
Send Orders for Reprints to reprints@benthamscience.ae 

 The Open Cybernetics & Systemics Journal, 2014, 8, 309-315 309 

 
 1874-110X/14 2014 Bentham Open 

Open Access 

ILMI Approach to Static Output Feedback Fuzzy Control for Synchroni-
zation of Hyperchaotic Systems via T-S Models 

Minxiu Yan1,*, Xiaofan Zheng1 and Zhuyin Xue2 

1College of Information Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, China, 110142; 
2College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China, 110819 

Abstract: A static output feedback fuzzy (SOFF) control approach is proposed in order to deal with the problem of syn-
chronization of two identical hyperchaotic systems. The T-S fuzzy model with its small number of fuzzy IF-THEN rules 
is employed to represent many typical nonlinear hyperchaotic systems. Based on the T-S fuzzy hyperchaotic models and 
Lyapunov stability theory, a necessary condition for the existence of robust SOFF controllers is presented in terms of a set 
of matrix inequalities, which guarantees the stable synchronization of two different hyperchaotic systems. An iterative lin-
ear matrix inequality (ILMI) algorithm is proposed to compute the feedback gains of the suboptimal SOFF controller. Fi-
nally, numerical examples are given to demonstrate the validity and effectiveness of the proposed fuzzy modeling and 
synchronization scheme of the hyper chaotic systems.  
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1. INTRODUCTION 

Chaos is a very interesting nonlinear phenomenon mainly 
due to its complex dynamics such as, it is highly sensitive to 
initial conditions, fractal properties of the motion in phase 
space and so on. Since the pioneering work of Carroll and 
Pecora [1], synchronization of two chaotic dynamical sys-
tems have been paid increasing attention due to its powerful 
applications in information processing, secure communica-
tion, power converters, chemical reactions, biological sys-
tems etc. The control of chaos synchronization has attracted 
a lot of interest by variety of its systems including physical, 
chemical, biological and ecological systems. Many effective 
technologies have been developed such as sliding mode con-
trol method [2, 3], active control method [4, 5], adaptive 
control method [6, 7] and output feedback control method [8, 
9] etc. 

In the recent past, the state or output feedback control 
methods for synchronization of chaotic systems have been 
widely studied. In [10], a sufficient condition was proposed 
for chaos synchronization by the linear state feedback ap-
proach based on the Lyapunov stability theory in control 
theory. In [11], a simple linear feedback controller was pro-
posed to make the states of two identical chaotic systems 
asymptotically synchronized. In [12], the robust control on 
the synchronization of a hyper-chaotic system with distur-
bance input was investigated. In [13], a static output feed-
back controller was proposed to guarantee robust synchroni-
zation between the master and slave systems based on linear 
matrix Inequality (LMI) and Lyapunov theory. 
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The static output feedback (SOF) problem is one of the 
most researched problems in the control theory and its appli-
cations [14, 15]. The SOF controller is less expensive to im-
plement and more reliable in practice. On the other hand, 
many problems involving the synthesizing dynamic control-
ler can be formulated as static output feedback control prob-
lems involving augmented plants. However, the static output 
feedback methods for synchronization of chaotic systems 
have limitations. The methods must assume the Lipschitz 
conditions of nonlinear terms but it is difficult to compute 
the parameters the Lipschitz conditions. To overcome this 
drawback, the control and synchronization chaotic systems 
uses fuzzy technique modeling and their stability analysis 
have been investigated extensively. Fuzzy technique has 
been widely and successfully used in nonlinear system mod-
eling and control for more than two decades. The well-
known T-S fuzzy model [16, 17] is recognized as a popular 
and powerful tool in approximating a complex nonlinear 
system because of its simple structure with local dynamics. 
Lian et al [18] presented a synthesis approach for synchro-
nizing the chaotic systems based on T-S fuzzy model. In 
their work, the parameters of controller are found by solving 
LMI problems. If it is possible to find appropriate matrices 
satisfying the LMI, then a stabilizing feedback gain exists. 
However, to the best knowledge of the authors, there is an 
infeasible LMI in many cases. 

In this paper, a SOFF control approach is proposed for 
synchronizing two identical nonlinear hyperchaotic systems 
by employing the T-S fuzzy model. The T-S fuzzy models 
are employed to represent many typical nonlinear hypercha-
otic systems exactly [19, 20]. Based on the T-S fuzzy hyper-
chaotic models and Lyapunov stability theory, a necessary 
condition for the existence of robust SOF controller is pre-
sented in terms of a set of linear matrix inequalities (LMI), 
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which guarantees the stable synchronization of two different 
hyperchaotic systems. On this basis，an improved iterative 
linear matrix inequality (ILMI) algorithm [21, 22] is pro-
posed to compute the feedback gain of the suboptimal SOF 
controller. Finally, numerical examples are given to demon-
strate the validity and effectiveness of the proposed fuzzy 
modeling and synchronization scheme of hyperchaotic systems. 

