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Abstract: After discussions of a few relevant patents of neural networks, a model description of moment neuronal 

networks with context units is given by introducing intra-layer inputs. The dynamics of homogeneous networks derived 

from the intra-inputs are explored, including the input-output relationships and the stability of such network. It is shown 

how the spontaneous activity is propagated across the homogeneous feed-forward networks with context units. Due to a 

more biologically reasonable context unit, such network offers a significant advantage over the recent moment neuronal 

networks in that it can enhance or weaken the dynamics of network by the adjustment of the parameters from context unit, 

based on those from network itself, and it can lead to some unexpectedly dynamic properties. In this paper we highlight 

the key and sophisticated role played by the context unit in dynamics of such network. 
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1. INTRODUCTION 

 In recent years, there has been a significant growth in the 

field of biologically-inspired computation, and current 

computational neural models owe more to their biological 

counterparts than their predecessors. For instance, the 

integrate-and-fire (IF) model [1-3], incorporates more of the 

dynamics of biological neurons than the classical approach 

to neural modeling. Patent 8,346,692, titled “Spatio-temporal 

pattern recognition using a spiking neural network and 

processing thereof on a portable and/or distributed computer” 

[4], provides a spiking neural network with a layer of connected 

spiking neurons exchanging signals, in which a pattern is 

submitted to the spiking neural network for generating 

sequences of spikes, which are modulated over time by the 

spiking synchronization. Patent 8,515,885, titled “Neuromorphic 

and synaptronic spiking neural network with synaptic weights 

learned using simulation” [5], provides neuromorphic-

synaptronic systems, implementing spiking neural network 

with synaptic weights.  

 Many of the engineering applications which have applied 

biophysical models, have used the IF model as the main 

computational unit. Patent 6,262,678, titled “Current-mode 

spike-based analog-to-digital conversion” [6], invents A/D 

conversion of a current input with integrate-and-fire spiking 

neurons that the speed of the conversion is augmented in a 

pipelined topology. Patent 7,430,546, titled “Applications of 

an algorithm that mimics cortical processing” [7], invents an 

information processing system having neuron-like signal 

 

 

 

 
 

processors that are interconnected by synapse-like processing 

junctions that simulates and extends capabilities of biological 

neural networks. The information processing systems uses IF 

neurons and Temporally Asymmetric Hebbian learning 

(spike timing-dependent learning) to adapt the synaptic 

strengths. This neural network is well-suited for hardware 

implementations. Such hardware implementation may be 

used for predicting and recognizing audiovisual information 

or for improving cortical processing by a prosthetic device. 

 It has emerged that the spike activity of a neuron is 

decided not only by the mean input activity (mean firing 

rate), but also by higher order statistics of its inputs, 

including fluctuations and correlations [1, 8-14]. A progress 

in this direction, was made by [15] with their theory of 

moment neuronal networks (MNN). This takes into account 

both the first and the second order statistics of spike trains, 

generalizing the case of Poisson synaptic inputs to more 

biologically plausible renewal processes. Therefore, the 

MNN framework presented in [15] can be considered as an 

attempt toward a general framework of computation with 

stochastic systems. In this respect, it would play the role of 

the central limit theorem in the probability theory, whereas 

earlier approaches based exclusively upon the mean could be 

likened to the law of large numbers.  

 Further, by introducing intra- layer inputs, Xiang et al. 

[16] developed a more biologically reasonable MNN with 

intra- and inter-layer interactions, which is analogous to the 

”networks with context units” in ANNs (e. g. [17], Patent 

WO/2013/169805, titled “Spiking neural network feedback 

apparatus and methods” [18], discloses the apparatus and 

methods for feedback in a spiking neural network. In which, 

spiking neurons receive sensory stimulus and context signal 

that correspond to the same context.), and applied a back-
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propagation learning rule to train the networks. It shows that 

even a single unit in such system, as analogous to [19-23], is 

able to perform various complex non-linear tasks like the 

XOR problem, and that it can train the output variance by 

directly introducing the variance term in the error 

presentation rather than indirectly adding a weight penalty 

term as in ANNs (e.g. [24, 25], JP Patent 2,000,200,256, 

titled “Learning method for recursive neutral network and 

recording medium where learning program for recursive 

neural network is recorded” [26], provides a learning method 

that a term of a proper scale of internal state representation is 

provided for the evaluation function to be evaluated in 

addition to terms including an error term and a penalty term 

and the maximum likelihood estimation is performed for the 

coefficients of the respective terms.). Moreover, one can 

reach the trade-off between the output bias and variance by 

optimizing the penalty factor due to a specific learning task. 

