
Send Orders for Reprints to reprints@benthamscience.ae

1022 The Open Cybernetics & Systemics Journal, 2014, 8, 1022-1026

 1874-110X/14 2014 Bentham Open

Open Access

Combinatorial Optimization of Multi-agent Differential Evolution
Algorithm

Fahui Gu
1,2,*

, Kangshun Li
1
, Lei Yang

1
 and Yan Chen

1

1
School of Information, South China Agricultural University, Guangzhou, Guangdong 510006, China;

2
Department of

Electronic Information Engineering, Jiangxi Applied Technology Vocational College, Ganzhou, Jiangxi 341000, China

Abstract: Combinatorial optimization is often with the local extreme point in large numbers. It is usually discontinuous,

multidimensional, non-differentiable, constraint conditions, highly nonlinear NP problem. In this paper, according to the

characteristics of combinatorial optimization problem, we put forward the combination optimization of multi-agent differ-

ential evolution algorithm (COMADE) through combining the multi-agent and differential evolution algorithm, in which

we designed the competition behavior and self-learning behavior of agent. Through performance testing of strong con-

nected, weak connected and overlap connected deceptive function on the COMADE algorithm, the results show that the

COMADE algorithm is effective and practical value.

Keywords: Combinatorial optimization, competition behavior, differential evolution algortithm, mulit-agent, self- learning
behavior.

1. INTRODUCTION

Combinatorial optimization is often with the local ex-

treme point in large numbers. It is usually discontinuous,

multidimensional, non-differentiable, constraint conditions,

highly nonlinear NP problems. The combinatorial optimiza-

tion is always hot subject in the fields of science and engi-

neering. The traveling salesman problem (TSP) is a famous

problem in the combinatorial optimization. The combinato-

rial optimization’s solution has not only great academic

value but important practical value. It has many solutions [1-

3], such as Ant colony Algorithm (ACA), Particle Swarm

Optimization (PSO) and so on, and the method of intelligent

optimization is quite efficient. In this paper, a kind of com-

bination optimization of multi-agent differential evolution

algorithm (COMADE) is proposed. Through performance

testing of strong connected, weak connected and overlap

connected deception function on the COMADE algorithm,

the results show that the COMADE algorithm is effective

and practical value.

2. DESIGN OF AGENT FOR COMBINATORIAL OP-
TIMIZATION

Combinatorial optimization can be described as [4]:

S , f() , where S is the search space, and

f is the objective

function:

f : S R . The purpose of solving is to find

 x
*

S for

f (x*) f (x) and x S . Therefore, we can use

an agent to represent a state of search space.

Now we define that an agent is a candidate solution of
problems to be optimized, which is expressed as a model
one:

a = (a

1
, a

2
, , a

n
) S , a

i
= 0or1(1 i n) (1)

where n is the scale of the problem, the energy of agent is

equal to the value of the objective function, that is

)()(afaEnergy = .

In order to calculate the energy of each agent, we put the

agents into a fixed grid L expressed Fig. (1).

Fig. (1). Agent grid model.

The agents which can interact with

L

i, j
 are determined

by the parameter of perception range, which can be denoted

as

R

s
. Thus, the agents which can interact with L

i, j
 are ex-

pressed as the follow model tow.

L

k ,l
, (i R

s
) k (i+ R

s
), (j R

s
) (j + R

s
) (2)

Combinatorial Optimization of Multi-agent Differential Evolution Algorithm The Open Cybernetics & Systemics Journal, 2014, Volume 8 1023

where k and l can be denoted as follows:

k ={

k L
size

,k>L
size

k+L
size

,k<1
, l ={

l L
size

,l>L
size

l+L
size

,l<1

The neighborhood of

L

i, j
, which is the range of interac-

tion with

L

i, j
, is denote as

N

i, j
.

2.1. Competition Behavior

In competition behavior, the perception scope of each

agent is set 1, thus, there are 8 agents in the neighborhood,

which can be denoted as N
c . When the energy of

L

i, j
 is not

less than the others of neighborhood,

L

i, j
 will continue to

survive, otherwise it will die. The procedure of competition

behavior can be described as following [4, 5]:

Where

L

i, j
= (l

1
, l

2
, , l

n
), a

max
= (a

1
, a

2
, , a

n
) N

i, j

c

and a N

i, j

c
, Energy(a) Energy(a

max
) , if

Energy(L

i, j
) Energy(a

max
) , the offspring

c = (c

1
,c

2
, ,c

n
) can be created by

a

max
 in the 2 ways.

