
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2014, 8, 1009-1014 1009

 1874-110X/14 2014 Bentham Open

Open Access

Bit Rate Buffer Control and Optimization of Embedded Video Encoder

Yao Chunlian
1,2,*

, Liu Wen
1
, Wu hongli

3
, Mao Dianhui

1
 and Liu Li

1

1
School of computer and information engineering, Beijing Technology and Business University, Beijing, China;

2
The

Key Laboratory of Advanced Information Science and Network Technology of Beijing, Beijing Jiaotong University, Bei-

jing;
3
Institute of advanced information technology of Beijing, Beijing

Abstract: To satisfy various requirement of embedded video encoder, an embedded video coding system based on

TMS320C64xx DSP is designed in this paper. TMS320C64xx DSP (Digital signal processor) is the core of the coding

hardware system, and FPGA (Field program gate array) as the co-processor of DSP, which can convert video data into the

specified format. For real-time application, we optimize the encoder at three levels: Firstly, at algorithm level, develop

some fast algorithm fitting for DSP; secondly, at system level, adjust the architecture of encoder and optimization data

transfer with EDMA (Enhance Direct Memory Access); thirdly, at code level, we use linear assembly rewrite key code. In

order to avoid overflow and under flow state of bit rate, software FIFO (First Input First Output) is designed, and by the

status of FIFO, we can know the state of underflow and overflow of buffer. Experimental results show that the embedded

video encoder can compress four channel CIF (352 288) video data real-time.

Keywords: Bit rate control, DSP, optimization, video.

1. INTRODUCTION

With the technology development of network and digital
signal processing, more and more people pay much attention
to digital image processing and communication technology.

Video signal has the character of large amount of data
and can’t be stored and transferred directly, so it is very im-
portant to study high efficiency multi-media data encoder
technology. In recent years, many solutions based on pro-
grammable devices, such as video Asics, which has the ad-
vantages of small size and low power and the disadvantage
of not easy to expand. FPGA has the advantages of small
size, low power and high adaptability and disadvantages of
the high cost of development. With the advantage of flexibil-
ity, expansibility, portability, upgradeable and controllable,
General DSP (Digital signal processor) is very suitable for
video processing [1-3].

However, the high complex of video encoder and the
limitation of chip resource is challenge for the real time
compression processing. Therefore, it becomes the critical
problem to optimize hardware resource of DSP and software
architecture of video encoder to make full use of its benefits
[4-7].

At present, there are several video coding standards, such
as MPEG-x series standards made by ISO and H.26x series
standard made by ITU, and the newest HEVC standard. And
H.x series is mainly for transmission application, and Mpeg
series is mainly for storage video application. In the embedded

video encode system, MPEG-x standards are adopted fre-
quently.

This paper put forward an embedded multi-channel real-
time video coding system based on DSP (TMS320C64xx).
The system can not only work in real-time but also get high
compression ratio, favorable algorithm flexibility and wide
application field. With several kinds of optimizing tech-
nique, such as encoder algorithm, chip resource, transfer
mode and multi-task switch, the system can achieve real-
time compression of four channel CIF video data (the resolu-
tion is 352 288).

2. VIDEO ENCODER HARDWARE ARCHITECTURE

The hardware system architecture of video encoder is
shown in Fig. (1), and it consists of two parts, one is acquisi-
tion part and the other is encoder part.

Acquisition part: A/D is an analogy/digital chip, it can
convert analogy video to digital signal, and FPGA can col-
lect digital video signal from A/D chip, and then transform
into the specify form, such as 4:2:0 sample video format, and
data transferred to FIFO (First input First output)chip. And
FIFO is a memory chip.

The core part of the encoder is TMS320C6416 DSP of TI
Corp, it can get data from FIFO and coding video data, and
then compression bitrates is stored into SDRAM.
TMS320C6416 DSP is a general TI TMS320C6000 DSP and
adopts VLIW (Very Long Instruction Word) architecture.
TMS320C6416 DSP has a single Instruction stream opera-
tion code; the structure of the multiple data within an In-
struction cycle can parallel processing Instruction. The bus
has a 256 bits program data bus, two 32 bits data bus. Work-
ing frequency is 1 GMHZ, with 8M bits on chip storage,
integrated with multi-channel synchronous serial port

1010 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Chunlian et al.

MCBSP, provides 64 EDMA channel, more than 2 gb/s.
SDRAM(Synchronous dynamic random access memory) is a
memory chip, it is used to store the video data.

Compressed stream is transferred by the McBSP(Multi
channel buffer serial port) of DSP.

