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Abstract:  Upper bound of efficiency loss is a valuable issue for transport network design and planning. This paper ini-
tially explores it in a taxed stochastic traffic network whose equilibrium flow pattern is deduced by a cross-nested Logit 
(CNL) flow assignment model, and a centrally controlling Stackelberg strategy. With the assumptions of separability, 
nondecreasingness, and convexity of the link time function and the fixed origin-destination (OD) demand of network, the 
equivalent variational inequality for a CNL-based stochastic user equilibrium (CNL-SUE) model is established and first 
used to obtain upper bounds on Stackelberg network inefficiency. Further, for low-degree link time function such as Bu-
reau of Public Roads and the affine forms, their inefficiency upper bounds are analyzed with some meaningful results.  
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1. INTRODUCTION  

How is the efficiency loss of users’ selfish route choice 
behaviors affected by traffic assignment model, stochastic 
factor in traveler route selection, routing strategies, and tax 
schemes? Attempting to contribute to this practical end, this 
paper makes great efforts to investigate their combined im-
pacts on the inefficiency upper bound.  

The price of anarchy concept dates back to 1999 when 
Koutsoupias and Papadimitrious [1] first proposed to deter-
mine the efficiency losses caused by the non-cooperative 
behavior of users in telecommunication network. The POA 
coined by Papadimitriou (2001) [2] for a non-atomic conges-
tion game is determined by looking for the worst possible 
ratio between the total cost incurred by players in an user 
equilibrium (UE) situation and of a system optimum (SO). 
Hereafter the efficiency loss and its upper bound of traffic 
equilibrium received much attention [3-5]. Roughgarden and 
Tardos (2002) [3] first used the concept of POA [1] to upper 
bound the efficiency loss and proved that the total travel time 
of a UE is at most 1/3 higher than in a SO if the latency 
functions are linear with nonnegative coefficients. Chau and 
Sim (2003) [6] and Yang et al. (2010) [5] studied the effi-
ciency loss of transportation equilibrium problem with elas-
tic demand.  

None of the above researches considers Stackelberg rout-
ing strategies. Among Stackelberg strategies, the SCALE is a 
popular one whose effectiveness has been analyzed [7, 8]. 
Scholars have investigated the impact of Stackelberg routing 
to reduce the UE cost in network routing [7, 9, 10]. In sim-
plest graphs with parallel links and latency functions of  
 

special simplified form as the inverse of the minus of link 
capacity and link flow, Korilis et al. (1997) [9] first applied 
Stackelberg strategy controlling a fraction of flow as a 
means to improve system performance considering atomic, 
unsplittable routing decision. From then on, some works of 
Stackelberg policy developed to improve the POA such as 
Roughgarden (2004) [11], Stier-Moses (2004) [12], Kara-
kostas and Kolliopoulos (2009) [10] on parallel-link or gen-
eral graph, primarily for linear latency functions.  

Furthermore, due to an absence of road pricing that origi-
nated from Pigou (1920) [13], the demand-supply equilib-
rium of road network settles at a suboptimal point bringing 
about the negative externality. Such inefficiency pervades 
many road networks during peak hours. For that reason, there 
emerge few researches focusing on the impact of tax schemes 
on POA [5, 14]. Such works involve a demand-adjusting 
tax-charging policy under currently deteriorated urban traffic 
condition to obtain different and intensive insights into the 
POA of transport network.  

Despite of the employment of Stackelberg strategies or 
tax schemes, the existing researches on POA bound mainly 
focus on deterministic traffic assignment, i.e. UE, while the 
few on stochastic user equilibrium (SUE) assignment just 
adopting multinomial Logit (MNL) model [15], the simplest 
one in Logit families. For example, Guo et al. (2010) [16] 
gave the bound of POA of Logit-based stochastic user equi-
librium, Yu et al. (2009) [17] investigated the upper bound 
of SUE’s inefficiency. It is well known that different models 
lead to network different flow assignment pattern and hence 
different inefficiency. Previous studies on price of anarchy 
(POA) usually adopt. However, UE is so simple, and MNL 
cannot deal with path overlapping characteristics, which 
could be perfectly. Therefore, it is of great significance to 
employ cross-nested Logit (CNL) model [18, 19] that can 
capture path correlation to find POA upper bound in network 
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flow assignment. CNL model has been mentioned for the 
first time by Vovsha (1997) [20] in the context of a mode 
choice survey in Israel, and be applied to route choice prob-
lem by Prashker and Bekhor (1998) [18], and so on.  