 In this paper we will explore how the spontaneous 

activity is propagated across the homogeneous feed forward 

network with the varying parameters, especially from the 

context units, i.e. the intra- layers inputs. Here we show the 

different properties on both input-output firing relationship 

and stability of network from MNN. Due to a more 

biologically reasonable context units (i.e. intra- layer inputs), 

such network offers a significant advantage over the recent 

MNN in that it can change the dynamics of network by the 

adjustment of the parameters from context unit (and from 

network itself), and it can lead to some unexpectedly 

dynamic properties. The context unit plays a very 

sophisticated role in the dynamics of such network. It can 

enhance or weaken the firing outputs by varying on the ratio 
ia
r  or the size ia

p  of context unit, based on the ratio r  and 

the size p of network itself, i.e. inter layer. 

 This paper is organized as follows. The framework for 

MNN with context units is described in Section 2. The 

dynamics of homogeneous network varied from context 

units are explored in Section 3. 

2. MNN WITH CONTEXT UNITS 

 To derive the dynamics, we first introduce the framework 

of MNN with context units, i.e. with intra- and inter- 

interactions. We begin by considering the single IF neuron 

[3, 27] as follows. Suppose the i -th neuron in the ( 1)k + -

th layer receives excitatory postsynaptic potentials (EPSPs) 

and inhibitory postsynaptic potentials (IPSPs). When the 

membrane potential ( 1) ( )k

i
V t

+  of it is between its resting 

state 
r
V

 
and its threshold 

t
V , it satisfies the following 

dynamics:  
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are 

renewal process arriving from the i -th and j -th synapse, 

)(kp
 
and 

)(kq
 
are the total number of active excitatory and 

inhibitory synapses in the k -th layer. All notations with the 

superscript ia  implies that they come from intra-layer 

interactions, similar to the ’networks with context unit’ [17]. 

It would present a more biologically reasonable networks 

architecture than the moment neuronal networks. When 

)()1(
tV

k

i

+  crosses the membrane threshold 
t
V  from below, a 

spike is generated and the membrane resets to its resting 

potential 
r
V . 

 Let 
E,( ),ixk

i
T  and Var

E,( ),ixk

i
T  as the mean and variance of 

the interspike intervals (ISIs) of the renewal process 

{ })()(, tN
kE

i
 respectively. To model the synaptic input similar 

to how it appears in biological neurons, for the i -th neuron 

in the k -th layer, we choose a more biological plausible so-

called usual approximation scheme [15] to approximate the 

renewal process{ }, ( )E k

i
N t  
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Where, the superscript ix  could be either ir  or ia  as stated 

before, and 
refT  is the refractory period. 

 For the concise of notation, we take the intra-input from 

the ( 1)k + th layer as external context input paralleled to the 

k th layer, which is denoted by the superscript ia . 

Furthermore, we suppose that ( ),ix ( ),ixk kq p= , ( ),ixkμ  

I,( ),ix E,( ),ixk kμ μ= ,
( ),ix I,( ),ix E,( ),ixk k k

= , and 

I,( ),ir E,( ),ir ( ),ir ( )k ir k k k

ij ij ij ij= , I,( ),ia E,( ),ia ( ),iak ia k ia k

ij ij ij= , 
( ) ( ),irk k

mn mn , then the equation (2) can be approximated as 

(see [16]) 
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Here 
ia
r  is the ratio between inhibitory inputs and excitatory 

inputs from the intra-layer; 
( ),irk

js  and 
( ),iak

js  are correlation 

coefficient between the j -th and s -th input from inter- and 

intra- layer. It is worth noting here, that the model’s 
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description of synaptic input presents it in terms of input 

mean and variance. 

 Notice that, according to the anatomy of the nervous 

system, we can suppose that 
( ),ir 0kq = , which is equivalent 

to 0
ir

r r in equation (5). 