Fig. (1). The hardware system architecture of video encoder.

The hardware design scheme has two advantages: first,
good scalability. FPGA chip is not only for the data module
Input/output function, but also as a co processor to finish
entropy coding, data format transform functions; general
DSP as the core processing unit, with the upgrade perform-
ance of flexible, easy to upgrade the algorithm; flexible
video compression format control, real-time codec require-
ments.

3. VIDEO ENCODER SOFTWARE OPTIMIZATION

Although the embedded hardware platforms provide suf-
ficient process resource, the embedded platform does not
yield good performance. So the software optimization is
necessary

[8]. In the system, we adopt H.264 standard to

encode video

[9]. To improve efficiency, high efficiency

algorithms have been put forward: Smooth Motion Vector
Field Adaptive Search Technique (SMVFAST) [10], DSP-
based efficient quantization computation method (EQ4DSP)

[11], and Fast Sub-pixel Motion Estimation* (FSME*)

[12].

In order to take full advantage of the hardware architec-
ture of the video platform, some system level optimization
methods are used, which is described in paper [11], such as
changing structure of encoder, using CCS(code compile stu-
dio) compiler tools, etc.

Above-mentioned techniques enhance efficiency and im-
prove the performance of the encoder. After implementing
algorithm and system level optimization, the performance of
the system enhanced remarkably. But it still can’t meet the
real-time coding requirement; we need to optimize the sys-
tem further. Optimize the memory resource, with DMA (Di-
rect memory access) channel transferring to improve the
speed of transfer data.

3.1. Resource Optimization

In the system, there are three level store architecture
(Cache->internal RAM->external SDRAM), and their speed
are fast to slow. Because the access speed of DSP to
SDRAM is very slow, if DSP take most of its time in access-
ing external memory, it can’t develop its advantage in data
processing. We need assign memory resource reasonably.

The two level cache architecture of DSP is used to over-
come the bottleneck between high speed CPU and low speed
SDRAM. The improvement of the Cache efficiency influ-
ences the performance of the whole system greatly.

Key code and data is stored in cache, thus can improve
the processing performance of DSP; we optimize the system
as follows:

1) Implement GMBL

GMBL (Group of Macro-Block (MB) Lines, which con-
sists of several adjacent MB lines as an encode unit) encoder
strategy. The store architecture of encode data is classified as
frame level and GMBL level, as shown in Fig. (2). Frame
level data is stored in external memory and GMBL level data
is stored in internal RAM (Random access memory).
Thereby, original video data, reference image, midway com-
putation result and all other data needed by coding one
GMBL are stored in internal RAM.

The coding system can take full advantage of high-speed
internal RAM, reduces the data exchange, and improve the
encode efficiency ultimately.

2) Use the memory mode based on Cache

Internal RAM is separated into two-level cache. L2 cache
is responsible for transfer program code and data that are
stored in SDRAM.L1 cache is responsible for the key code
and data used by DSP core.

3) Fixed memory space in internal RAM

is used to store key computational code, such as DCT,
IDCT, quantization, IQ, image interpolation, sad calculation,
etc. The core code is stored in internal RAM, which can
avoid the transfer of code, and reduce the transfer time of
DSP.

Fig (2). GMBL strategy.

4) Store co-operation code in continuous address and

assign the storage space reasonably

In this way, the chance of cache hit can be increased. To
avoid cache miss, we further divide big program into sub-
module, or combine small module into medium module.

Table 1. Cache resource optimization result.

Items Basket basket

Cache optimization No Yes

code optimization No Yes

Clock cycle 934091538 17045757

Table 1 shows the result of resource optimization strat-
egy. When coding 25 frames per second data, resolution is

Bit Rate Buffer Control and Optimization of Embedded Video Encoder The Open Cybernetics & Systemics Journal, 2014, Volume 8 1011

352 288, the execution efficiency of the cache resource op-
timization strategy are 54.8 multiple of that of without cache
resource optimization.

EDMA transfer optimization:

EDMA of DSP can provide 2Gb/s data transfer band-
width, and can support 64 channels event transfer and link-
ing/chaining transfer mode. Linking/chaining transfer mode
needs 85 configuration parameters. When one event is
trigged, link mode permits a serial transfer. When the current
channel transfer is finished, the chain mode permits another
channel trigged to transfer data. After initializing by CPU,
the two transfer mode can transfer data automatically and
continuously. During the process of coding, we need interac-
tive data frequently, such as transfer acquisition data and
reference data into internal RAM and output reconstruct data
to external memory. It is very time-consuming to transfer
data by CPU. However, EDMA can implement transfer data
in different space without the intervention of CPU.

