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Abstract: Surgery scheduling determines the individual surgery’s sequence and assigns required resources. This task 

plays a decisive role in providing timely treatment for the patients while ensuring a balanced hospital resources’ utiliza-

tion. Considering several real life constraints associated with multiple resources during the complete 3-stage surgery flow, 

a surgery scheduling model is presented with multiple objectives of minimizing makespan, minimizing overtime and bal-

ancing resource utilization. A Pareto sets based ant colony algorithm with corresponding ant graph, pheromone setting 

and update, and Pareto sets construction is proposed to solve the multi-objective surgery scheduling problem. A test case 

from MD Anderson Cancer Center is built and the scheduling result by three different approaches is compared. The case 

study shows that the Pareto set-based ACO for multi-objective proposed in this paper achieved good results in shortening 

total end time, reducing nurses’ overtime and balancing resources’ utilization in general. It indicates the advantage by sys-

tematically surgery scheduling optimization considering multiple objectives related to different shareholders. 

Keywords: Ant colony optimization, multi-objective optimization, operating room management, pareto set, surgery scheduling.  

1. INTRODUCTION 

One of the main challenges in health care systems in re-
cent years is to deliver high quality service under limited 
available resources. With the increase of aging population, 
social demands for surgical service have been constantly 
increased [1]. As a vital hospital component, the operating 
room (OR) division accounts for approximately more than 
40% of a hospital’s total revenues and expenses [2]. Hence, 
it is essential to improve patient flow and optimize OR man-
agement in order to provide timely treatments for the pa-
tients and to maximize utilization of the available resources.  

Surgery scheduling plays a crucial role in the OR man-
agement. It determines the operation time and allocates the 
resources to surgeries to be performed in different surgical 
specialties over a schedule period. The overall surgery proc-
ess involves three main stages, i.e. pre-surgery, surgery, and 
post-surgery. The resources required to perform a surgery 
comprise personnel (surgeons, anaesthetists, nurses, etc.) as 
well as facilities (specialized equipment, pre-operative hold-
ing units (PHUs), multiple ORs, post anaesthesia care units 
(PACUs), and intensive care units (ICUs)). Moreover, all the 
required resources have to be occupied simultaneously. Sur-
gery scheduling problem has been a widely studied topic and 
there exists a vast amount of literature in the medical and 
operation research. Reviews about OR planning and schedul-
ing have been conducted most recently [3-6]. They provided 
detailed classifications of researches based on problem-
specified, operations research methodology, and decision 
levels. 

 

 

 

Multiple surgery flow stages and multiple resources in-
volved in OR management not only increases the complexity 

of surgery scheduling problem, but also calls for the more 

comprehensive evaluation of scheduling result. The evalua-
tion on the efficiency of surgery scheduling should consider 

several performances including patients’ satisfaction, staffs 

satisfaction and OR management effectiveness. The patients’ 
satisfaction depends directly on the timely surgery arrange-

ment, less waiting time, and quality treatment. Staffs satis-

faction is usually expressed as less overtime and a more bal-
anced task. The effectiveness of OR management can be 

further described as management cost and resources’ utiliza-

tion. Therefore, it is necessary to take multiple objectives 
into account for surgery scheduling. Several surgery schedul-

ing problems described in the literature consider multiple 

objectives. Ogulata and Erol developed a set of hierarchical 
multiple criteria mathematical programming models to gen-

erate weekly operating room schedules. The objectives con-

sidered in this study are maximum utilization of operating 
room capacity, balanced distribution of operations among 

surgeon groups and minimization of patient waiting times 

[7]. Cardoen et al. present a multi-objective optimization 
model for scheduling individual cases in the surgical day-

care center of a large Belgian hospital [8]. Six different ob-

jectives (children and prioritized patients as early as possi-
ble, patients having a large travel distance as much as possi-

ble before a particular hour, minimizing overtime in recovery 

and levelling bed occupancy in both recovery phase 1 and 
recovery phase 2) are considered in the model. Beliën et al. 

presented a decision support system to develop master sur-

gery schedules. The system is built on different optimization 
procedures that aim at levelling the resulting bed occupancy, 

concentrating surgeons of the same group in the same rooms,  
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Table 1. The notations. 

