
Send Orders for Reprints to reprints@benthamscience.ae

200 The Open Cybernetics & Systemics Journal, 2014, 8, 200-207

 1874-110X/14 2014 Bentham Open

Open Access

Single Sign-On Research and Expansion Based On CAS

Fang Yinglan
*
, Jin Hao and Han Bing

Department of Computer, North China University of Technology, Beijing, China, 100144, P.R. China

Abstract: With the new application systems integrated with existing systems, many problems have arisen, such as system

integration difficultly and audit function loss. Hence, Single Sign-on has become an important solution for popular enter-

prise business integration at present. According to the research and exploration of SSO system which is based on Yale-

CAS authentication protocol, this paper introduced the integration of application systems using user-mapping with making

the least amount of modifications. In addition, this paper has provided a complete security audit function for the single

sign-on system, so a more comprehensive system security can be provided.

Keywords: CAS, security auditing, single sign-on, SSO, user-mapping.

1. INTRODUCTION

With the rapid development of computer network tech-
nology and information technology, more and more applica-
tion systems are constantly being introduced, such as OA
office systems, financial systems, resource management sys-
tems, personnel management systems and so on. However,
with the passage of time and cross-business integration,
many problems started to develop. Because each application
has its own user management and authentication subsystem
and maintains its own security policy, the user accessing
different systems has to use different user credentials for
independent authentication. In this process factors such as
environment of the user, memory of the users and other such
factors become a heavy burden on the users. On the other
hand, the user authenticated information transmitted in the
network causes a very serious security risk. To solve these
problems, single sign-on concepts have come into being.

SSO is a convenient authorization mechanism for user to
access multiple business systems. In a distributed environ-
ment, users only need to successfully login only once. Then
they can freely switch between different systems. It allows
users to save duplicate certification operations. This results
in improved work efficiency, and reduces the burden on
user’s memory. In addition, single sign-on systems pay more
attention on the entire certification process safety. The de-
veloper usually designs an encrypted function for the infor-
mation transmitted in the network. This greatly enhances the
security of the authentication process.

2. TRADITIONAL CAS AUTHENTICATION PROTOCOL

Currently, there are a lot of single sign-on implementa-
tion. Yale-CAS, Kerberos and Secure authentication models
based on security assertion markup language (SAML) are
common Single Sign-on models. Among these models, CAS

is a secure authentication protocol developed by Yale Uni-
versity, it provides an enterprise solution for developers. It
has a reasonable architecture and a rich interface support,
also it supports cross-domain cookie sharing. This system
makes an expansion of CAS authentication protocol to solve
the complex business integration difficulties when achieving
single sign-on system.

2.1. CAS Architecture

In structure, CAS single sign-on system is composed by
the CAS Server and the CAS Client (Fig. 1).

CAS Server needs to be deployed in an independent Java
Web container. And the server becomes responsible for
user’s certifications. It runs on HTTPS protocol and consists
of several Java Servlet. CAS Client can access the server
through 3 URLs, named Login URL, Validation URL and
Logout URL [1]. CAS Server has efficient configuration
regarding management capabilities. It provides easy custom-
izable authentication interface for developers, so that devel-
opers can freely extend authentication logic.

CAS Client is deployed with the application systems to-
gether, dealing with local protected resources requests. It
filters requests and then redirects to CAS Server for user
authentication, if the requests do not pass user certification.

CAS authentication protocol mainly focuses on designing
a rational and efficient authentication module. Although user
management features are closely related to a single sign-on
system, in order to make the structure separately the CAS
authentication protocol does not blend it together. It just pro-
vides an interface for developers to access the containers
which store user data. User data can store in a relational da-
tabase or a container based on lightweight directory access
protocol (LDAP). When CAS Server needs user information,
it can find it out in the configured storage.

2.2. CAS Authentication Process

The CAS system mainly uses tickets including TGC, ST
and so on, to verify user's identity. A ticket-granting cookie

Single Sign-On Research and Expansion Based On CAS The Open Cybernetics & Systemics Journal, 2014, Volume 8 201

(TGC) is an HTTP cookie set by CAS upon the establish-
ment of a single sign-on session. This cookie maintains login
state for the client, and while it is valid, the client can present
it to CAS in lieu of primary credentials. The value of ticket-
granting cookies contains adequate amounts of secure ran-
dom data so that a ticket-granting cookie is not guessable
within a reasonable period of time. A service ticket is an
opaque string that is used by the client as a credential to ob-
tain access to a service. The service ticket is obtained from
CAS upon a client's presentation of credentials and a service
identifier [1]. CAS protocol certification process in shown in
Fig. (2):

Web Browser CAS Server

CAS Client 2

CAS Client 1
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Fig. (2). CAS Protocol Certification Process.