Since most researches on POA bound apply MNL model, 
presented in the absence of either Stackelberg strategy, or 
stochastic user equilibrium, or tax scheme, CNL-SUE in-
duced by Stackelberg strategy in this paper cooperates with 
weak Stackelberg policy and tax scheme to improve the up-
per bound of inefficiency stemming from the stochastic self-
ish route selection behavior. Network tolls imposed by a 
central authority on edges help to drive the Stackelberg-
induced stochastic user equilibrium towards system perform-
ance improving state. Section 2 presents the problem studied 
with basic symbols and concepts. Assuming that link time 
function is separable and monotonic and that OD demand is 
fixed, Section 3 formulates the equivalent variational ine-
qualities (VI) for the CNL-based SUE model induced by 
weak Stackelberg strategy and tax scheme. Further, Section 
4 analyzes and establishes POA upper bound on taxed Stack-
elberg CNL-SUE. In Section 5, POA upper bounds are ana-
lyzed for the cases of low-degree link time functions, i.e. 
typical BPR function and its affine form. Section 6 gives 
some concluding remarks.  

2. STACKELBERG STOCHASTIC EQUILIBRIUM IN 
TAXED NETWORK 

Let ( , )=G V E  denote a traffic network, where V  and 

E  are the set of vertices and edges respectively. Let 
{ }w=W  be a set of OD pairs, 

w
R  the set of all simple paths 

of w W , 0
w

q >  the travel demand between w  with 

( ) | | 1w
q

+
=

W
q  as demand vector, where 

+
 represents 

the set of nonnegative real number. Let w

erf  be the traffic 

volume on path 
w

r R  passing link 
r

e E , with path flow 

vector ( ) ( )| | | | 1ww

erf
+

=
W R

f . Let 
a

v  be the link flow on 

edge a E , and its corresponding vector ( ) | | 1

a
v

+
=

E
v .  

Let ( ) | |:
a

u u a
+

=
E

E  be a general tax scheme, 

where 
a

u  is the tax charge on link a E  in equivalent time 

unit. It has been recognized that the second-best pricing 
scheme is more technically and practically feasible. In real-
ity, tax charge for a link can be either less or greater than the 
corresponding congestion externality in a second-best pricing 
scheme, so assume so * so *( ) ( )

a a a a a a a
u k v v t v v= + + , where 

[0, 2]
a

k  is a tax coefficient. Let ( )
a a a

t t v= T  denote a 

differentiable increasing convex function of flow 
a

v  (sepa-

rable case), i.e. ( ) 0
a a a

dt v dv  and 2 2( ) 0
a a a

d t v dv , 

a E , with a natural property that ( )tv v  is convex in v , 

where T  is a given class of link time functions, T  com-
prises a class of BPR functions and simple affine functions. 
Then link cost function ( )

a a
c v  on link a E  can be ex-

pressed as ( ) ( )
a a a a a

c v t v u= + .  

UE is inefficient achieved from noncooperative selfish 
behaviors, without consideration of entire social objectives, 
which leads to network performance degradation. As to SUE 
assignment where each user also cannot decrease his travel 
cost by unilaterally deviating from his path, it is the expan-
sion of UE assignment. A Stackelberg stochastic user equi-
librium problem, for traffic network, is defined by embed-
ding SUE traffic model into a Stackelberg network frame-
work, with leader system pursuing optimum and follower 
system stochastic Nash equilibrium. Leading users of a fixed 
fraction  centrally controlled by a network manager 
choose optimal paths in any desired way to minimize total 
system travel time, and the others acting as followers influ-
enced by the leaders attempt to choose their routes under 
SUE assignment. A weak Stackelberg strategy [21] is de-
fined as a feasible path flow pattern f  that satisfies 

,
w

w w

err
f q w=

R
W . An opt-restricted Stackelberg 

strategy f  is such a strategy that meets so
,

a a
v v a E , 

the use of which has been proved not to increase the price of 
anarchy [22]. According to the proof by Smith (1979) [23], a 
lemma is given as following.  

Lemma 1. With a Stackelberg strategy f , the Nash 

flow *
f  induced by f  in conjunction with taxes u , can be 

characterized by the following variational inequality: *
f  is a 

Nash flow induced by f  if and only if for arbitrary x  satis-

fying demands (1 ) w
q , w W  such that  

* *( )( ) 0
a a a a a

a

c v v v x+

E

           (1) 

Let ( )( )* * *( ) ( ) ( ) ( ) ( )
a a a a aa

T t v u v u v u v u+ = + +
E

v v  

denote the total system travel time at Stackelberg Nash equi-
librium assignment. We are interested in the price of anarchy 
defined by eq * so( )T T= +v v , where so so( )T T= v  denotes 

the optimal total system travel time, and 
so arg min ( )

a a aa
t v v=

v
Ev Ù

v  that is unique due to the strict 

convexity of ( )
a a a

t v v .  