First way: when the set D represents the differential bit

number of

L

i, j
and a

max
, we establish the model three:

c

i
={

1 a
i
,otherwise

a
i
,(i D)or ((i D)and (Random(2)=0))

, (1 i n) (3)

where Random(2) is used to randomly generate 0 or 1.

Second way: we build the model four:

c
i
={

1 a
i
,otherwise

a
i
,Random>

1

n , (1 i n) (4)

where Random is used to randomly generate the real number

between 0 and 1.

The number of set D is equal to Hamming Distance be-

tween

L

i, j
and a

max
. When the number is small, it shows that

L
i, j

 and

a

max
 are similar, it is hard to generate the offspring

by the first way. Therefore, we choose the way to generate

the offspring c by the parameter of

D

h (0,1) , if

| D |

n
> D

h
, the first way is used, otherwise the second way.

2.2. Self-learning Behavior

Each agent can increase energy by self-learning behavior.

But only when energy of an agent is not less than the any

one of the learning scope, can the agent can get a chance to

learn. We define the learning table as matrix (LL)
p 2

, which

has p rows and 2 columns, therefore the learning table

meets the following conditions [4-6]:

nLL ji,1 (2) and
2,1, ii

LLLL ,

1 i p, j =1or2

i j, (LL

i,1
LL

j ,1
)or(LL

i,2
LL

j ,2
)

p
n(n+1)

2

Therefore, the learning table is (LL)
n(n+1)

2
2

, the several

lines of the table

(LL)
n(n+1)

2
2

 can be composed of a learning

sub meter.

The learning procedure of the agent

(L

i, j
= (l

1
, l

2
,..., l

n
)) is

described as the following:

First learning way:

Step 1:

q 1 ;

Step 2: generate

(LL)q ;

Step 3: choose 1 row from

(LL)q , suppose no.

j row,

generate a new agent (a = (a
1
,a
2
,...,a

n
)) from the following

the model five:

a

i
={

1 l
i
,otherwise

l
i
,(i<LL

j ,1
q)or (i>LL

j ,2
q)

, (1 i n) (5)

Step 4: if

Energy(a) > Energy(L

i, j
) , then

Learning(a) False ,

L

i, j
a , stop;

Step 5: delete the

j row from

(LL)q , if

(LL)q is null,

then

q q +1 ;

Step 6: if

q LL

w
, turn to step 2, otherwise

Learning(L

i, j
) True , stop, where

LL

w
 is expressed the

learning sub meter number of the total learning table, every

sub meter table has

n(n+1)

2
/ LL

w
, denote the table as

 LL
1
, LL

2
, LL

LL
w ;

Second learning way:

Step 1: randomly generate a sequence of integers from 1

to n , denote it as

(p

1
, p

2
, , p

n
) , set

q 1 ;

Step 2: generate

(LL)q ;

Step 3: choose 1 row from

(LL)q , suppose no. j row,

generate a new agent

(a = (a

1
, a

2
,..., a

n
)) from the following

the model five:

a

pi
={

1 l
pi

,otherwise

l
pi

,(i<LL
j ,1
q)or (i>LL

j ,2
q)

, (1 i n) (6)

Step 4: if

Energy(a) > Energy(L

i, j
) , then

Learning(a) False ,

L

i, j
a , stop;

Step 5: delete the

j row from

(LL)q , if

(LL)q is null,

then

q q +1 ;

1024 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Gu et al.

Step 6: if

q LL

w
, turn to step 2, otherwise

Learning(L

i, j
) True , stop.

Generally speaking, it is good to take the first learning

way. When it is failure to learn in the first way and

Learning(L

i, j
) True , we will take the second way to learn.

