 8 C n p
tw
tc

5.1.3. Comparison and Evaluation of Isoefficiency

 The whole asymptotic isoefficiency function w (s) for

assumed decomposition to matrix strips is given as

w (s)strips = max
n2tc

p
, 4 C p

ts
tc

, 4 C n p
tw
tc

 The whole asymptotic isoefficiency function w (s) for

assumed decomposition to matrix strips is given as

w (s)blocks = max
n2tc

p
, 8 C p

ts
tc

, 8 C n p
tw
tc

 For p 9 (condition to build a block)the third expression

we substitute with the expression, which is greater and is a

part of derived asymptotic isoefficiency function w (s)

decomposition to matrix strips. After this substitution we get

w (s)blocks = max
n2tc

p
, 8 C p

ts
tc

, 4 C n p
tw
tc

 As we compare the second and the third expressions we

get the condition under which is the third expression greater

than the second one

 n 2 ts/ tw

that is for technical parameters ts = 35 s, tw= 0,23 s is this

condition valid for n 304. Generally at validity of this

condition for given values tc, ts, tw, is issoeficiency function

so for strips as blocks given as

w (s)blocks,strips = 4 C n p
tw
tc

 From the comparisons of both result expression for strips

and blocks result following results

• the first expressions in both derived issoeficiency

function are logically the same, because the respond

to parallel computation part Tcomp (s, p), which could

be dominant only for small values of p (the derived

limit for this expression for unlimited growth of p is

zero

• from the comparison of both second expressions

comes out that the second expression of isoefficiency

to blocks is greater than corresponding expression for

strips

• from the comparison of both third expressions comes

out that the third expression of isoefficiency to strips

is greater than corresponding expression for blocks.

 The derived relations for issoeficiency function of matrix

algorithms mean that for given value of efficiency E (s, p) is

their quotient E / 1 - E in the relation for isoefficiency

constant (named as C) and the isoefficiency function is the

function of two variables n and p.

 The parameters tc, ts, tware for given parallel computer

architecture constants, which are known for typical parallel

computers architectures or we can determine them through

experimental measurements (parallel computer technical

parameters).

 Then for the given concrete value of E (s, p) and for

given values of parameters p, n we can in analytical way the

thresholds, for which growth of isoefficiency function means

decreasing of efficiency of given parallel algorithm with

assumed typical decomposition strategies. This means the

minor scalability of the assumed algorithm. In case of

decomposition strategy the approach is similar to analysed

practical used decomposition matrix strategies.

6. RESULTS

 From achieved results we illustrate at Fig. (8)

isoefficiency functions for individual constant values of

efficiency (E = 0,1 a 0,9) for n < 152 using the published

technical parameters tc, ts, twcommunication constants of

used NOW (tc= 0,021 s, ts = 35 s, tw= 0,23 s,).

46 The Open Cybernetics & Systemics Journal, 2012, Volume 6 Peter Hanuliak

 At Fig. (9), we have illustrated isoefficiency functions for

individual constant values of efficiency (E = 0,1 to 0,9) for n

= 1024 and for communication parameters of parallel

computer Cray T3E (tc= 0,011 s, ts = 3 s, tw= 0,063 s,).

 From both pictures (Figs. 8, 9) we can see that to keep a

given value of efficiency we need step by step increasing

number of computing processors and higher value of

workload (useful computation) to balance higher

communication overheads.

7. CONCLUSIONS

 Performance evaluation as a discipline has repeatedly

proved to be critical for design and successful use of

operating systems. At the early stage of design, performance

models can be used to project the system scalability and

evaluate design alternatives. At the production stage,

performance evaluation methodologies can be used to detect

bottlenecks and subsequently suggests ways to alleviate

them. Queuing networks and Petri nets models, simulation,

experimental measurements, and hybrid modelling have

been successfully used for the evaluation of system

components. Via the extended form of isoefficiency concept

for parallel algorithms we illustrated its concrete using to

predicate the performance in typical matrix parallel

algorithms. Based on derived issoeficiency function for

matrix model the paper deals with the actual role of

performance prediction in parallel algorithms.

 To derive isoefficiency function in analytical way it is

necessary to derive al typical used criterion for performance

evaluation of parallel algorithms including their overhead

Fig. (8). Isoefficiency functions for n < 152.

Fig. (9). Isoefficiency functions (n = 1024).