Sets 

I Set of surgeries 

i
J  Set of stages of surgery i, Ii  

C Set of resource types 

S Set of surgery specialties 

c
M  Set of resources in resource type c, Cc  

ijC
 Set of resource types required for stage j of surgery i, Ii , 3,2,1=j  

cm
J  Set of surgery stages that can be performed by resource m of resource type c, Cc ,

c
Mm  

D Set of surgery complexity (1: simple; 2: Regular; 3: Complicated ) 

TWcm 
Set of available time windows of resource m of resource type c. { }cm

TW

cm

t

cmcmcmcm
TWTWTWTWTW ,,,

21
= . When c=SG, it repre-

sents surgeon’s non-clinic hour; when c= NC/NS, it represents nurse’s working shift; Cc ,
c

Mm  

Parameters 

SG,NC,NS represent surgeon, circulator and scrub in resource type. CNSNCSG ,,  

c

ij
n  The number of required resource in resource type c for performing stage j of surgery i. Ii , 3,2,1=j ,

ijCc  

cm

ijT
 

The duration of stage j of surgery i by resource m of resource type c. If c represents surgeon, the surgery duration is different accord-
ing to different m. Ii , 3,2,1=j ,

ijCc ,
c

Mm  

1i
T ,

3i
T  The duration of setup and recovery stage of surgery i. 

w
C  

The time window of a working hour day w, [ ]
EwSww
TTC ,= , where

Sw
T and 

Ew
T  respectively represent the start time and the end time 

of a working day w 

t

cm
TW  

The tth available time window of resource m of resource type c. [ ]t
cm

t

cm

t

cm
ETWSTWTW ,= , where t

cm
STW and t

cm
ETW  respectively 

represent the start time and the end time of the tth available time window, +
Nt ,

cm
TWt  

H An arbitrary large positive number 

i

sd
P  =1 if surgery i belongs to surgery specialty s and is in complexity d, 0=

i

sd
P , otherwise, Ii , Ss , Dd  

cm

sdQ  
if resource m of resource type c can deal with the surgery in surgery specialty s and in complexity d, 0=

cm

sQ , otherwise. 

Cc ,
c

Mm , Ss , Dd  

cm
RT  The regular work time of resource m of resource type c. Cc ,

c
Mm  

Decision variables 

1i
ST  The start time of surgery i. Ii  

cm

ij
x  

=1 if resource m of resource type c is assigned to stage j of surgery i, 

0=
cm

ij
x , otherwise, Ii , 3,2,1=j ,

ijCc ,
c

Mm  

kl
Z  =1 if surgery stage k precedes surgery stage l on a same resource, 0

kl
Z = , otherwise, 

cm
Jlk, . 

cmt

ij
w  

=1 if resource m of resource type c perform stage j of surgery i within its available time window t

cm
TW , 0=

cmt

ij
w , other-

wise. Ii , 3,2,1=j ,
ijCc ,

c
Mm ,

cm
TWt  

 
and keeping the schedules consistent from week to week [9]. 

Jeric and Figueira addressed a multi-objective scheduling 

problem in a Croatian hospital and formulated it as a BIP 
model. Considering the discrete search space, numerous 

variables, constraints and multiple objectives, they proposed 

several meta-heuristics, i.e. a variable neighborhood search, 

scatter search and a non-dominated sorting genetic algorithm 

for scheduling medical treatments [10]. Although not neces-

sarily, the performances often conflict with each other, 
meaning that building an optimal schedule with respect to 

one objective goes at the cost of the other objectives. Further 

more, the combinatorial nature and the nonlinearity in con-
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straints of the surgery scheduling problem make it extremely 

difficult to optimize. In this paper, a Pareto Set-based ant 

colony algorithm is proposed to solve such multi-objective 
surgery scheduling problem. Most literature researches 

solved multi-objective surgery scheduling problem by 

weighting objectives. Our approach integrates the Pareto set 
solutions to the ACO so as to make it more efficient even 

when the conflicting multiple objectives exist.  