1) When users first accesses the application’s system pro-
tected resources, CAS Client1 checks the session and finds
wether or not it has been created, and if the request does not
contains a Service Ticket, all these factors indicate that the
user is not authenticated.

2) CAS Client1 redirects to CAS Server to request a serv-
ice ticket. Then CAS Server returns a service ticket and a

service parameter which stores the application’s system
login URL.

3) When the CAS Server receives the CAS Client1's re-
quest, it will firstly try to find the ticket-granting cookie at
user's browser. If there is not a ticket-granting cookie, CAS
Server will redirect the user to the login page, then user will
be asked to enter its credentials (username / password) to
log.

4) After CAS Server issues a ticket-granting cookie, it
find a service parameter in the request, after which it issues a
service ticket and redirect the user to the application system
which the service parameter points to.

5) When CAS Client1 receives the service ticket, CAS

Client1 will validate it. If the service ticket is valid, CAS

Client1 will create a session and provide the service.

6) When a user accesses the protected resources again,

CAS Client2 finds that there is no session and no service
ticket.

7) CAS Client2 redirects to CAS Server, then CAS
Server finds that the user browser already has a ticket-

granting cookie, so it issues a service ticket to CAS Client2

directly.

8) CAS Client2 validates the service ticket, creates a ses-

sion, and provides the requested services of the user.

2.3. CAS Security Analysis

The concept of single sign-on itself avoids user's infor-
mation being transmitted on the network frequently, and this
greatly reduces the probability of losing information. CAS
protocol also requires that all interactions between CAS Cli-
ent and CAS Server should be conducted in SSL / HTTPS
mode [2]. This transmission protocol is relatively safer and

Fig. (1). CAS Single Sign-on Architecture Structure.

202 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Yinglan et al.

can maintain data integrity which prevents the user’s infor-
mation being intercepted. After user authenticates success-
fully, CAS will not pass any other user-related security in-
formation and interactions except for the username. As for
the two important tickets: ticket-granting cookie and service
ticket, CAS protocol also provides them a comprehensive
consideration. First, the two ticket contain random data to
ensure that the content is difficult to replicate. Secondly, the
tickets will be encrypted before transmission. Finally, the
two tickets have their reasonable survival period, even if the
user does not logs off actively to destroy the two tickets, they
will not be valid for a long term. CAS protocol also requires
that service ticket be disposable, once the CAS Server vali-
dates a service ticket, it will be invalid immediately.

2.4. The Shortage of Traditional CAS Authentication

From the above analysis we know:

1) By design of CAS protocol, CAS Authentication Cen-
ter provides unified authentication services. So the applica-
tion system integrated into the CAS single sign-on system
does not requires its own separate authentication module.
Thus, CAS can take over the user authentication of new ap-
plication directly, but as for the existing application systems,
they usually have their own independent certification mod-
ules, and each application system’s authentication is differ-
ent. Therefore, if the developers wants to transform an exist-
ing application systems, it may involve changes to the sys-
tem structure and processes. Such a transformation hides a
huge risk, and it is very difficult too. In addition, some exist-
ing application system have no source code making the
changes on the process modules impossible.

2) CAS Authentication Center needs to have its own user
repository to store user credentials, but the original applica-
tion systems also have their own user information database,
the information’s actual stored situation is very complicated,
which makes it difficult to integrate user information to-
gether for a unified management.

3) CAS Authentication Protocol have no security audit
function for the users' operations. Security audit monitors
various events and behavior of the information systems, col-
lects information, analyzes them and takes action for specific
events and behavior. This includes the identification, record-
ing, storing and analyzing of those activities related to in-
formation security [3]. Checking the results of the audit re-
cords can determine what happened to security-related ac-
tivities and which users should be responsible for these ac-
tivities. The single sign-on system which is an application of
high-level security requirements should have the relevant
security audit function.