Stochastic user equilibrium models are established based 
on the assumption of variations in travelers’ perception, due 
to perhaps different cognition of the traffic network, of the 
travel costs along the link. The perceived travel costs can be 
expressed as the extension of travel cost functions in deter-
ministic traffic model by including random parts. The most 
widely used SUE model is the multinomial Logit (MNL) 
model obtained assuming that the random terms are inde-
pendently and identically distributed Gumbel variables. 
Other than MNL, Cross-nested Logit (CNL) model is an-
other typical case in Logit family. MNL is simple but cannot 
capture path correlation structure, while CNL is just the op-
posite. CNL [18, 19] models correlation through discrete 
choice model and the distribution assumption of error items. 
Prashker and Bekhor (1998) [18] applied CNL to route 
choice problem. CNL model allow more flexible error struc-
ture by applying a two-level tree structure. We put the CNL 
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choice probability of route r  between OD pair w  in hierar-
chical road network as follows  

( )

( )

1

1

exp ln exp( )

exp ln exp( )

r

w r

w w w w

r er ej je j
w

r
w w w w

l el ej jl e j

c c

P

c c

μ

μ

+

=

+

E

R E

   (2) 

where  is a positive scaling factor related to the variances 
in the perceived travel costs, larger values implying less be-
tween-traveler perception variation; 

r
E  is the set of links 

constituting route r ; w

er
 denotes allocating parameter to 

describe how likely alternative route r  is allocated to the 
nest e  that belongs to the route, and satisfies 0

w

er
, 

( ) 1w

ere
r = . (0,1]

e
μ  is dissimilarity parameter of nest 

e , representing the similarity or correlation among stochas-
tic items of alternative routes in the nest; μ  indicates the 

nested degree; allocating parameters are calculated by 
network topologies [24], defined as (3) by link and path 
“length”.  

( ) 1

, ,
w w

er a r er r w
L L e r= E R         (3) 

where 
1
 is a parameter to be calibrated reflecting travelers’ 

perceived similarity among paths, and w

ar
 is the element of 

link-route incidence matrix | | | |
w

+

E R  with 1
w

ar
=  if route 

r  uses link a  and zero otherwise.  

3. VI FOR CNL-SUE WITH STACKELBERG STRAT-
EGY AND TAX SCHEME 

In terms of the assumption that the link time function is 
separable and monotonically increasing with link flow, and 
that the network OD demand is fixed, the equivalent varia-
tional inequality formulation for the cross-nested Logit-
based SUE model is given as following.  

Theorem 1. The stochastic user equilibrium flow *
f  in-

duced by f  with the use of CNL-SUE model can to be 

characterized by the following variational inequality: 
*

f
f  is a stochastic user equilibrium path flow pattern 

induced by f  if and only if for all flows f  satisfying de-

mands (1 ) ,w
q w W  such that  

( ) ( )* * 1
( , ) ln (1 )

w w

w w w w w w

r er er er er

w r w r

c f f f f q
μ

+ +
W R W R

 

) ( )* *1
ln ln 0w w w w

er er er erf f f
μ

+ , f
f       (4) 

where ( )( ) ( )w w w

r a a ar a a a ara a
c c v t v u= = +

E E
; and  

{ | , 0, , , }
r w

w w w

er er w er r we r
f f q f e r w= =

f E R
E R W   

is the nonempty, convex, and compact set of feasible path 
flow pattern.  

Proof. According to Prashker and Bekhor (1998) [18], 
the above cross-nested Logit-based SUE model can be for-
mulated as the following equivalent mathematical program-
ming problem (MP1)  

(MP1)  

1 10
min  Z ( )= ( ) ln

( )

. .   ,

        ,

        0, , ,

a

r w

r w

w r

w
v

w er

a er wa
w e r er

w w

ere r

w k

a er raw r e

w

er

f
c v dv f

s t f q w

v f a

f e r w

μ

μ
+ +

=

=

E
W E R

E R

W R E

f

 

1
ln

r w w

w w

er er

w e r r

f f
μ

+
W E R R

         (5) 

Let w  be the Lagrange multiplier (dual variable) of 

constraint 
r w

w

er we r
f q=

E R
. w  represents the ex-

pected minimum conceptual travel cost. The Lagrange func-
tion of MP-CNL is formulated as  