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

0 200 400 600 800 1000
p

w
E=0,1

E=0,2

E=0,3

E=0,4

E=0,5

E=0,6

E=0,7

E=0,8

E=0,9

0,0E+00

2,0E+07

4,0E+07

6,0E+07

8,0E+07

1,0E+08

1,2E+08

1,4E+08

1,6E+08

1,8E+08

2,0E+08

0 200 400 600 800 1000
p

w

E=0,1

E=0,2

E=0,3

E=0,4

E=0,5

E=0,6

E=0,7

E=0,8

E=0,9

Analytical Method of Performance Prediction in Parallel Algorithms The Open Cybernetics & Systemics Journal, 2012, Volume 6 47

function (parallel execution time, speed up, efficiency).

Based on this knowledge we are able to derive issoefficiency

function as real criterion to evaluate and predict performance

of parallel algorithms also oh the hypothetical parallel

computers. So in this way we can say that this process

includes complex performance evaluation including

performance prediction.

 Due to the dominant using of parallel computers based on

the standard PC in form of NOW and their massively

integration named as Grid (integration of many NOW), there

has been great interest in performance prediction of parallel

algorithms in order to achieve optimised parallel algorithms

(effective parallel algorithms). Therefore this paper

summarises the used methods for complexity analysis which

can be applicable to all types of parallel computers

(supercomputer, NOW, Grid). Although the use of NOW

and Grid parallel computers should be in some parallel

algorithms less effective than the in the world used

massively parallel architectures (supercomputers) the parallel

computers based on NOW and Grid belong nowadays to

dominant parallel computers.

CONFLICT OF INTEREST

 The author confirms that this article content has no

conflicts of interest.

ACKNOWLEDGEMENTS

 This work was done within the project Modelling,

optimisation and prediction of parallel computers and

algorithms at University of Zilina. The author gratefully

acknowledges the crucial help of Prof. Ing. Ivan Hanuliak,

PhD. as the supervisor of this project.

REFERENCES

[1] D. B. Kirk and W. W Hwu, “Programming massively parallel

processors, Morgan Kaufmann,” CUDA C Programming Guide
3.2, pp. 273-280, 2010.

[2] A. J. Barria, Communication network and computer systems.
Imperial College Press: London, p. 276, 2006.

[3] J. Hanuliak and M. Hanuliak, “Analytical modelling of distributed
computer systems,” In: TRANSCOM. ilina, Slovak Republic,

2005, pp. 103-110,
[4] D. A. Paterson and J. L. Hennessy, “Computer organisation and

design,” Morgan Kaufmann: USA, 2009, p. 12,
[5] P. Hanuliak and I. Hanuliak, “Performance evaluation of iterative

parallel algorithms,” Kybernetes: United Kingdom. vol. 39, no. 1,
2010, pp. 107-126.

[6] A. Kumar, D. Manjunath and J. Kuri, “Communication
Networking,” Morgan Kaufmann: USA, 2004, p.750.

[7] M. Hanuliak, “To modelling of parallel computer systems,” In :
TRANSCOM 2007 – Section 3 (7-th Europ. Conf. in Transport

and Telecommun.), ilina, Slovak Republic, 2007, pp. 67-70.
[8] S. Arora, Computational Complexity, Cambridge University Press:

United Kingdom, p. 594, 2009.
[9] J. Hanuliak, “To performance evaluation of parallel algorithms in

NOW,” Communications, The University of Zilina: Slovak
Republic vol. 4, pp. 83-88, 2003.

[10] M. Hudik, Performance optimization of broadcast collective
operation on multi-core cluster. ICSC Leden Kunovice: Czech

Republic, pp. 51-55, 2012.
[11] J. Hillston, A compositional approach to performance modelling.

University of Edinburgh, Cambridge University Press: United
Kingdom, 2005, p. 172.

[12] A. Kostin and L. Ilushechkina, Modelling and simulation of
distributed systems, Imperial College Press: London, p. 440, 2010.

[13] P. Fortier and M. Howard, Computer system performance
evaluation and prediction. Digital Press: London, p. 544, 2003. E.

Gelenbe, Analysis and synthesis of computer systems. Imperial
College Press, p. 324, 2010.

[14] D. J. Lilja, Measuring Computer Performance. University of
Minnesota, Cambridge University Press: United Kingdom, p. 280,

2005.
[15] T. A. Davis, Direct methods for sparse Linear Systems. Cambridge

University Press: United Kingdom, pp.184, 2006.
[16] L. Wang, W. Jie and J. Chen, “Grid Computing: infrastructure,

service, and application.” CRC Press: USA, 2009.

Received: July 9, 2012 Revised: September 25, 2012 Accepted: October 1, 2012

© Peter Hanuliak; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