The rest of the paper is organized as follows. In Section 2 
the multi-objective scheduling problem is outlined. In Sec-
tion 3 we introduce the Pareto Set-based ACO algorithm and 
present the detail mechanisms in such approach. In Section 
4, we provide the computational experiments to validate and 
evaluate our approach. We close in Section 5 with summary 
and suggestions for future research. 

2. MULTI-OBJECTIVE SURGERY SCHEDULING 
MODEL  

We assume that there is a set of surgeries, represented as 
I, to be performed in an operating system with different 
types of resources (including both personnel resources and 
facilities associated with surgery groups). Each surgery has 
its surgery demand and resource demand. Surgery demand 
determines a surgery can only be performed by several sur-
geons in a special surgery group, and its operating time var-
ies by surgeon. Resource demand indicates all resources re-
quired for the complete stages of a surgery. Whether a stage 
can start successfully is restricted not only by the variety of 
resources, but also by the performance of each previous 
stage. The scheduling goal is to select the best resources, 
determine the various surgeries’ operating sequences, and 
get the shortest makespan, the minimum overtime and the 
balanced utilization, considering the diversities of types and 
quantity of resources and the mutual constraint of their 
available time.  

The notations used for our model are listed in Table 1. 
The multi-objective mathematic model is described as fol-
lowing:  

The objective function is to minimize the three objective 

f1, f2 and f3. 

( )
321 ,,min fffF =               (1) 

The three objective functions include: 

1) The 1
st
 objective is to minimize the time to finish all 

surgeries, so-called makespan. 

31
maxmin i

Ii
ETf =               (2) 

2) The 2
nd

 objective function is to minimize the variation 

coefficient of resources working time (VCWT). 

c
Cc
CVf = maxmin

2
              (3) 

CVc is the VCWT of resources in resource type c and is 

defined as the ratio of the standard deviation to mean as 

shown in equation (4). It is used to evaluate the balance of 

resource utilization. 

c

c

c
CV

μ
=                (4) 

=
c iMm Jj Ii

cm

ij

cm

ij

c

c xT
M

1
μ            (5) 

=
c iMm

c

Jj Ii

cm

ij

cm

ij

c

c xT
M

2

1
μ

         (6) 

3) The 3
rd

 objective is to minimize the total overtime of 

all resources: 

( )=
Cc Mm

cm

cm

ijij
JjIi

c
i

RTxETf
,

3 maxmin       (7) 

The constraints include: 

1) The end time of stage j of surgery i is determined by 

the start time and the maximum duration of all assigned re-

sources.  

{ }cm

ij

cm

ij
MmCc

ijij xTSTET
cij

+=
,

max , Ii , 3,2,1=j      (8) 

2) For any two consecutive stages j and j+1 of a surgery 

i, j+1 starts immediately when j has finished its processing 

step. 

)1( +
= jiij STET , Ii , 2,1=j ,           (9) 

3) Any two stages of a surgery can not to be performed at 

the same time. 

cm

iqipiq TETET ,
iJqp < , Ii        (10) 

4) A resource can only be assigned to one surgery stage 

at a time.  

cm

elklikel
TZHETET + )1( ,

cm
Jlk, , Iei, ,   (11) 

cm

ikklelik
THZETET + , 

cm
Jlk, , Iei, , i e ,  (12) 

5) The surgery must be performed within the same work-

ing day. i.e. 
wii
CETST

31
,  

}max{ 2311

cm

ij

cm

iiiEwiSw xTTTTSTT , 

ijCc ,
c

Mm , ni ,2,1= , +
Nw        (13) 

6) The exactly required number of resources in resource 

type c is assigned to perform stage j of surgery i. 

=

cMm

c

ij

cm

ij nx , 
ijCc            (14)  

7) The surgery must be started and finished within the as-

signed resource’s available time window. 

( )
=

cmTW

t

t

cm

cmt

ij

cm

ijij STWwxST
1

       (15) 

( )
=

cmTW

t

t

cm

cmt

ij

cm

ijij ETWwxET
1

, 

cij MmCcjIi = ,,3,2,1,          (16) 

8) The resource (here mainly refer to surgeon, circulator 

and scrub) assigned to a surgery must have the ability in re-
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quired surgery specialty and required qualification of dealing 

with surgery complexity. 