( )( , ) Z( )
r w

w w w

erw e r
L q f= +

W E R
f f     (6) 

In terms of the first-order optimality conditions, we have  

0, 0, 0; 0, 0, 0; 0, 0
w w w w w

er erw w w w w

er er

L L L L L
f f q q

f f q q
= = =

 (7) 

So for fixed traffic demand, this conditions generates  

1

1 1
ln ln

( )
w

w

w w wer

r erw w
rer er

fL
c f

f μ

μ μ
= + + +

R

     (8) 

Furthermore, we get 

( ) ( )
*

* * *

1

1
( ) ln ln 0

( )w

w

w

w w w wer

r er er erwr
w W r R er

f
c f f f

μ

μ μ
+ +

R
f , 

f
f |¸                 (9) 

and  

( )

1
1

1
1( ) exp( 1)

w

w w w w w

er er er r

r

f f c
μ μ

μ
=

R

   (10) 

and then taking summation of (10) over all path of 
w

R , 

we reformulate to get  

( )
1

1
1( ) exp( 1)

w w

w w w w

er er r

r r

f c

μ

μ
μ

=
R R

   (11) 

So, under the condition of selecting link (nest) 
r

e E , 

conditional choice probability of route 
w

r R  can be ob-

tained by (10) and (11) as the follows 

( )

( )

1

1

exp( )
( | )

exp( )
w

w

w ww
er rer

w
w w

er
er r

r
r

cf
P r e

f c

μ

μ
= =

R
R

    (12) 
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where 
w

w

err
f

R
 is the traffic volume on link 

r
e E  of 

route 
w

r R  between OD pair w W .  

Taking a μ  power for (11), we have  

( )
1

1( ) exp( 1)
w w

w w w w

er er r

r r

f c

μ

μ
μ

=
R R

   (13) 

Taking summation over the set of 
r

E  for (13) results in 

( )
1

1( ) exp( 1)
r w r w

w w w w

er er r

e r e r

f c

μ

μ
μ

=
E R E R

   (14) 

Then, choice probability of link (nest) 
r

e E  can be ob-

tained by (13) and (14) as the follows 

( )

( )

1

1

exp( )

( )

exp( )

ww

r w

r w

w ww
er rer

rr

w

er
w w

e r
er r

e r

cf

P e
f

c

μ

μ

μ

μ

= =
RR

E R

E R

    (15) 

Therefore, route choice probability for 
w

r R , i.e. w

r
P  

can be obtained by ( ) ( | )
r

e
P e P r e

E
.  

In view of the assignment of route flow 
* (1 )w w w

er rf q P= , we have 
* (1 )

w w

w w w

er rr r
f q P=

R R
, i.e.,  

( ) ( ) ( )*ln ln (1 ) ln ln (1 )
w w

w w w w

er rr r
f q P q= + =

R R

  (16) 

Thus, according to lemma 1, substituting (16) into (9), we 
get that *

f  is a stochastic user equilibrium flow induced by 

a Stackelberg strategy f  if and only if for all flows f  sat-

isfying demands (1 ) w
q , w W  such that 

( ) ( )* * 1
( , ) ln (1 )

w w

w w w w w w

r er er er er

w r w r

c f f f f q
μ

+ +
W R W R

 ( )* *1
ln ln 0w w w w

er er er erf f f
μ

, f
f     (17) 

i.e., variational inequality (4) follows. So the proof is 
completed. 

4. GENERAL RESULTS OF POA UPPER BOUND ON 
TAXED STACKELBERG CNL-SUE 

Applying the above variational inequality (17) and the 
following definition, we analyze the upper bound on Stack-
elberg network inefficiency under CNL-SUE and tax 
scheme.  

For any link time function ( )
a a a

t t v=  and Stackelberg 

link flow 
a

v , we define nonnegative value as  

( )
so *

* so so * so

* *
, 0

( ) ( ) ( )
( ; , , ) sup

( )( )
a a

a a a a a a a a a a

a a a

v v a a a a a

t v v t v v v v v u

t v u
t v v v v

+ +
=

+ +
(18) 

where 0 0 0=  by convention, [0,1] . For a given opt-

restricted strategy v , a class T  of link time functions and a 
tax scheme u , we further define  

,
( , , , ) max ( ; , , )

a

a a a
t a E

u t v u=vT
T

      (19) 

Theorem 2. The cost of induced network flow by the 
combination of the cost of system optimum and the induced 
link flows is bounded with coefficients  and  as follow-

ing 
* so so * * *

so * *

( ) ( ) ( ; , , ) ( )( ) ( , )