3. DESIGN OF COMADE

The algorithm of COMADE is described as the following
[4-7]:

Step 1: initialize population L
0 , randomly generate

L
size
L
size

 agents, set Learning(L
i, j
) False , where

i, j =1,2, , L

size
;

Step 2: evaluate Energy of every agent in
t
L by the com-

petition behavior method, if

a N

i, j

c , Energy(a) Energy(L
i, j

') ,

L

i, j

t+1/2
L

i, j

' , otherwise,

generate a new agent c by D
h
,

Learning(c) False ,

L

i, j

t+1/2
c ;

Step 3: evaluate Energy of every agent in

L

t+1/2
 by the

self-learning behavior method, if

a N
i, j

1 ,Energy(a) Energy(L
i, j

t+1/2) and

Learning(L
i, j

t+1/2) = False , take the first self-learning behavior

method for

L

i, j

t+1/2
to learn, if

a N
i, j

1 ,Energy(a) Energy(L
i, j

t+1/2) and

Learning(L

i, j

t+1/2) = True , take the second self-learning behav-

ior method for

L

i, j

t+1/2
to learn, then

L

i, j

t+1
L

i, j

t+1/2 ;

Step 4: differential and crossover operation for each

agent of L
i, j

t+1
, generate L

t+1 ;

Step 5: evaluate Energy of every agent in L
t+1 , if

Energy(L
i, j

t+1) > Energy(a
max

t) , then a
max

t+1
= L

i. j

t+1
, otherwise,

a
max

t+1
= a

max

t
;

Step 6: if meet the termination condition, exit, otherwise,
t=t+1, turn to step 2.

4. SIMULATION EXPERIMENT

There are many practical problems of combinatorial op-
timization. In order to test the algorithm performance of
COMADE, we choose the deception function to test [4, 7-
12].

4.1. Experiment of Strong Connected Function

We use the following tow strong connected functions to
test COMADE:

f
1
(a) = f

deceptive3

i=1

n/3

(a
3i 2
,a
3i 1
,a
3i
)

f
2
(a) = f

trap5

i=1

n/5

(a
5i 4

, a
5i 3

, a
5i 2

, a
5i 1

, a
5i

)

From the above Table 1, we can know that the calcula-
tion amount of COMADE is about 10% of the others, the
performance of COMADE is very good.

4.2. Experiment of Weak Connected Function

We use the following tow weak connected functions to

test COMADE:

f
3
(a) = f

deceptive3

i=1

n/3

(a
i
,a
i+n/2
,a
i+2n/3

)

f
4
(a) = f

bipolar6

i=1

n/6

(a
i
,a
i+n/6
,a

i+2n/6

,a
i+3n/6

,a
i+4n/6

,a
i+5n/6

)

From the above Table 2, we can know that it is harder to
solve the weak connected deceptive function than to solve
the strong connected deceptive function, but we can see that
it is only millions of evaluation to solve the 90 dimensional
weak connected cheat function through the COMADE algo-
rithm

4.3. Experiment of Overlap Connected Function

We use the following tow overlap connected functions to
test COMADE:

Table 1. Comparison of the average function evaluation times of the COMADE test on strong connected function for 50 times in-

dependent and other algorithm.

Function Dimension COMADE Paper [4] Paper [5]

n=30 796 842 8500

n=60 3679 3817 27300 1
f

n=90 9023 9790 57000

n=30 805 869 14300

n=60 3681 4088 41250
2
f

n=90 8367 8956 75450

Combinatorial Optimization of Multi-agent Differential Evolution Algorithm The Open Cybernetics & Systemics Journal, 2014, Volume 8 1025

Table 2. Comparison of performance based on COMADE through strong connected and weak connected function testing.

Function Average Times of Function Evaluation Ratio Index Number

n=30 796

n=60 3679

n=90 9023
1
f

n=210 65301

0.33 O(n2.26)

n=30 805

n=60 3681

n=90 8367
2
f

n=210 71642

0.40 O(n2.25)

n=30 65312

n=60 900218

n=90 2325892

3
f

n=210 42865421

6.52 O(n2.94)

n=30 59315

n=60 1136828

n=90 7569132
4
f

n=210 254689537

0.028 O(n4.06)

Table 3. Comparison of performance based on COMADE through overlap connected and weak connected function testing.

Function Average Times of Function Evaluation Ratio Index Number

n=30 796

n=60 3679

n=90 9023

n=510 478941

n=810 1253853

1
f

n=990 2917483

0.33 O(n2.26)

n=30 805

n=60 3681

n=90 8367

n=510 510348

n=810 1349204

2
f

n=990 2184380

0.40 O(n2.25)

n=30 783

n=60 3587

n=90 7123

n=510 319318

n=810 1019287

5
f

n=990 1457625

0.25 O(n2.26)

1026 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Gu et al.