Dd Ss

cm

sd

i

sd

cm

ij QPx , Ii , 3,2,1=j , 

{ }NSNCSGCc ij ,, ,
c

Mm         (17) 

10) Followings are binary variables 

{ }1,0cm

ij
x , Ii , 3,2,1=j ,

ijCc ,
c

Mm      (18) 

{ }1,0
kl
z , 

cm
Jlk, ,           (19) 

{ }1,0cmt

ij
w , Ii , 3,2,1=j ,

ijCc ,
c

Mm ,
cm

TWt   (20) 

3. PARETO SET BASED ANT COLONY ALGO-
RITHM FOR MOB SURGERY SCHEDULING 

The combinatorial nature and the nonlinearity in con-
straints of the above surgery scheduling problem make ob-
taining an optimal scheduling result challenging. Instead, we 
aimed at a meta-heuristic approach for sub-optimal solution 
and developed a Pareto set based ACO algorithm to solve the 
multi-objective surgery scheduling problem. 

Since the complete surgery scheduling determines both 

the resources allocation for each of the surgery stages and 

the sequencing of surgeries in time period, a two-level ant 
graph is designed. In our previous research, an ant colony 

algorithm with such two-level ant graph was proposed for 

solving the surgery scheduling problem with single objective 
of makespan (Later in section 4, we name it as ACO-SOB) 

[11]. The outer level graph is defined as a surgery graph. The 

nodes in the surgery graph represent the surgeries, and the 
directional arc indicates the precedence sequence. The ant 

foraging path is the scheduling sequence of the surgeries 

[12]. The inner level graph is defined as resources graph. 
The inner-graph node represents the total available resources 

of the OR management system along the three-stage surgery 

procedure. Ant foraging path in inner level graph determines 
the resources selection for each specific stage during a sur-

gery.  

3.1. Pheromone definition and update strategy 

As to ACO for single objective optimization, the phero-

mone definition and update strategy are designed to effi-

ciently record and enhance the pheromone to a specific (an 
optimal) solution [13]. However, in the multi-objective op-

timization, there may no longer exist such optimal solution, 

but a Pareto set of solutions. Therefore, a specific phero-
mone setting, called single-path-multi-pheromone (SPMP), 

and the corresponding pheromone update strategies are in-

troduced to take into account the impact of several Pareto 
optimal solutions due to multiple objectives. SPMP allows 

laying multiple pheromone value on a single ant path accord-

ing to the number of objectives. A pheromone vector con-
sists of three pheromone values which are associated to three 

objectives (r=1,2,3) is defined on each path.  

In outer ant graph, the sequence-related pheromone ( ij ) 

is defined in equation (21) to indicate the strength of se-

quence from node i to node j. Its value is determined by the 

individual objective strength 
r

ij  and the associated weights 

r , r=1,2,3.  

=

=

3

1r

r

rij ij

             (21) 

( )
r

rrr
s

ijijij
+= )1(          (22) 

( )=

otherwise

iterationthisinjithroughgoessantif
L

Q

s
rr

r

r

r

rsij

,0

),(,  (23) 

As to the pheromone update strategy (equation (22) and 

(23)), an iteration-Pareto-optimal (IPO) update strategy is 

adopted to cluster ants to paths with Pareto optimal solu-

tions. We set 
rQ  as the pheromone strength vector associ-

ated with three objectives. r

s
L  is the r

th
 objective value of a 

solution s. Only the pheromone value associated to the indi-

vidual best objective is reinforced, the other two pheromone 

value in vector keep unchanged. However, evaporation will 

be happened for all pheromones in pheromone vector, de-

notes the pheromone evaporation rate.  

The inner surgery-related pheromone ( i

cm

In ) is defined to 

associate surgery i with resource m of resource type c. Its 

detail definition and update strategy are the same to above 

sequence-related pheromone, and are described in equation 

(24) to (26).  