3. RESEARCH AND IMPLEMENTATION OF SINGLE
SIGN-ON BASED ON USER MAPPING

For new applications, developers only need to focus on
its rights management and business implementation, as the
authentication module can be directly handed over to the
single sign-on system, thus avoiding duplication of the de-
velopment tasks [4]. In addition, the user information data-
base of new application systems can be unified, this also
greatly reduces management costs. Considering that original
application systems are difficult to make changes on and
complex personnel information is difficult to be integrate
with, we can make a map between CAS users and original
application systems [5]. By mapping CAS Certification Cen-
ter's user information and original application systems' user
information, when the user certifies through CAS, the origi-
nal application systems can get the user credentials to
authenticate independently certified modules. Meanwhile, it
is not necessary to integrate user information original appli-
cation systems' user to the CAS user repository.

3.1. User Mapping Structure

Fig. (3) is a user mapping structure based on relational
database. Among them, TAB_CAS_USER is CAS user in-
formation data table, and username is the user's unique iden-

TAB_CAS_USER

PK username

password

phone _number

address

email

unit

real_name

TAB_SERVICE

PK service _id

service _name

location

port

server _name

remark

TAB_USER_SERVICE

PK username

PK service _id

sub_username

password

TAB_AUDIT_RECORD

PK record _id

event

content

record _time

username

ip_address

TAB_LOG_INFO

PK log_id

log_type

log_content

username

ip_address

log_time

remark

TAB_SYS_MODULE

PK module _id

module _name

module _desc

module _url

module _icon

module _tip

remark

TAB_ROLE

PK role_id

role_name

role_type

role_level

remark

……

USER-MAPPING

Fig. (3). User Mapping Structure.

Single Sign-On Research and Expansion Based On CAS The Open Cybernetics & Systemics Journal, 2014, Volume 8 203

tifier. TAB_SERVICE is a data table store protecting appli-
cation systems information, and service_id is the system's
unique identifier. Data sheet TAB_USER_ SERVICE makes
users and service mapping, and the username and service_id
are the primary key. Username and password is a user cre-
dential for the service which is identified by service_id.

Under such conditions, when the user has passed authen-
tication, CAS Server can get all original user credentials
through CAS username and return them to CAS Client.
Next, developers can get user credentials according to the
system identifier (service_id) to finish the auto-logging proc-
ess [6]. Generally, auto-logging can be implemented by a
plug-in or modification on the login page. In this way, de-
velopers no longer need to modify the source code to repeat
the original authentication module.

3.2. The Design of Single Sign-on System Based on User
Mapping

Mentioned in section 2.1, developers can customize their
own authentication logic. They can configure custom authen-
tication handler in deployerConfigContext.xml. The follow-
ing is a part of the configuration for authentication handler:

<bean id="authenticationManager"

 class="org.jasig.cas.authentication.AuthenticationMa
nagerImpl">

 <property name="authenticationHandlers">

<bean
class="org.jasig.cas.adaptors.jdbc.CustomModeBata
baseAuthenticationHandler"></bean>

 </property>

</bean>

It should be noted that CAS authentication interface is
used to provide users with a password encryption device

(PasswordEncoder). Users can customize the password en-
cryption. This system uses a salted md5 encrypted manner,

taking several characters of username as "salt". This encryp-
tion method can ensure that the passwords stored in database

are different from each other and can also effectively prevent
attackers from getting another user's login credential accord-

ing to the two same password string.

When a user logs in CAS Authentication Center, CAS
Server redirects it back to the CAS Client to provide the user

with services. Before redirecting, CAS Server requires user’s
credentials (username / password) of the application system

feedback to the CAS Client, then application systems can
finish their own authentication operation. Also in deployer-

ConfigContext.xml file, developers can configure what data
is taken which needs to be feedback to the CAS Client. Here

are some content of the feedback configuration:

<bean id="attributeRepository"

class="org.jasig.services.persondir.support.jdbc.

MultiRowJdbcPersonAttributeDao">

 <constructor-arg index="0" ref="dataSource"/>

<constructor-arg index="1"

 value="select service_id, sub_username, password,
CONCAT(CAST(service_id as CHAR), CAST (username as
CHAR)) as 'pwdflag' from tab_user_service where {0}"/>

<property name="nameValueColumnMappings">

 <map>

 <entry key="serviceid" value="subusername" />

<entry key="pwdflag" value="password" />

</map>

</property>

<property name="queryAttributeMapping">

<map><entry key="username" value="user
name"/></map>

</property>

</bean>

By CAS username, a user can obtain all of the original
system credentials .So the sql statement which is the value of
<constructor-arg index="1"> tag will query and gain several
items. This data will eventually be in the form of key-value
pairs (Map <K,V>) and returned to the client. Original appli-
cation identifier (service_id) is the key for its username. The
username for the original application system and its identi-
fier consist of the key of its password.