Fig. (3). Dual-buffer architecture.

In order to implement parallel processing, dual-buffer ar-
chitecture is designed in this paper, which can be shown in
Fig. (3). We divide internal RAM into two blocks for buffer-
ing data. Buf1 and buf2 is used as buffer for input of a line
image data, output data and midway computation result. The
bing-bang architecture enhances the high-speed process abil-
ity of CPU, which makes it possible for CPU and EDMA
controller operate the two different buffers at any time.
Therefore, it avoids the access conflict and promotes
achievement of parallel operation. Test result proves that by
using of dual-buffer architecture and chaining function of
EDMA, it takes 0.19ms for transferring one frame data with
resolution of 352 288. Instead, it will take 10.52ms without
using GMBL. Thus data interactive efficiency improves
greatly.

3.2. Task Priority Optimization Strategy

In this system, we need implement video encoder, one
channel has two tasks, one is input, and the other is coding.
The two tasks need one synchronization semaphore. As
shown in Fig. (4). Input task is composed of three sub-task,
initialization and acquisition image and format conversion,
and then FPGA chip acquire one frame image and finish the
format conversion from 4:2:2 to 4:2:0. The three sub-task
finish in sequence. Coding task composes of three functions,
initialization, coding image data, and compression data out-
put to FIFO.

In order to utilize the limited resource of CPU reasonably
and efficiently, we should arrange the priority of the task by
its importance, and guarantee the most important task will
gain response in advance. For example, the input task of en-

coder system need receive acquisition data real time, if it has
low priority, it will lose data or cause data error, which will
seriously affect the performance of the system, and accord-
ingly it must be endowed with high priority.

3.3. Code Level Optimization

By the optimization technology of 3.1-3.2, we need im-
prove the code efficiency father. By profile analysis report of
encoder, we find that 20% code modules take 80% run-time
in video encoder, so we optimize these modules by using C-
code and linear assembly level optimization.

C-Code Level Optimization: Main C-code optimization
methods

[13, 14] used in the system with the following parts.

1). The first optimization step that can be performed on
the DSP platform is to use compiler options. The compiler
options include speed / code /file level optimization. To get
better performance, we need trade off the improvement of
execution speed and incensement of code size.

2). Using intrinsic function to replace complicated C/C++
code and the packed data processing to maximize data
throughput. The C6000 compilers support special functions
called intrinsic operators, such as _add2, _mpy, _lddw,
_mem4_const, etc. those intrinsic operators can be translated
into efficient assembly code and can improve the execution
speed.

3). Unrolling loop to increase software pipelines. Since
the compiler only evaluates the possible loop optimization at
the top of loops, we need expand small loops manually and
unroll some inner loop.

4). Replace the multiply and division by the logic shift.
Multiply can replace with logic left shift and add, division
can replace with logic right shift and sub.

5). TI Corp provides two sets of assembly-optimized key
functions for data processing, named IMGLIB (image/video
processing library) and DSPLIB. By reasonably utilizing
available resources and avoiding potential resource conflicts,
each function in the two libraries is designed to produce the
best performance. Like IMG_fdct_8x8 and IMG_idct_8x8.

Here is a sample of sad16 function with two loops:

Original C code

for (j = 0; j < 16; j++) {

for (i = 0; i < 16; i++) {

sad += abs(*(ptr_cur + i)- *(ptr_ref + i));

}

ptr_cur += stride;

ptr_ref += stride;

}

Fig. (4). Task flow.

1012 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Chunlian et al.

Optimized C code

for (j = 0; j <16; j++) {

sad+=_dotpu4(_subabs4(*ptr_cur, _mem4_const(ptr_ref)),
0x01010101);

sad += _dotpu4 (_subabs4 (*(ptr_cur + 1), _mem4_const(ptr_ref + 4)),

0x01010101);

sad += _dotpu4 (_subabs4 (*(ptr_cur + 2), _mem4_const(ptr_ref + 8)),

0x01010101);

sad += _dotpu4 (_subabs4 (*(ptr_cur + 3), _mem4_const(ptr_ref + 12)),
0x01010101);

ptr_cur += stride>>2;ptr_ref += stride;

}

We optimize the code with unrolling loop and using in-
trinsic function, _dotpu4, _subabs4, _mem4_const.

6). Linear Assembly Level Optimization

If system can't still satisfy the real-time requirement, we
must rewrite kernel C code in linear assembly. The compiler
allows writing linear assembly code without being concerned
with the pipeline structure or registers assignment.