=

=

3

1r

ir

cm

In

r

i

cm

In             (24) 

( ) )(1
r

ir

cm

Inir

cm

Inir

cm

In
s+=         (25) 

 

=

(26) 

The inner resource-related pheromone k

m

In  is defined for 

recording the information related to resource utilization dur-

ing an ant constructing inner resource allocation solution. It 

starts to be effective as long as an ant enters to inner resource 

graph, and ends to be empty when an ant goes out to outer 

graph. In any surgery stage, once a resource is selected, its 

opportunity to be selected by other surgery should be re-

duced so as to balance the resource utilization. Therefore, it 

is updated locally after visiting each node (i.e. on arc-step 

completion) as equation (27), where 
0
q is the decremented 

pheromone value. By local pheromone updating, the possi-

bility of ants crawling through the same path decreases, thus 

it can effectively avoid the uneven utilization of resources. 

0

In k In k

m m q=              (27) 

3.2 Construct Pareto Set  

Individual ant traverses the two-level ant graph to build a 
feasible schedule solution which includes both the surgeries’ 
sequence and the resources allocation for individual surgery. 
The detail probabilistic transition rule used in ant solution 
construction can be found in our previous work [11]. Usually 
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in multi-objective optimization, typically there exists no 
feasible solution that minimizes all objective functions 
simultaneously. Therefore, Pareto optimal solutions, i.e. 
solutions that cannot be improved in any of the objectives 
without impairment in at least one of the other objectives, 
are proposed.  

Surgery scheduling problem in this work is described as a 

multi-objective optimization problem with three objectives: 

( )
321 ,,min fffF = . Assume S is the feasible solution set. In 

mathematical terms, a feasible solution Ss
1

is said to 

dominate another solution Ss
2 , represented as ( 21

ss ), if 

1) { }3,2,1),()( 21 isfsf ii  and 2) { }3,2,1),()( 21 < jsfsf jj . 

Solution 
1
s  is called Pareto optimal, if there does not exist 

another solution that dominates it. The set of Pareto optimal 

is often called the Pareto set. 

Pareto set based ant colony algorithm for multi-objective 
optimization (ACO-MOB) is to construct such Pareto set for 
each ant cycle, to keep update Pareto set along with the 
iteration, and to finally approach to Pareto optimal set. The 
final decision can be the one based on decision maker’s 
preference in such Pareto optimal set. Assume a feasible 
solution set S with N solution, and a Pareto set PS , 
initially set as nil. A challenge-like algorithm is designed 
in ACO to construct Pareto set as following:  

Algorithm: Construct Pareto set by challenge-like algorithm 

Set Pareto set: =PS  

while  ( S ) do  

     Randomly select a solution  from S  as the winner : 

= ; 

Update feasible solution set: |SS = ; 

Set unvisited set:  V=S; 

While (V ) do  

Randomly select a solution from V as  the challenger; 

if ( ) {Update feasible  solution set: |SS = } 

else if  ( ) {Replace winner and update set:  

= ; |SS = } 

Update unvisited set:  |VV = ; 

End while 

Construct Pareto set:  { }= PSPS ; 

     End while 

End 

3.3. ACO-MOB Algorithm Description 

The detailed procedure of the proposed ACO-MOB algo-
rithm for the multi-objective surgery scheduling problem is 
explained as follows: 

Algorithm: the Pareto set based ACO-MOB for surgery scheduling 

Step1: Build an ant graph model 

While (iteration termination condition not met) do  

Step 2: Put m ants on arbitrary node 

Step 3: Initialize pheromone trial 

Step 4: Construct a feasible solution set S by ants traversing outer and 

inner ant graph 

While (ant termination condition not met, k<m) do 

Step 4.1: Initialize solution tabu= ; and surgeries set I 

Step 4.2: Construct an ant solution by visiting a node i in outer 

graph based on the state transition rule; then update 

}{
i
Itabutabu =  and }{\

i
III =   

Step 4.3: Ant enters into the inner graph, construct resource set 
G  

Step 4.4: Construct a resource allocation solution 

for each demanding resource types c do 

Step 4.4.1: Construct an ant solution by visiting a node in 
inner graph based on the state transition rule 

Step 4.4.2: Local update inner resource-related pheromone  

     End for 

Step 4.5: Decoding & Update resources’ time window 

     Step 4.6: if I , go to Step 4.1. 

  else add ant k’s solution tabu to feasible solution set S: 
StabuS =  

End While 

Step 5: Construct a Pareto set PSn o w by challenge-like a lgo-

rithm. 