               ( , , , ) ( ) ( , )

a a a a a a a a a a a

a E a E

T t v v t v u t v v v v F

T u T F

+ + + + +

= + + +

v v f f

v v v f fT

(20) 

Proof. Let so
=f f f  be the flow that remains in if f  

is removed from the optimal flow so
f . f  is a flow satisfy-

ing demands (1 ) w
q , w W . Setting so

=f f f  

( so
=v v v ) in formula (17) generates  

* * so * so *( ) ( ) ( ) ( , ) 0
a a a a a a a a

a a

T t v v v v v v u F+ + + +

E E

v v f f . 

where  

 ( )* *1 1
( , ) ln (1 ) ln ln

w

w w w

er er

w r

F q f
μ μ

+
W R

f f  

( ),so *w w w

er er erf f f .  

Thus, for any opt-restricted strategy f , the following 

inequality holds  

* so * * so *( ) ( ) ( ) ( , )
a a a a a a a aa

a

T v t v v v v v u F+ + + +
E

E

v v f f  (21) 

Accompanying with the definition of ( ; , , )
a a a a

t v u  by 

(18) and variational inequality (21), the cost of induced net-
work flow can be bounded as formula (20).  

Remark1. Formula (20) can be expressed equivalently as 
price of anarchy  

( )

*
*

so so

( ) 1
( , )

1 ( , , , ) 1 ( , , , )

T
F

uT u T

+
+

v v
f f

v vT T
(22) 

Assume a class of link time functions 

{ }( ) ( ) ( ), [0,1]p

p
t t c c t c= v v vT , where 1p  is an 

integer, and 
p
T  contains polynomials of degree at most p , 

0
( )

p i

ii
t a v

=
=v  with nonnegative coefficients 0 (0) 0a t= , 

( ) (0) 0i

i
a t= , 1,2,...,i p= . At the same time, assume the 

application of a SCALE policy, a weak one defined by set-
ting so

,
a a

v v a= E , which is equivalent to setting 
,sow w

er erf f= .  

For the case of link time function ( )
a a

t v
p
T , we will 

investigate the upper bound on inefficiency of stochastic 
network equilibrium under the controlling of Stackelberg 
with tax schemes imposed on the traffic network.  
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Lemma 2. If ( )
d

t v T , then so( , , , )
a

v uT  

1

11 1
max (1 ) (1 ) ,  (1 )

1 ( 1)

d

a

a a a

kd
k k k

d d

+
+

+ +

. 

Proof. By the definition of ( ; , , )
a a a

t v u  in (18),  

so( ; , , )
a a a

v

t v u =  

( )
so *

so * so so so * so

so * so *
, 0

( ) ( ) ( )
sup

( )( )
a a

a a a a a a a a a a

v v a a a a a

t v v t v v v v v u

t v v v v

+ +
=

+ +
,  

analyses are carried out considering two cases, namely, 
(i) so * so

a a a
v v v+ , and (ii) so * so

a a a
v v v+ < .  

(i) so * so

a a a
v v v+ . Set ( )so so *

a a a
v v v= + , [0,1] . 

Taking into account the expressions of 
a

u , and taking a no-

tice of definition of 
1
T , we have  

so *

so

, 0, [0,1]

( ; , , ) sup
a a

a a a
v v

t v u =

 
( )so * so * so * so *

so *

( ) ( ( )) (1 ) ( ) ( )

( )

a a a a a a a a a a a a

a a a

t v v t v v k v v t v v

t v v

+ + + +

+  

so *

so * so

, 0, [0,1]

( ) (
max (1 ) (1 )

a a

p a a a a

a
v v

v v t v
k

+ +
*

so *

)

( )

a

a a a

v

t v v+

 (23) 

Taking a notice of the monotonicity and convexity of link 
time function, and the fact that the highway sections used by 
so many vehicles as so * so

a a a
v v v+  can be thought as heavily 

or at least lightly congested implies so *

a a a
v v C+ , it is 

naturally that so * so * so *( ) ( ) ( )
a a a a a a a a

t v v v v t v v+ + + , then 

(23) turns into  

{ }so

[0,1]
( ; , , ) max (1 ) (1 )p

a a a at v u k  

When ( )( )
1 4

1 5
a

k= + ,  attains its maximal bound 
1

1
(1 )

1 ( 1)

p

a

a a

kp
k k

p p

+
+

+ +
.  