 In terms of Siegert’s expression [28], we have the 

expression of all moments of the output ISIs. For the mean 

and variance, we have 
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 To complete the description of the moment mapping we 

need to consider the relationship between the input and the 

output correlations. Unfortunately, such a relationship is 

difficult to derive analytically, so we had to resort to 

numerical simulations. The numerical results with no intra-

inputs in [15] indicate that the input-output relationship is 

close to the identity, independently of r  and μ .  

 Hence, we can assume that the following heuristic 

relationship holds: 
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 Note that the right-hand side of Eq. (9) is the correlation 

of the inputs to the i th and the j th neurons in the ( 1)k + th 

layer, which includes the intra- and inter- input correlations. 

 According to the discussion in the previous sections, the 

mean and variance of the output in ( 1)k + -th layer can be 

given as follows: 
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 The above relationship between inputs and outputs lays 

the foundation of the moment neural networks (MNNs) with 

intra- and inter- interactions. 

 The topology used in the definition of MNN with intra- 

and inter- interactions is mainly based on the classic feed-

forward MLP network architecture, accompanied with a 

context input units for each layer. 

3. DYNAMICS OF NETWORKS WITH 

SIMULATIONS 

 The question we intend to address here is how a 

spontaneous activity can be maintained in a feed-forward 

network. For all simulations, the values of the decay rate, 

threshold and resting potential were set equal to L =1/20 

ms
1
, 

t
V = 20 mV, and 

r
V = 0 mV respectively. The same 

parameters have been employed elsewhere [27], and are 

thought to be in the physiological range for visual cortex 

cells and in agreement with most published results [12, 29]. 

All simulations were carried out with MATLAB. 

 We focus on a homogeneous network, where all weights, 

afferent means, and variances were set to be identical. Now 

the quantities in (5) reduce to 

( ) ( )

1

k k

jμ μ=
, 

( ) ( )

1

k k

j=
, 

( ) ( )

12

k k

mn
= =

,m n , 

( ),ia ( ),ia

1

k k

jμ μ=
, 

( ),ia ( ),ia

1

k k

j=
, 

( ),ia ( ),ia

12

k k ia

mn
= =

, m n .  

 As we discussed before, the propagation of correlation 

becomes trivial in such case since all cells become fully 

correlated after the first layer. To avoid this, we clamped the 

correlation coefficient, i.e., we set  

( )k

mn
=

,
( ),iak ia

mn
=

, m n .  

 In simulations we set 0
ia
= = or 0.1, in agreement with 

experimental data reported in the literature [9, 14, 15]; and 

we assume that the context units from each intra-layer, 

including numbers of neurons, afferent means and variances 

are identical, i.e. 

(1) ( )

1 1

kμ μ=
 , 

(1), ( ),iaia k ia
= =

. 

 Without intra-inputs, [15] (Fig. 5) derived the propa-

gation of activity in a homogeneous feed-forward MNN with 

100p = , 0
ij
= , 0.5

ij
= =  and r  (0, 0.4) for 

(1)

1 100μ =  Hz and 50 Hz, and showed that after the first few 

layers, neurons are found to be either silent (e. g. r = 0.4) or 

firing at relatively high frequency (e. g. r = 0.1) about 100 

Hz for different initial CV. As an analogous to [15], we stop 

our simulation when the firing rate is slower than 0.001 Hz. 

The coefficient of variation [16], here, quantifies the 

irregularity of a spike train. If CV  = 0, the spike train is 

regular, otherwise the spike train is random. Thus we choose 

r  = 0.1 and r  = 0.5 to illustrate how the activity is 

propagated across the networks, varied from ia
r  and ia

p , on 

assumption that (k) ( ),ia

1 1 1k
C C= =  (A larger r  leads to be 

certainly silent due to a stronger inhibition). Unless 

otherwise specified, the initial CV  in all simulations is 

always 1, and the weight is 0.5. 

 In Fig. (1), we show the results obtained for various 

values of (1)μ  and (1)  (we reported the coefficient of 

variation (k) (k) (k)/C μ= . As stated in [15], each data point 

(
(k)μ ,

(k)
C ) is connected with (

(k 1)μ +
,

(k 1)
C

+
) to illustrate 

how the activity is propagated across the networks. For  
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r  = 0.1 (left), after the first few layers, neurons are found to 

be either silent or firing at relatively high frequency for all 
ia
r

 
and ia

p . For r = 0.5 (right), however, the situation has 

changed.  