On the CAS Client-side, by configuring CAS Assertion
Thread Local Filter, users are able to obtain user credentials
in Session which are returned from the CAS Server. After
that, developers only need to modify the original login page
of applications, and submit the user credentials directly to
complete the auto-login operation [7].

Such a single sign-on design, developers can easily inte-
grate the existing application services even if the integrated
application services has no source code. Also, there are not
any limitations for the introduction of new systems [8].

4. IMPLEMENTATION OF THE IMPROVED SYS-
TEM

Based on the above design, this paper used tomcat6.0 and
CAS-Server-3.5.2 building an authentication server, and
used MySQL5.6 storing for user-mapping of the data. Then
we configured CAS Client on a call center system and a re-
source management system to integrate these two application
systems on the client. We then configured the Login URL,
Validate URL, Logout URL and CAS Assertion Thread Lo-
cal Filter. So that when a user logs in, he can get
org.jasig.cas.client.validation.Assertion object in session by
using the "_const_cas_assertion_" parameter. The object
carries the user mapping data, through the transformation of
application system's login page we can submit the user cre-
dentials directly and achieve the function of original authen-
tication module's auto-authentication. Fig. (4) shows one of
the integrated application system's page of single sign-on
system:

204 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Yinglan et al.

4.1. Preparation

In order to extend CAS Server, we need to download the
source code for a CAS Server on GitHub. As mentioned in
section 2.1, the developers can customize their own authenti-
cation logic. According to different data storage container,
they can configure custom authentication handler in deploy-
erConfigContext.xml. For example, the system uses MySQL
to store user data, we need to create an authentication proc-
essor in the cas-server-support-jdbc sub-project to achieve its
own authentication.

It should be noted that, CAS authentication interface is
used to provide users with a password encryption device
(PasswordEncoder). Users can customize the password en-
cryption [9]. This system uses a salted md5 encrypted man-
ner, taking several characters with the username as "salt".
This encryption method can ensure that the passwords stored
in database are different from each other and can also effec-
tively prevent attackers from getting another user's login
credential according to two same password string [10].

4.2. The Deployment of CAS Server Authentication

Center

CAS Server is a Web application, we need to deploy it in
Tomcat. Normally, CAS Server uses HTTPS protocol to
interact with CAS Client, so it is necessary to enable the se-
curity protocol by modifying Tomcat's server.xml configura-
tion file. And before using HTTPS protocol, we need create
a certificate and import it into JDK trusted repository.

1) RSA key generation command

keytool -genkey -alias cas -keyalg RSA -keystore c:/cas

2) Certificate Export command

keytool -export -file f:/resources/cas.crt -alias cas -
keystore c:/cas

3) Certificate Import command

keytool -import -keystore %JAVA_HOME%\jre\lib\ se-
curity\cacerts -file c: /cas.crt -alias cas

Next, we need to add the following content to the
server.xml file to enable HTTPS protocol:

<ConnectorSSLE-
nabled="true"clientAuth="false"keys_toreFile="c:\cas"keyst
orePass="changeit"maxThreads=" 150" port="8443"protocol
="org. apache.coyote.http11.apa_ che.coyote.http11.Http11
Protocol" scheme="https" secure ="true"sslProtocol=
"TLS"truststoreFile ="%JAVA_HOME% \jre\lib\security\
cacerts "/>

As mentioned earlier, we have to customize a certifica-
tion processor and a password encryption device, before the
deployment of cas-server-webapp (ie CAS Server). They
need to be configured. Developers can configure custom
authentication handler in deployerConfigContext.xml. The
following is a part of configuration content authentication
handler:

<bean id="authenticationManager"

 class="org.jasig.cas.authentication.AuthenticationMa
nagerImpl">

 <property name="authenticationHandlers">

 <bean
 class="org.jasig.cas.adaptors.jdbc.CustomModeBatabase
AuthenticationHandler" >

<property name="dataSource" ref="dataSource">
</property>

<property name="passwordEncoder"ref="myMd5Pas_
swordEnder"></property>

</bean>

Fig. (4). Resources Management System Interface.

Single Sign-On Research and Expansion Based On CAS The Open Cybernetics & Systemics Journal, 2014, Volume 8 205

 </property>

</bean>

<bean id="myMd5PasswordEnder"class="org.jasig.cas

.authentication.handler.myMD5PasswordEncoder">

 </bean>

Also in deployerConfigContext.xml file, developers can
configure what data should be taken and from where it needs
to provide feedback to the CAS Client. Here are some con-
tent of the feedback configuration:

<bean id="attributeRepository"

 class="org.jasig.services.persondir.support.jdbc.