(ii) so * so

a a a
v v v+ < . In this case, considering also the in-

creasing property of ( )
a

t v , and the fact that 

( )so so * so so
1

a a a a a
v v v v v+ = , we get  

( )
so *

so *

so * so * so so * so

so

so * so *
, 0

so so

so * so *
, 0

( ) ( ) ( )
( ; , , ) sup

( )( )

                         sup (1 ) (1 )

            

a a

a a

a a a a a a a a a a a

a a a

v v a a a a a

a a

a

v v a a a a

t v v t v v v v v v u
t v u

t v v v v

v v
k

v v v v

+ + +

+ +

+ +

1 1
             (1 ) (1 )

a
k

. 

So summing up case (i) and (ii) completes the proof.  

Based on the above analysis, we are going to seek the 
upper bounds on POA defined for this paper. Above all, we 
are firmly convinced that the following Lemma 3 holds.  

Lemma 3. If the following Eq. (24) has a unique solution 
[0,1]

p
  

1

11 1
(1 ) (1 ) (1 )

1 ( 1)

p

a

a a a

kp
k k k

p p

+
= +

+ +

   (24) 

then ( 1)p

p p
z p= + , where 

p
z  is the unique solution 

larger than 1 to  

1 1 1(1 )( 1) (1 ) 0p p

a az k p z p k+ +
+ + + + =      (25) 

In fact, just only need to set ( 1)p

p p
z p= + , and substi-

tute it into the above equation with respect to , then rewrit-
ing the equation yields (25) that has one solution 1

p
z > .  

By Lemma 2 and 3, we get 

1 1/

so 1(1 )
( , , , )

1

p

a

a p a

p k
v u z k

p

+
+

+
T      (26) 

so( , , , )
a

v uT  falls at interval (0,  1)  as 

( ){ }1/[0, 2] (1 ) 1p

a a a pk k p k p z+ + < .  

Now we set out to analyze an upper bound on *( , )F f f  

on the right hand side of the inequality (21).  

Lemma 4. Let 
0

c  be the average of optimal total system 

travel time with respect to network demand, and  be the 

average of 
w

, w W  weighted by OD demand, where 
w

 

solves | | 1 exp( 1)
w w w

= +R , then it can be inferred that  

( ) ( )* * ,so *1 1
( , ) ln (1 ) ln ln

w

w w w w w w

er er er er er

w r

F q f f f f
μ μ

+
W R

f f  

has the maximum value of so(1 )T Kμ , ( )0
K c .  

Proof. Simple transformations of *( , )F f f  results in  

( )* 1
( , ) (1 ) ln (1 )

w

w w

w r

F q q= +
W R

f f  

* ,so *
1

ln ln
(1 ) (1 ) (1 )

w w w w

wer er er er

erw w w

f f f f

q q q

μ
+   (27) 

Setting 
max

max
w

r r r
L L=

R
, and in view of the calculating 

formula (3) of allocating parameter, the above formula of 
*( , )F f f  can be upper bounded as  

( )
*

* 1
( , ) (1 ) ln ln (1 )

(1 )
w

w

w wer

w
w r

f
F q q

q

μ
+

W R

f f

 
,so *

1 ln
max (1 ) (1 )

w

w w w

e er er er

w w

r r

L f f f

L q qR   

  (28) 



1096       The Open Cybernetics & Systemics Journal, 2014, Volume 8 Zeng and Wang 

Let ( ) ( )11
ln (1 ) ln max

w

w w

e r r
a q L L

μ μ
=

R
, then 

(28) is simplified to be 

*

*( , ) (1 ) ln
(1 )

w

w

w wer

w
w r

f
F q a

q

μ
+

W R

f f

 
,so *

(1 ) (1 )

w w w

er er er

w w

f f f

q q
 

Let 
,so

(1 )

w w

w r r

r w

f f
y

q
= , 

*

(1 )

w

w er

r w

f
x

q
= , then we should 

only bound the right hand side of the following inequality 

( )( )*( , ) (1 ) ln
w

w w w w w

r r r

w r

F q a x y x
μ

+
W R

f f  (29) 

Keeping in mind that 1
w

w

rr
y =

R
 and 1

w

w

rr
x =

R
, 

the remaining work is to solve the following nonlinear pro-
gramming problem.  

(MP2) 

( )( )2max  Z ( , ) ln

. .    

        

        , 0,

w

w

w

r r r

r

rr

rr

r r w

y x a x

s t x b

y b

x y r

= +

=

=

R

R

R

x y

R

    (30) 

where w

r r
x x , w

r r
y y , w

a a , 1
w

b b = .  