 First, top right shows even if there is no inhibitory input 

( ia
r  = 0), to be silent is certainty on fewer intra- input 

neurons. Second, middle right and bottom right show that 

not all case are to be silent, for examples, 
ia
r  = 0.9 with 

(1)

1 100μ =  (middle right) and 
ia
r  = 1 with (1)

1 50μ =  (bottom 

right), are exclusively found to be firing at relatively low 

frequency. 

 In Fig. (2), we further show how the activity is 

propagated across the networks with the varying numbers of 

intra-layer neurons ia
p  (left) and the ratio of intra- inputs ia

r
 

(right), respectively. As stated earlier, for r  = 0.5 with fewer 

intra- input neurons ( ia
p  = 10), the network is certainty to be 

silent (see Fig. (1), top right). However with increasing size 

of intra- input units, the network might be fixing or firing at 

relatively high frequency (see Fig. 2, left). Right panel of 

Fig. (2) also shows that not all networks are certainty to be 

silent. Instead, they fire at low or relatively high frequency. 

It actually shows the networks can be stable at low 

frequency, see discussions later. 

 Then we show how the relationship between input and 

output firing rate is varied from the context units or intra-

layer input units. Figs. (3 and 4) show how the input-output 

  

  

  

Fig. (1). Propagation of activity in a homogeneous feedforward MNN with context units. For each layer k , the output firing rate ( (k)

1μ ) and 

the coefficient of variation ( )CV  of the interspike intervals ( (k)

1C
) are reported on the abscissa and the ordinate. Points labeled 1 correspond 

to the first layer; points corresponding to successive layers are connected by lines. Results were obtained for (k) 100p p= = , 0
ia

ij ij
p p= = , 

(1)

1μ = 50 Hz (solid lines), 100 Hz (dashed lines), and r  = 0.1 (left), r = 0.5 (right), and ia
p  = 10 (top), 100 (middle) and 300 (bottom). In 

each panel, the ratios from intra-layer ( ia
r ) are evenly spaced. 
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firing rate relationship are varied from 
ia
p  and ia

r , for r  = 0.5 and r  = 1.5, respectively. As an analogous to [15],

  

 

Fig. (2). Propagation of activity in a homogeneous MNN with context units, varied from numbers of intra-layer neurons ia
p  (left) and the 

ratio of intra- inputs ia
r  (right). Results were obtained for r  = 0.5, ( ) 100kp p= = , (1)

1μ  = 50 Hz. 
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Fig. (3). The input-output firing rate relationship for a homogeneous MNN with context units, varied from numbers of intra-layer neurons 
ia
p  and the ratio of intra- inputs ia

r . Results were obtained for r  = 0.5, 0.1
ia

ij ij
= = . 

 

  

  
 
Fig. (4). The input-output firing rate relationship for a homogeneous MNN with context units, varied from numbers of intra-layer neurons 
ia
p  and the ratio of intra- inputs ia

r . Results were obtained for r = 1.5, 0.1
ia

ij ij
= = . 

 

  



236    The Open Cybernetics & Systemics Journal, 2014, Volume 8 Wang and Xiang 

  

Fig. (5). Stable outputs for a homogeneous MNN with context units, varied from numbers of neurons p and the ratio r . Results were 

obtained for ia
r = 0.8 (top) and 1.5 (bottom), and 

ia
p  = 100 (left) and 300 (right), with 0.1

ia

ij ij
= = . 

  

  

Fig. (6). Stable outputs for a homogeneous MNN with context units, varied from the number 
ia
p  and the ratio ia

r  of intra-layer neurons. 

Results were obtained for r  = 0.8 (top) and 1.5 (bottom), and p  = 100 (left) and 300 (right), with 0.1
ia

ij ij
= = .
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Fig. (7). Stable outputs for a homogeneous MNN with context units, varied from 
ia
p  of intra-layer and p  of inter-layer. Results were 

obtained for r = 1 (top), r = 0.5 (middle) and 1.5 (bottom), and ia
r = 0.5 (left) and ia

r =1.5 (right), with 0.1
ia

ij ij
= =

.
. 

 
roughly speaking, the stable solution appears at low firing 

rate for networks of increasing size (either p  or 
ia
p  size) 

with strong inhibition (either r  or ia
r ). However the 

preferred appearance of stable solution at low frequency is 

not the increasing size of both inter- and intra- layer; see Fig. 