2. T-S FUZZY MODEL OF HYPERCHAOTIC SYN-
CHRONIZED SYSTEMS 

2.1. T-S Fuzzy Model 

In modern control theory, it is important to select an ap-
propriate model to represent a nonlinear system.  

As an expression of model, considering a class of nonlin-
ear system represented by T-S fuzzy model as stated as fol-
lows: 

Fuzzy Rule i: IF 
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 and . . . 
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where 
   i =1,2,3,Kr  (r is the number of fuzzy rules), 
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 denotes the input 
vector, respectively, 
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n
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constant vector and denotes a bias term which is generated 
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j =1,2K, s)  is a fuzzy set which is charac-

terized by a membership function. 

Taking a standard fuzzy inference method (using a sin-
gleton fuzzier, product fuzzy inference and center average 
defuzzifier), the final continuous-time fuzzy T-S system is 
inferred as follows: 
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membership function of the system with respect to the fuzzy 
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The T-S system is considered as follows:  
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2.2. T-S Fuzzy Synchronization Model of the Hyper-
Chaotic Systems 

Note that most of the hyperchaotic systems can be ex-
pressed as follows: 

( ) ( ) ( ( ))x t Ax t f x t= +&             (4) 

where ( ) n
x t R!  is the n-dimensional state vector of the sys-

tem, n n
A R

!
"  denotes the linear part of the system dynamics 

and f(x(t)) represents the nonlinear parts of the system.  

According to the boundedness of the hyperchaotic sys-
tems, we can find that ( ) [ , ]

i i i i i
x t c d c d! " + , where 

0
i
d > ,  and 

i i
c d are obtained by the numerical simulation. 

We can assume that there is a common factor in the nonlin-
ear parts and choose the common factor as the premise vari-
able of T-S fuzzy rules. For example, in the following Lo-
renz hyperchaotic system, the nonlinear parts include com-
mon factor 

1
x . Therefore we can choose 

1
x as the premise 

variable. 
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The membership functions are chosen as 
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We can obtain the following T-S model system: 
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Consider the nonlinear hyperchaotic system as master 
system: 

   

&x = Ax + f (x)

y(t) = Cx(t)
              (9) 

And another hyperchaotic system as slave system: 

   

&̂x = Ax̂ + f ( x̂)+ u(t)

ŷ(t) = Cx̂(t)
           (10) 

where ˆ,
n
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parts of the system, ( )u t is the output vector of the control-
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The master system is inferred as follows: 
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The slave system is inferred as follows: 
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The synchronization error system between (11) and (12) 
can be written as follows: 

ˆe x x= !               (13) 
The synchronization error of the dynamics system is in-

ferred as follows: 
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The objective of this paper is to design a feedback con-
trol law such that 

  
lim
t!"

e(t) =0 . 

3. STATIC OUTPUT FEEDBACK CONTROLLER DE-
SIGN AND ANALYSIS  

In this section, we will investigate the synchronization 
controller of two hyperchaotic systems based on the T-S 
fuzzy models. 
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Then dynamics system (14) is stabilizable and the con-
troller is given by  
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Proof. The controller is described by the following rules: 
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"  is the feedback gain matrix of the con-
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ferred as Eq.(16). The dynamics of the synchronization error 
system can be written as follows: 
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Choose the Lyapunov function as T( ) ( )V e t Pe t= , where 
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Taking derivative of the Lyapunov function candidate 
with respect to time, one has 
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There exists a negative sign in the T

i i
PBB P!  term. The 

inequality cannot be simplified to LMI. Therefore we intro-
duce an additional positive-definite matrix variable

i
X . 

Obviously, T T( ) ( ) 0
i i i i
X P BB X P! ! " , where ,

i i
X P are 

the same dimension matrix. We obtain 
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If the following matrix inequality is satisfied: 
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We can know 
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Based on Lyapunov’s theory, if there exists positive-
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If 
i
X  is fixed in Eq.(24), then it reduces to LMI problem 

for the unknowns 
i
P  and

i
K . 