Let x  be fixed, the objective function is linear in y , so 

it is convenient to get | | 1
( ,0, ,0) wT

= b
+

L
R

y  as an opti-

mality of y , where | |
w

R  denotes the number of feasible 

paths between w W . Thus the nonlinear programming 
problem can be rewritten as  

(MP3) 

( )( ) ( )2 1 1

\{1}

max  Z ( ) ln ln

. .    

         0,

w

w

r r

r

rr

r w

b x a x x a x

s t x b

x r

= + +

=

R

R

x

R

 (31) 

Let D  be the dual variable associated with the equation 
constraint, the Karush-Kuhn-Tucker (KKT) necessary condi-
tions are  

2Z ( )
0

r

r

x
x

+ =D
x , 2Z ( )

0
r

x
+ D

x , 0
r

x , \{1}
w

r R  (32) 

These conditions yield the following results 

1

1 1

(| | 1)
ln w

x b

b x x
=

R
, i.e. 

| | 1
exp( 1),  w

w

w

= +
R

 

1

 1
w

b

x
= .  

The corresponding objective value of (MP2) is 

2max
Z

w
b= , where 

w
 solves | | 1 exp( 1)

w w w
= +R . 

Thus, in the light of (29) and the optimal objective value of 
(MP2), we get  

*( , ) (1 ) (1 ) (1 )w w

w w

w w

F q b q q
μ μ μ

= =
W W

f f , 

or * so( , ) (1 )F KTμf f         (33) 

where  represents the average of 
w

 for every w W , 

( )0
K c , so

0
c T q= .  

Through the above analyses, the upper bounds on POA is 
attained in the following theorem.  

Theorem 3. For link time function 
a p

t T , the price of 

anarchy induced by traveler behavior in Stackelberg stochas-
tic user equilibrium with tax schemes is upper bounded as 
following 

*

so 1 1/
1

( 1)( )

(1 )
1

1

p

p

p

a
p a

z pT v v

T p k
z k

p

+

++
+

+

+
 

so

1 1/
1 so

1
(1 )

(1 )
1

1

p

a
p a

KT
p k

z k T
p

μ
+

+
+

+
 

1 1

1 1/

(1 )( 1) (1 )

( 1)(1 ) (1 )

p

a p a

p

a p a

k p z p k

p k z p k

+

+

+ + +
= +

+ + +
 

(1 )( 1)

( 1)(1 )

p

a p

p Kz

p k z p

μ+

+ +
1 1/(1 ) p

ak +
+

       (34) 

where  

{
1/(1 )

[0,2] [0,2] 1
1

p

a

a a p a p

p k
k k z k z

p

+
< < =

+
I  

}1/( , ) ( 1) ,  solves equation (25)p

p a pz k p z+    (35) 

Proof. Let ( 1)p

p p
z p= + , where 

p
z  is the unique solu-

tion larger than one to (25). Then, substituting 
p

, and ine-

quality (33), the upper bound of *( , )F f f  into (22), we ob-

tain formula (34).  

It is convenient to get 1/( 1) p

p
z p +  by 

( 1) [0,1]p

p p
z p= + , where ( , ) 1p p az z k= >  solves 

equation (25). Connecting with value range of 
a

k  that en-

sures so( , , , ) (0,  1)
a

v uT , we obtain (35).  

The POA upper bound, for BPR link time function, in 
Stackelberg stochastic network assignment using SCALE 
policy, is the right hand side of (34). It is worth pointing out 
that, since 1

p
z > , inequality (26) turns into 

so 1 1/( , , , ) (1 ) ( 1)p

a a av u p k p k+
+ +T , which can be 
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used to replace (26) to calculate the upper bound but generat-
ing even less tight bound.  

Corollary 1. When 1μ =  the POA upper bound ex-

pressed by (34) changes to be  

1 1*

so 1 1/

(1 )( 1) (1 )( )

( 1)(1 ) (1 )

p

a p a

p

a p a

k p z p kT v v

T p k z p k

+

+

+ + ++
= +

+ + +
 

1 1/

(1 )( 1)

( 1)(1 ) (1 )

p

p

a p a

p Kz

p k z d k +

+
+

+ + +
 

which coincides with that obtained by MNL model that is 
induced from the CNL model (2) if 1μ = . 

5. POA UPPER BOUND FOR LOW-DEGREE LINK 
TIME FUNCTIONS 

Now, we are going to display graphically the upper 
bounds for SUE. The analytical solution to the equation (25) 
of high-degree (especially 5p ) is difficult to obtain, so we 

take the cases of low degree of power law for examples. In 
the remaining space, numerical analyses with figures are 
presented to examine the relationship of POA upper bound 
with weak Stackelberg controlling factor  and tax coeffi-
cient 

a
k .  