(4), for example, any ratio from intra- layer ( ia
r  varying 

from 0 to 1.5) appears a fix point at low firing rate when p  

= 300, 
ia
p  = 100 (top right), instead of p  = 300, 

ia
p  = 300 

(bottom right).  

 Further we explore the stability of such network by 

showing the stable outputs varied from ( p , r ) or (
ia
p , ia

r ). 

Fig. (5) shows the stable outputs vs r  and p , with a fixed 

ratio from intra-layer inputs ia
r  = 0.8 (top) and ia

r  = 1.5 

(bottom), and with a number of neurons from intra-layer 

inputs 
ia
p = 100 (left) and 

ia
p  = 300 (right). The initial 

inputs fix 5 Hz in the current and latter simulations. It shows 

that the ratio and number of neurons from intra- layer do not 

cause into a significant influence on the stability of 

networks, especially for r > 1, the network will be either 

silent or firing at low frequency. As an analogue of  

Figs. (5, 6) shows the stable outputs vs ia
r  and 

ia
p , with r  

= 0.8 (top) and r  = 1.5 (bottom), and with p  = 100 (left) 

and p  = 300 (right). It is found that context unit (i.e. intra-

layer input unit) appears to have a sophisticated role in the 

stability of such network, depending on the ratio ia
r  and the 

size 
ia
p  of context unit, together with the ratio r  and the 

size p  of network itself, i.e. inter- layer. For example, for r  

= 0.8 (see top two panels), the stable output appears to 

increase with the increasing size 
ia
p  and the decreasing ratio 

ia
r  of context unit, which plays a general role. 

 Finally, we explore the stability of such network by 

showing the stable outputs varied from numbers of intra-

layer neurons 
ia
p  and of inter-layer p . Fig. (7) shows that 

the network with a small size of intra and inter-layer, will be 

either silent or firing at low frequency. Top panel shows that 

the stable output of such network seems to be symmetric 

between numbers of intra-layer and inter-layer when r = 1. 

However there seen an obvious asymmetry for r < 1 or r > 

1; see middle and bottom panels in Fig. (7). Middle panel 

shows that the network with a relatively large size of inter-

layer, for r < 1, will be firing at relatively high rate, and that 

the size of intra-layer has negligible effect on the stable 

outputs such as p > 250. Bottom panel presents unexpected 

results of r > 1 that relatively high frequency is firing at the 

large size of intra-layer and small size inter-layer, rather than 

the large size of intra-layer and inter-layer. Especially for p  

> 300 and 
ia
p > 300, the network is unexpectedly firing at 

low frequency when r = 1.5 and ia
r = 0.5; see the left of 

bottom panel. All those imply that the current network can 

lead to more sophisticated dynamics than MNN and the 

context unit plays very sophisticated role in dynamics of 

such network. 

4. DISCUSSION 

 In the current paper we have focused on the dynamics of 

homogeneous feed-forward MNN with context units, akin to 

the dynamics of MNN. Due to a more biologically 

reasonable context units (i.e. intra- layer inputs), such 

network offers a significant advantage over the recent MNN 

in that it can change the dynamics of network by the 

adjustment of the parameters from context unit (and from 

network itself). It is obvious that the ratio between inhibitory 
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and excitatory input, and the neurons number from both 

inter- and intra- layers are the parameters of such models 

(actually the weights and correlation coefficients are also in a 

heterogeneous network). As stated earlier, the context unit 

plays a very sophisticated role in the dynamics of such 

network. It can enhance or weaken the firing outputs by 

varying on the ratio ia
r  or the size 

ia
p  of context unit, based 

on the ratio r and the size p of network itself, i.e. inter- layer. 

It can lead to some unexpected dynamics and subsequently 

present some important gain in computational power over 

MNN. 

CURRENT & FUTURE DEVELOPMENT 

 In the future, a more sophisticated dynamics of 

heterogeneous network with context units will be  

explored. This might, for instance, shed light on how  

de-synchronization or synchronization is produced when we 

remove the constraint on the correlation coefficient between 

neurons. 
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