Lemma 2. The dynamics system (14) is / 2! -stabilizable 
via static output feedback if and only if there exist two ma-
trices 
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K satisfying the following matrix inequality: 
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The closed-loop system matrices have eigenvalues on the 
left-hand side of the line R(s)=

i
! a in the complex s-plane. 

Based on the idea that all eigenvalues of closed-loop system 
matrices are shifted progressively towards the left-half-plane 
through the reduction of

i
! , thus the ILMI algorithm is in-

troduced. 

The dynamics system is in realization with (Ai, B, and C). 
And the ILMI algorithm is expressed as follows: 
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Denoted by 
  
!

i j

*  the minimized value of 
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i j
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i
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static output feedback gain. Stop. 

Step 4. Solve the following optimization problem 
for i j
P and

i
K . 

OP2. Minimize trace 
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Step 5. If
  

X
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*
< " , where !  is a prescribed toler-

ance, go to Step 6, else set 
  
j = j +1  and 
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i j
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Step 6. The system may not be stabilizable via static out-
put feedback. Stop  

If the algorithm fails to arrive at a stabilizing solution, we 
may select another Q and run the ILMI algorithm again. 

4. NUMERICAL SIMULATIONS 

In this section, the numerical simulation results of hyper-
chaotic systems are discussed and validate the effectiveness. 

The hyperchaotic Liu system is described by 

   

&x1 = a(x2 ! x1)

&x2 = bx1! cx1x3+ x4

&x3 = !dx3+ gx1
2

&x4 = !rx4

"

#

$
$

%

$
$

          (27) 

where 
  
a =10,b = 40,c =1, d = 2.5, g = 4, r =10.6 . 

The attractors of Liu hyperchaotic system are shown in 
Figs. (1-4). The initial state is chosen as (0) [2;1;5;2]x = . 

  
Fig. (1). Attractor of Liu hyperchaotic on x1-x2-x3. 
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Fig. (2). Attractor of Liu hyperchaotic on x1-x2-x4. 

 
Fig. (3). Attractor of Liu hyperchaotic on x1-x3-x4. 

 
Fig. (4). Attractor of Liu hyperchaotic on x2-x3-x4. 

From the simulation results we can get 
1
[1.2 18.7,1.2 18.7]x ! " + . Obviously, the nonlinear parts 

include a common factor x1(t). We can then derive the T-S 
fuzzy models of Liu hyperchaotic system as follows: 
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The membership functions are chosen as: 
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Based on the above T-S fuzzy hyperchaotic models, we 
investigate the synchronization between Liu hyperchaotic 
systems. In simulation the initial values are assumed to be 

  
x1 0( ) , x2 0( ) ,  x3 0( ) , x4 0( )( ) =  

 
2,  1,  5,  2( ) . In the numerical 

simulation, we use the following parameters: 
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Choose Q = I, Theorem 1 works well using LMI toolbox 
in MATLAB. However, Theorem 1 does not lead to a feasi-
ble conclusion. Therefore, by applying ILMI algorithm to 
solve the corresponding LMI, We obtain a set of feasible 
solutions. Simulation results for Theorem 1 and ILMI algo-
rithm studies are presented in Table 1. 

We get the positive definite matrices P1 and P2 as follows: 
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Table 1. Simulation results for the Theorem 1 and ILMI algorithm. 

LMI ILMI 
 

Feasibility Feasibility Ki Poles 

A1 infeasible feasible 
  

K
1
=
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#
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-1.5 
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Numerical simulations are carried out using the MAT-
LAB software. The ode45 solver is used for solve synchroni-
zation problem. 

Figs. (5-8) show the synchronization errors . It can be 
seen that the slave system can trace the master system suc-
cessfully when output of the proposed controller is in action 
after 10s. 

Fig. (5). Synchronization error 1.  

Fig. (6). Synchronization error 2. 

Fig. (7). Synchronization error 3.  

Fig. (8). Synchronization error 4. 

5. CURRENT & FUTURE DEVELOPMENTS 

So far, the research of hyperchaotic systems is a hot spot 
in the research world. Compared with normal chaotic sys-
tems, hyperchaotic systems have more sensitivity to initial 
conditions and randomness which makes a secure communi-
cation system even more secured. Even if the information is 
intercepted, separating out the useful information is almost 
impossible. The static output feedback method for synchro-
nization of hyperchaotic systems is less expensive to imple-
ment and more reliable in practice. However, the research on 
hyperchaotic systems is not mature enough. Many problems 
such as how to shorten the time synchronization and how to 
enhance the efficiency of operations etc. still need to be 
solved in the future. 
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