Furthermore, to verify the correctness of the foregoing 
conclusions, and to achieve better understanding of the issue 
studied, we consider the POA upper bounds for affine link 
time function, a special case of the BPR function, in Stackel-
berg network under SUE and tax scheme.  

According to the analysis process for BPR stated above, 

we have ( )(1 ) 1 1 2
a

k= + + , which at the same time 

implies ( ) ( ) ( )2 1 1 1 1 1 1 1
a

k + = +  

owing to [0,1] . Then, (18) and (19) generate  

( )
so (1 )

( , , , )
2 1 1

a

a a

k
v u k

+

+
T       (36) 

satisfying so0 ( , , , ) 1
a

v u< <T  for all [0, 2]
a

k .  

Thus using similar analyses in theorem 3, we get the fol-
lowing corollary.  

Corollary 2. For affine link time functions, the upper 
bound of POA with the SCALE strategy is as following:  

( )
( ) ( )

2

*

so

(1 ) 1 1( )

2 1 1 1 2 1 1

a

a

kT

T k

+ ++
+

+ + +

v v
 

( )
( ) ( )

2(1 ) 1 1

2 1 1 1 2 1 1
a

K

k

μ+

+ + +
      

 (37) 

where ( ) ( )0 1 1 1 1
a

k + .  

Formula (37) indicates that the upper bound of POA in 
the stochastic circumstances is not increasing with respect to 

a
k , which is also explicit from the non-positive derivative of 

the right hand side of (37), ( )( )2
1 2 1+ +

 

( ) ( )( )2 2

2 1 1
a

k+ + , 2 1= . It is also clear that the 

relation of POA with nested parameter μ  is strictly nonde-

creasing. 

-value affects K -value little from ref. [16]. If the val-

ues  and 
0

c  are fixed, K  is determined by and decreasing 

with parameter , that is to say, a weaker randomness 
means a smaller K . For 0.1K = , the relation of POA with 
Stackelberg controlling fraction  and nested degree μ  is 

depicted as Fig. (1).  

 

Fig. (1). Upper bound of POA of Stackelberg network under SUE. 

Corollary 3. The price of anarchy induced by traveler 
behavior in Stackelberg stochastic user equilibrium with tax 
schemes is upper bounded for typical BPR link time function 

( )( )40( ) 1 0.15
a a a a a

t v t v C= + , as following 

5/4*

4 4

so 5/4 5/4

4 4

5(1 ) 4 (1 ) 5(1 )( )

5(1 ) 4(1 ) 5(1 ) 4(1 )

a a

a a a a

k z k KzT

T k z k k z k

μ+ ++
+

+ + + +

v v  (38) 

where 
0

a
t  and 

a
C  are respectively the link free-flow travel 

time and link capacity. 

The upper bounds are not increasing with tax coefficient 

a
k , and that if 1=  meaning complete controlling of trav-

elers by the network manager, the Stackelberg network sys-
tem achieves optimum without loss of efficiency. For differ-
ent values of K , the above process is carried out, such as for 

0.1K =  and 0.2K = , the POA -
a

k  relationship shows that: 

for the same value of , a bigger K  means a bigger the 
upper bound of POA and a slower decreasing amplitude of 
inefficiency upper bound. Corollary3 also implies that, when 

 takes a larger value, the decrease rate of upper bound 
arrives a reduced magnitude, i.e., a diminishing marginal 
effect of the central controlling fraction  to decrease upper 
bound.  
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6. CONCLUSION 

Under the assumptions of separable nondecreasing con-
vex link travel time, fixed OD demand, and additional tax 
scheme, this paper investigates the POA upper bounds on 
stochastic selfish routing, accompanied by the centrally con-
trolled Stackelberg flow, jointly leading to SUE. Intensive 
analyses come to some conclusions. For general link time 
functions, we establish the equivalent variational inequality 
formulation for the CNL-SUE, induced by weak Stackelberg 
strategy as well as a tax scheme, with further presentation of 
inefficiency upper bounds. Commonly used BPR function 
and its affine form are focused on and shown that a larger 
value of the central controlling fraction  leads to a dimin-
ishing efficiency loss and a diminishing marginal effect of 

. If travelers are completely controlled, the Stackelberg 
transport network system achieves full efficiency. For the 
same value of , the smaller the value of K (or weaker 
randomness if the other two factor of  and 

0
c  are fixed), 

the smaller the POA upper bound and the slower its decreas-
ing amplitude. In the circumstance of SUE for typical or 
affine BPR functions, network taxes can reduce to some de-
gree the performance degradation due to selfish behavior.  
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