Step 6: Form an iteration feasible set Siterat i on by combining Pareto 

set PSn o w with previous iteration Pareto set PSiter at ion : 

nowiterationiteration
PSPSS =   

Step 7: Construct a final iteration Pareto set PSiterat i on by re-apply 
challenge-like algorithm  

Step 8: Update sequence-related and surgery-related pheromone in both 
outer and inner ant graph based on IPO update strategy. 

End While 

Step 9: Select a solution S* from a final Pareto set PSi terat i on according to 
decision maker’s preference.  

End 

4. EMPIRICAL STUDY  

The proposed ACO-MOB algorithm is implemented with 
Matlab and is run on a PC running Windows XP with Intel 
Core5 @2.79GHz and 3GB of memory. 

4.1. Test Case Description 

Data for the experiment was extracted from MD Ander-
son Cancer Center, one of the world’s most respected cancer 
treatment facilities. A daily scheduling data set was built 
around 28 cases in 17 ORs to be staffed by 23 RNs and 14 
scrubs each working one of the five shifts starting at 6:30 
AM and ending at 11:30 PM. Surgical related information 
and daily roster information are given in reference [14].  

Four performance measurements: end time, VCWT, 
maximum overtime of nurses, and total overtime of nurses 
are used for comparison. End time, i.e. the finishing time of 
all 28 surgeries to be scheduled, is to measure the efficiency 
of the scheduling. VCWT is defined as the ratio of the stan-
dard deviation to mean and it is used to evaluate the balance 
of resource utilization. The smaller value in VCWT means 
the better utilization among resources. A zero value means a 
fully balanced assignment in resources utilization. Since in 
real-life OR management, nurses are assigned to work in 
different shifts, therefore nurses are further divided into 
groups according to shifts when calculating the VCWT of 
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nurses. Overtime (OT) records the total additional time re-
quired in addition to the regular working hours and directly 
effects the cost of OR management. Such OT measurement 
is further evaluated by both the maximum OT among nurses 
and the total OT among nurses. An authorized overtime is an 
additional time that nurses can be assigned if a surgery is not 
finished by the end of the regular shift. 

4.2. The Optimal ACO-MOB Parameters Setting 

The basic ACO-MOB parameters include the number of 

ants (m), pheromone factor ( ), heuristic factor ( ), evapo-

rate rate ( ), pheromone intensity (Q), decremented phero-

mone value (q0), and weights of multiple objectives ( r ). 

Those parameters have impact on the ant exploration and ant 

following known pheromone, which brings difference in 

algorithm’s convergence and solution quality. Several ex-

periments are built to identify the optimal parameters by 

different adjustments, and Table 2 lists the optimal ACO-

MOB parameters achieved.  

4.3. Computational Result Discussion 

A comparison experiment is built to evaluate the per-
formance of three different scheduling approaches. These 
three approaches are receptively, the manual scheduling in 
MD Anderson Cancer Center (named as ‘Manual’), the basic 

ACO approach with single objective of makespan (named as 
‘ACO-SOB’), and the proposed ACO-MOB in this work.  

The final surgery scheduling result with resources’ as-
signment solved by our ACO-MOB is listed in Table 3. The 
comparison results by three different scheduling approaches 
in several measurements are shown in Table 4. From Table 
4, both ACO-MOB and ACO-SOB achieve a schedule with 
all 28 surgeries finished by 18:30 and has 1.5 hour reduction 
compared to manual scheduling. Such one and half hour re-
duction in end time can be a good proof that surgery sched-
uling by ACO has advantage in scheduling efficiency. 

As to the resources utilization, except VCWT value in 
shift3 nurse is 0 because of only one nurse on duty, the 
VCWT of other resources including ORs and nurses in shift1 
and shift2 all show varying improvements. The VCWT of 
ORs in ACO-SOB and ACO-MOB is 0.21 and 0.2, which 
has a reduction around 36%. Both VCWT of nurses in shift1 
and shift2 by ACO approach have a much better value of 
0.18(0.21) and 0.05(0.06) compared to those by manual 
scheduling of 0.35 and o.37. The improvement is 68% (63%) 
for shift1 and 68% (63%) for shift2. There is not much dif-
ference in VCWT of nurses and ORs by ACO-MOB or 
ACO-SOB.  