Table 3. Contd…….

Function Average Times of Function Evaluation Ratio Index Number

n=30 978

n=60 3754

n=90 10356

n=510 456872

n=810 1236863

6
f

n=990 2001358

0.25 O(n2.29)

f
5
(a) = f

deceptive3

i=1

n 2

(a
i
, a

i+1
, a

i+2
)

f
6
(a) = f

trap5

i=1

n 1

4

(a
4i 3

, a
4i 2

, a
4 i 1

, a
4 i

, a
4i+1

)

From the above Table 3, we can know that it is only mil-
lions of evaluation to solve the 900 overlap connected cheat
function through the COMADE algorithm.

CONCLUSION

From the Tables 1-3, we can see that the COMADE algo-
rithm has good performance, especially for solving large-
scale complex combinatorial optimization problem.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work is supported by the Education the Education
Science and technology fund of the Education Department of
Jiangxi, China (No. GJJ14807), and the Fund of Natural Sci-
ence Foundation of Guangdong Province, China (No.
2014A030313454).

REFERENCES

[1] C. Lin, A. Qing, and Q. Feng, “Synthesis of unequally spaced an-
tenna arrays by using differential evolution,” IEEE Transactions on

Antennas and Propagation, vol. 58, no. 8, pp. 2553-2561, 2010.

[2] F. Peng, K. Tang, G. Chen, and X. Yao, “Population-based algo-

rithm portfolios for numerical optimization,” IEEE Transactions on

Evolutionary Computation, vol. 14, no. 5, pp. 782-800, 2010.

[3] K. Tang, Y. Mei, and X. Yao, “Memetic algorithm with extended

neighborhood search for capacitated arc routing problems,” IEEE

Transactions on Evolutionary Computation, vol. 13, no. 5, pp.

1151-1166, 2009.

[4] Z. Wei-Cai, J. Liu, F. Liu, and L. Jiao, “Combinatorial optimization

using multi-agent evolutionary algorithm”, Chinese Journal of

Computers vol. 26, pp. 1341-1353, 2004.

[5] M. Pelikan, D. E. Goldberg, “BOA: the Bayesian optimization algo-

rithm,” IIIiGAL Report No. 98013, Urbana, IL:University of IIIi-

nois at Urbana-Champaign, IIIinois Genetic Algorithms Laboratory,

1998.

[6] K. Tang, Y. Mei, and X. Yao, “Memetic algorithm with extended

neighborhood search for capacitated arc routing problems,” IEEE

Transactions on Evolutionary Computation, vol. 13, no. 5, pp.

1151-1166, 2009.

[7] K. L. Brown, E. Nudelman, and Y. Shoham, “Empirical hardness

models: Methodology and a case study on combinatorial auctions,”

Journal of ACM, vol. 56, no. 4, pp. 1-52, 2009.

[8] K. D. Jong. Evolutionary Computation: a unified Approach, MIT

Press, Cambridge, MA 2006, pp. 85-140.

[9] M. Gagliolo and J. Schmidhuber, “Learning dynamic algorithm

portfolios,” Annals of Mathematics and Artificial Intelligence, vol.

47, no. 3-4, pp. 295-328, 2007.

[10] F. Peng, K. Tang, G. Chen, and X. Yao, “Population-based algo-

rithm portfolios fo rnumerical optimization,” IEEE Transactions on

Evolutionary Computation, vol. 14, no. 5, pp. 782-800, 2010.

[11] K. H. Han, K. H. Park, C. H. Lee, and J. H. Kim, “Parallel quantum

inspired genetic algorithm for combinatorial optimization problem,”

In: Proceedings 2001 Congress on Evolutionary Computation, Pis-

cataway, NJ:IEEE Press, vol. 2, 2001, pp. 1422-1429.

[12] S. Deluccia, and D. H. Werner, “Nature-based design of aperiodic

linear arrays with broadband elements using a combination of rapid

neural-network estimation techniques and genetic algorithms,”

IEEE Antennas and Propagation Magazine, vol. 49, no. 5, pp. 13-

23, 2007.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Gu et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