 MultiRowJdbcPersonAttributeDao">

 <constructor-arg index="0" ref="dataSource"/>

<constructor-arg index="1"

value="select service_id, sub_username, password,

CONCAT(CAST(service_id as CHAR),

CAST(username as CHAR)) as 'pwdflag' from
tab_user_service where {0}"/>

<property name="nameValueColumnMappings">

 <map>

 <entry key="serviceid" value="subusername" />

<entry key="pwdflag" value="password" />

</map>

</property>

<property name="queryAttributeMapping">

<map><entry key="username"
value="username"/></map>

</property>

</bean>

By CAS username, a user can obtain all of the original
system credentials. So, the sql statement which is the value
of <constructor-arg index="1"> tag will become a query and
gain several items. These data will eventually be in the form
of key-value pairs (Map <K,V>) returned to the client.

When we finished these configurations, CAS Server can
work properly according to our needs. We can access
https://localhost:8443/cas to check whether the CAS Server
works normally or not.

4.3. The Configuration of CAS Client

We integrate original application system with CAS Client
through adding filters. In Java Web case, we add the follow-
ing content in the web.xml file to access CAS Server's Log-
inURL, LogoutURL and ValidateURL these three service.

<filter>

<filter-name>CAS Single Sign Out Filter</filter-name>

<filter-class>
 org.jasig.cas.client.session.SingleSignOutFilter

 </filter-class>

 </filter>

 <filter-mapping>

 <filter-name>CAS Single Sign Out Filter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

 <listener>

 <listener-class>org.jasig.cas.client.session.Single Si-
gnOutHttpSessionListener

 </listener-class>

 </listener>

 <filter>

 <filter-name>CAS Authentication Filter</filter-name>

 <filter-class>
org.jasig.cas.client.authentication.AuthenticationFilter

 </filter-class>

 <init-param>

 <param-name>casServerLoginUrl</param-name> <pa-
ram-value>http://localhost/cas/login</param-value>

 </init-param>

 </filter>

 <filter>

 <filter-name>CAS Validation Filter</filter-name>

 <filter-class>org.jasig.cas.client.validation.Cas20
ProxyReceivingTicketValidationFilter

 </filter-class>

 <init-param>

 <param-name>casServerUrlPrefix</param-name>

 <param-value>http://localhost/cas</param-value>

 </init-param>

 </filter>

 <filter>

 <filter-name>CAS HttpServletRequest Wrapper Filter

 </filter-name>

 <filter-class>org.jasig.cas.client.util.HttpServlet Re-
questWrapperFilter

 </filter-class>

 </filter>

 <filter-mapping>

 <filter-name>CAS Authentication Filter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

 <filter-mapping>

 <filter-name>CAS Validation Filter</filter-name>

206 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Yinglan et al.

 <url-pattern>/*</url-pattern>

 </filter-mapping>

Furthermore, in order to get the application systems' user
credentials passed from the CAS Server, we also need the
following configuration:

<filter>

<filter-name>CAS Assertion Thread Local Filter

</filter-name>

<filter-class>

org.jasig.cas.client.util.AssertionThread LocalFilter

</filter-class>

</filter>

<filter-mapping>

<filter-name>CAS Assertion Thread Local Filter

</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

 Through this configuration, we can get the map set
which stores user credentials.

4.4. The Transformation of Original Application Sys-

tems' Login Pages

For the original application systems, we only need to
transform their login pages. In JSP case, we can replace the
original pages with a simple JSP page which only contains a
<jsp:forward> tag. Then we configure the interlinkage, and
get user credentials from session then submit them to the
Servers.

5. COMPREHENSIVE ANALYSIS OF THE IM-
PROVED SYSTEM

5.1. Impact on the Original Application System

When we integrate application systems, we saved the
authentication modules. Through modification of the login
page, we can achieve the original application system auto-
login, and make their login processes transparent to users.
For the original architecture and business process we did not
make any changes, so this design does not has any impact on
the original application, this design also greatly reduces the
cost and difficulty of businesses integrations.

5.2. Security Analysis of the System

The single sign-on extension mode of this system does
not makes any changes for CAS protocol itself, and we do
not repeal the authentication modules from the original ap-
plication systems. We just transfer the original user creden-
tials to CAS Client and put it into a session. Therefore, the
only thing we should care about is the risk of leakage of user
credentials. Although the original authentication modules
still exist, the real user authentication is provided by CAS
Authentication Center. So Even if the user credentials are
lost during transmission, as long as they are different from
CAS user credential, attackers still can't bypass the authenti-

cation. Therefore, this improved single sign-on solution still
has the same security of CAS single sign-on system.