OT means the increasing of cost, which is not wanted in 
OR management. The third observation from comparison 
results is the improvement in OT measurements in both 

Table 2. The optimal ACO-MOB parameters. 

M    Q Q0 NC_max w1:w2:w3 

150 1 5 0.5 [50,1.5,60] 0.2 150 0.2:0.2:0.6 

Table 3. Surgery scheduling results by ACO-MOB algorithm. 

No. OR Circulator Scrub No. OR Circulator Scrub 

1 1 9 6 15 15 26 7 

2 14 4 24 16 7 3 33 

3 12 29 32 17 7 27 33 

4 11 16 35 18 17 1 13 

5 12 16 37 19 13 30 20 

6 8 1 13 20 4 6 14 

7 14 23 21 21 3 26 24 

8 5 16 35 22 15 4 5 

9 3 30 37 23 16 9 5 

10 11 25 3 24 10 36 15 

11 6 2 31 25 2 19 11 

12 17 34 8 26 1 10 17 

13 5 34 7 27 8 28 22 

14 9 18 12 28 16 29 32 
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maximum OT of individual nurse and the total OT of all 
nurses. Individual nurse’s maximum OT is reduced to 
2.75hours and has a 9.25hours improvement compared to 12 
hours in manual work. Total OT of nurses is also reduced 
from 12.5hours to 11hours by ACO-SOB, and to 7hours by 
ACO-MOB. It records around 36% improvement by compar-
ing ACO-MOB with ACO-SOB.  

In sum, the comparison result shows that the proposed 
Pareto set-based ACO algorithm for surgery scheduling has 
good performance on shortening total time and allocating 
resources for surgery scheduling. 

5. CONCLUSION AND ONGOING WORK 

We have developed a Pareto set-based ACO approach for 
solving multiple objective surgeries scheduling problem that 
arises in large operating suites. The problem is complicated 
because of involving the complete stages of surgery flow and 
multiple resources and constraints in OR management. The 
mathematic model of such surgery scheduling problem with 
multiple objectives of minimizing makespan, minimizing 
overtime and balancing resource utilization is proposed. Due 
to the combinatorial nature of the problem, the nonlinear 
constraints involved, and the conflicting objectives consid-
ered, a Pareto set-based ACO algorithm by aiming at achiev-
ing sub-optimal solutions is proposed in this paper. 

A Pareto sets based ant colony algorithm with corre-
sponding ant graph, pheromone setting and update, and Pa-
reto sets construction is proposed to solve the multi-objective 
surgery scheduling problem. A two-layer nested ACO struc-
ture as well as the relative mechanisms (i.e. the SMSP 
pheromone definition, the pheromone updating strategy, and 
the Pareto set solution) is presented. The ant travel graph is 
designed as an outer surgery graph and multiple inner re-
source graphs. We emphasized both the information related 
to the good solution in makespan and the balanced utilization 
of the resources. The global (iteration-best) and local (on 
arc-step completion) pheromone update rules are adopted. 

A test case from MD Anderson Cancer Center is col-
lected to validate our method. It provides a total 28 cases in 
17 ORs to be staffed 23 RNs and 14 scrubs within one day. 
Surgeons and nurses are defined with specialty, role, qualifi-
cation and availability constraints. The scheduling result of 
the proposed Pareto Set-based ACO algorithm is compared 
with the real life manual surgery scheduling result, and from 
the basic ACO approach with single objective of makespan. 
Four measurements, i.e. end time, individual nurse’s maxi-
mum overtime, total overtime of nurses and the variation 

coefficient of working time of resource, are evaluated. Com-
parison results indicate a superior performance for the pro-
posed Pareto set-based ACO in general. It can be concluded 
that the algorithm can solve the multiple objective surgery 
scheduling problem effectively within a reasonable calcula-
tion time, while at the same time provide a shortening end 
time and a relative balanced resource allocations. Future 
research will be in the direction of extending our ACO algo-
rithm to solving the surgery scheduling problems with uncer-
tainties and more realistic constraints arise in actual OR 
management in hospital, like surgeons/nurses preference 
constraints in medical team. 
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