The CCS compiler assigns registers and uses loop opti-
mization in order to turn linear assembly into highly parallel
assembly. The following is a linear assembly sample of
sad16 function partly:

LDDW * A_srcImg, A_s7654:A_s3210

LDNDW * B_refImg, A_r7654:A_r3210

SUBABS4 A_s7654, A_r7654, A_d7654 SUBABS4
A_s3210, A_r3210, A_d3210

DOTPU4 A_d7654, A_k1, A_s1

DOTPU4 A_d3210, A_k1, A_s0

Table 2 lists some results of code optimizations, and fdct
use the library of IMGLIB. Experimental results show code
optimizations improve the performance notably; the execu-
tive cycles of some functions improve more than 100 multi-
ples, such as interpolateH function, use linear assembly op-
timization strategy can get good result.

3.4. Bit Rate Overflow Control

In the system, multi-channel buffer serial port (McBSP)
in DSP is used to send and receive compressed stream.

McBSP in the structure can be divided into a data chan-
nel and a control channel. Data channel to complete the data
transmitting and receiving; task and control channel com-
plete many tasks including internal clock, generating, frame
synchronization signal and selection of multiple channel etc.

In order to control the compressed stream transferred into
receiving system, in the paper, the bit-rate overflow control
scheme is given in the following part.

The encoder use two buffers for stream output, one is
macro-block row level buffer and the other is frame level
buffer. Macro block level buffer zone is located in the RAM
of DSP, the compressed bit stream for each macro block
lines is stored, and it’s size is changed with the different ap-
plication scenarios; frame level buffer zone is located in the
SDRAM chip, here, the compressed stream of each frame is
stored, which is designed the type of the software FIFO
(First in First out). The data compressed by DSP are trans-
ferred into the software FIFO.

DMA(Direct memory access)reads data from FIFO to
McBSP, through the McBSP shift output. DMA can be set to
automatically initialize channel mode, namely each transmis-
sion channel of DMA can repeatly transfer the data in FIFO,
the DMA channel will be reinitialized, and channel source
address registers the starting address for the FIFO. Because
the DMA is automatically read the data, without the inter-
vention of CPU, improve the efficiency of the program, but
the difficulties in the implementation is to control the possi-
ble overflow of the FIFO.

In the coding process, by copying the stream a macro-
block row level output buffer to the frame level buffer, here
proposed frame level buffer overflow control method.

The first step is to avoid buffer overflow:

Before output each macro block stream to the frame level
buffer, check whether the frame level buffer has enough
space for the current macro-block stream, once the residual
space of the buffer is insufficient, and the encoder will stop
code, until there is enough space.

Method for avoiding buffer underflow:

In order to avoid underflow, there are two steps.

firstly given the min value of buffer(such as buffer 10%),
after each macro block lines transfer stream to the frame
level buffer, check size frame level buffer, if it is less than
the lower limit of the buffer, a certain amount of zero byte is
filled in the buffer. In the paper, the min value of buffer is
determined by the maximum code time of macro-block row.

Secondly, if there was an underflow, it can be detected in
time, and make the stream error is reduced to a minimum.
When the underflow occurred, the formula (1) error will oc-
cur.

Fifo.length=(fifo.rear-fifo.front+fifo.size)%fifo.size (1)

Table 2. Comparison of run cycles on DSP.

Function Original Code Optimized c-Code Linear Assembly Multiple

transfer_16to8 sub 5523 1835 129 42.81

fdct 9342 220 42.46

sad16 8760 1851 132 66.36

interpolateH 16488 1757 131 125.86

Bit Rate Buffer Control and Optimization of Embedded Video Encoder The Open Cybernetics & Systemics Journal, 2014, Volume 8 1013

Fig. (5). Underflow of the FIFO.

Fig. (5) shows the buffer between before and after the
two query state time underflow condition.

Rear points to a location invariant; front position is point-
ing to the query state last time, the solid line is the latest
state.

Obviously, in formula (1) calculation of the buffer length
is the maximum, and the actual situation of buffer has been
underflow. In each query frame level buffer state, if detected
the underflow, a certain amount of.zero byte is immediately
filled. And then the fifo.rear is equal to fifo.front. These
methods are based on the assumption that between the adja-
cent two query state time intervals, the change of queue
length does not exceed half of the buffer zone.

4. PERFORMANCE TEST AND ANALYSIS

After adopting improved video coding algorithms, sys-
tem, C-code level and linear assembly optimizations, we
compare the encoder performance before and after optimiza-
tion. The results are shown in Table 2.