5.3. Unified Security Audit of the System

An excellent application security audit function can pro-
vide more comprehensive protection of information systems.
Through recording the relevant security events and generat-
ing data, audit functions can help managers make effective
analysis. Under the data analysis, managers can find out the
reason why security breaching events happened. Most im-
portantly, managers can take effective measures based on
reasons of security breaching incidents to prevent the recur-
rence of such events. Different with other products or tech-
nologies, security auditing is ready before the incident, it
makes a record when the event occurs, and provides an
analysis of the data after the event has happened. It cares
more about the whole process of events, rather than just pro-
viding protection from one angle or some stage.

For single sign-on system which requires high security,
security audit function is particularly important. For the pre-
sent improved single sign-on system, the operation related to
safety such as user login, user password changing, user in-
formation maintaining and so on needs to be recorded and
stored in the relational database.

In specific implementations, we need users' IP address.
Usually, IP address can be obtained from Http-Requests, but
the login operation is actually implemented in the authentica-
tion handler, and developers can't archive the object. How-
ever, after checking source code, we found that CAS stored
user IP address in the object client information. So develop-
ers can obtain this object from com.github.inspektr.com_
mon.web.ClientInfoHolder.

6. CONCLUSION

This paper describes the design and the expansion of
CAS single sign-on system. We have achieved a unified
authentication and integration for multiple applications. The
integrated approach is based on user-mapping and can ensure
that developers only need to modify pages for the original
application system in order to integrate them with the single
sign-on system. The source code is no longer necessary.
Through the integration of multiple systems in the cluster,
we have indicated that the solution does not only greatly
reduces the difficulty of the original application systems in-
tegration but also the costs of integration. However, it does
not make any integration limits for the new system. For the
security audit function, it improves the security of the single
sign-on system, and it also improves the fault tolerance of
the system.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work was partially supported by Natural Science
Foundation of China (Grant No: 61070030, 61370051), It is
also partly supported by Beijing Government and Education
Committee (Grant No. PHR201107107).

Single Sign-On Research and Expansion Based On CAS The Open Cybernetics & Systemics Journal, 2014, Volume 8 207

REFERENCES

[1] D. Mazurek, "CAS Protocol", May 4, 2005[Mar 14, 2014],

http://www.jasig.org/cas/prot-ocol

[2] Q. Zhang and G.B. Zhong, "Design and Implementation of CAS-

SSO System Based on User-Mapping", Research & Development,

vol. 4, pp. 7-10, 2009.

[3] Z.B. Tan, "The design and implementation of single sign-on and

behaviors audit system for remote desktop access", Beijing Univer-

sity of Posts and Telecommunications, 2011.

[4] A. Armando and R. Carbone, "An authentication flaw in browser-

based Single Sign-On protocols: Impact and remediation", Comput-

ers & Security, vol.33, pp.41-58, 2013.

[5] W. Z. Qiang, A. Konstantinov, D. Q. Zou and L. T. Yang, "A stan-

dards-based interoperable single sign-on framework in ARC Grid

middleware", Journal of Network and Computer Applications,

vol.35, pp.892-904, 2012.

[6] V. Radha and D. H. Reddy. "A Survey on Single Sign-On Tech-

niques", Proscenia Technology, vol. 4, pp.134-139, 2012.
[7] Y.Q. Zhang, W. Chen, "Design and Implementation of CAS Single

Sign-on System Based LDAP", Software, vol. 32, no.2, pp.14-17,
2011.

[8] R. Murri, P. Z. Kunszt, S. Maffioletti and V. Tschopp, "A single
sign-on solution for grid web applications and portals", Grid Com-

puting, vol.9, pp.441-453, 2011.
[9] W.J. Zhou, "Trial development of web-SSO model based on CAS",

Journal of ShangHai University of Engineering Science, vol.23,
no.2, pp.165-169, 2009.

[10] G.L. Wang, J.S. Yu and Q. Xie, "Security analysis of a single sign-
on mechanism for distributed computer networks", IEEE Transac-

tions on Industrial Informatics, vol.9, no.1, pp.294-302, 2013.

Received: September 22, 2014 Revised: November 30, 2014 Accepted: December 02, 2014

© Yinglan et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