Four channel video signals (CIF resolutions) are captured
and input into the system and processed in polling turn. The
content of the input video will influence the compression
efficiency slightly, so we make several experiments. We
choose four CIF sequence, Basket is a moving fast video and
Flower is a colourful video and Mother is a relative static
video, Coastguard is mid-moving video.

As shown by the experimental results, software optimiza-
tion implementations studied in Section 3 improve the per-
formance of encoder notably. Our system can satisfy the
real-time encoding requirement of four-channel (every chan-
nel is 25frame/sec).

CONCLUSION

In this paper, we design an embedded video coding
hardware platform based on DSP and then give the efficient
video bit rate buffer control method, and in order to improve
the performance of the encoder, several optimization have

been given, including the store resource, rewrite key code
and transfer optimization with EDMA.

Experimental results identify that the system can encode
can be fit for real-time application. The system can satisfy
the requirements of various embedded multimedia applica-
tions, especially those with strict restriction in size, power
consumption and multi-channel signal environment, such as
surveillance applications.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This study was supported by the National Natural Sci-
ence Foundation of China (No.61103124) and the Key Labo-
ratory of Advanced Information Science and Network Tech-
nology of Beijing (No.XDXX1301).

REFERENCES

[1] J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand,
"Comparison of the Coding Efficiency of Video Coding Standards -

Including High Efficiency Video Coding (HEVC)", IEEE Trans.
Circuits and Systems for Video Technology, Vol. 22, No. 12, pp.

1669-1684, Dec. 2012.
[2] Lappalainen V. et al.. Performance of H. 26L video encoder on

general-purpose processor. In: Proceedings of the International
Conference on Consumer Electronics, Los Angeles, 2001, 266-267

[3] A. Bahari, T. Arslan, and A. Erdogan, “Low-power hardware ar-
chitecture for vb sme using pixel truncation,” in Proc. 21st Int.

Conf. VLSI Design, Hyderabad, Andhra Pradesh, 2008, pp. 389–
394.

[4] Hsiu-Cheng Chang, Jia-Wei Chen, Bing-Tsung Wu, Ching-Lung
Su, Jinn-Shyan Wang, and Jiun-In Guo, “A Dynamic Quality-

Adjustable H. 264 Video Encoder for Power-Aware Video Applica-
tions, ” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 12

pp. 1739-1754, Dec. 2009.
[5] Zhao Bao-jun, et al. Implementation of real-time 2D-DCT with

FPGA and DSP[J]. Acta Electronica Sinica, 2003, 31(9): 1317-
1319. (in Chinese)

[6] Miyazaki T. et al.. Real-time software video encoder on multime-
dia RISC processor. In:Proceedings of the IEEE Workshop on Sig-

nal Processing Systems, Cambridge, Massachussetts, 1998, 33-42
[7] Li fanghui, Wang Fei, He Peikun. TMS320C6000 Series DSPs

principle and application (second edition). Beijing electrical indus-
try press. 2003

[8] XU Xiao-dong, XU Pei-xia. Optimization of video decoder system
based on TMS320 DM642[J]. Journal of Data Acquisition & Proc-

essing, 2005, 20(1):91-95. (in Chinese)
[9] Zhong yuzhuo, Wang Qi, He yuwen. Multimedia data compression

standard based on object Mpeg-4 and its verify model. Beijing sci-
ence press. 2000.10

Table 3. System performance of after optimizations.

Sequences Non-Optimization (Frame/sec) Optimized (Frame/sec) Multiple

Basket 2.56 105.3 39.96

Flower 3.8 109.8 28.89

Coastguard 4.1 104.4 25.46

Mother 4.32 110.43 25.56

1014 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Chunlian et al.

[10] Li Wei, Zhou B, Li B, A Fast Motion Estimation Algorithm Using

Adaptive Motion Vector Field Search, Chinese Journal of Comput-
ers, 2003, 26(2): 168-173.

[11] Li Wei. Research of Video coding and Dsp-based implementation
Ph.D.dissertation]. Beihang University, Beijing 2003

[12] Zhang Jinyin. Block Matching Sub-pixel Motion Estimation and Its

Application [M.S.dissertation].Beihang University, Beijing 2004
[13] SPRU190. TMS320C6000 Peripherals Reference Guide[on line].

http://www.ti.com.
[14] SPRU198.pdf. TMS320C6000 programmer’s guide[on line].

http://www.ti.com.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Chunlian et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

