
Send Orders for Reprints to reprints@benthamscience.ae

628 The Open Cybernetics & Systemics Journal, 2014, 8, 628-631

 1874-110X/14 2014 Bentham Open

Open Access

Study of High-Capacity Data Processing Method in Testing System

Zhi-Gang Ma
1,2

, Wen-Yi Liu
1,*

 and Wen-Dong Zhang
1

1
Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Educa-

tion, Science and Technology on Electronic Test & Measurement Laboratory, Taiyuan, Shanxi, 030051, P.R. China;
2
College of Information Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, P.R. China

Abstract: In various kinds of testing systems, large-capacity data file is common. File processing method based on C,

C++ and MFC was introduced in this paper. In the light of functions in Win32 API, reading, data decomposing and analy-

sis method of large-capacity data file were presented. According to practical requirement, the data processing software is

designed. By experimental verification and practical data testing, the processing method posed in this paper can analyze

and process large-capacity data file effectively. The processing method presented in this paper has been employed in sev-

eral space measurement projects successfully and obtained satisfactory analysis result, which provided the reliable basis

for relational tests and experiments.

Keywords: Algorithm, application program interface (API), data processing, high-capacity data, testing system.

1. INTRODUCTION

For the past few years, with the rapid development of in-
formation technology, several test and measurement fields
are needed for transmission, storing large amounts of data.
For example, several kinds of vibration, shock, and high-
speed image data often need to be collected and stored in
testing system, and some usually requires a high sampling
rate and a longer acquisition time. Therefore, the amount of
data processed by a computer is often very large, usually up
to a few dozen GB, even up to several tens of GB [1, 2]. In
connection with so huge amount of data, it is necessary to
adopt efficient programming language and the rational de-
sign of algorithms. Data processing algorithms discussed in
this paper is based on the Visual C++ 6.0.

2. READ AND WRITE OF BINARY FILES

"File" means an information collection stored in a com-
puter external media (such as hard discs, CD-ROM, etc.).
Files are generally divided into text files and binary files.
This paper discusses the data files belonging to a binary file.
Typically, the data in the program will be cleared from
memory after the end of the program runs. It is inevitably
encountering the problem of permanently storing the data,
thus, we can still use the data when the program is ending.
So file operations is indispensable.

2.1. File Operations Based on C and C++

In C language, file operations are performed by the struc-
ture named as FILE. When which is used, "fopen" function
returns a pointer to FILE structure firstly, and functions
"fread" and "fwrite" are used for reading and writing the

files. In C++, ofstream class (file stream) can be adopted for
the file reading and writing operations, the relevant functions
are "read","write", etc.

2.2. File Operations in MFC

CFile is used for file operations in MFC, which provides
a number of functions, such as, "Write" and "Read" are
adapted to writing and reading data from files respectively.

In addition, "GetLength" function can get the file size,
and this function returns a value of type DWORD (32-bit
unsigned integer). It means that "GetLength" function can
get the correct number of bytes in size can not exceed 4GB
files. If the file exceeds 4GB, it is necessary to consider
other ways to get its size. Although the data processing does
not need to know the size of the file, this parameter can be
estimated the progress of data or other necessary informa-
tion, so it is important.

3. FILE OPERATIONS WITH WIN32 API FUNC-
TIONS

Win32 API provides a number of functions related to the
operation and function, including: "CreateFile", "ReadFile",
"WriteFile" and "FindFirstFile", etc. This paper is discussed
mainly based on Win32 API functions.

3.1. "CreateFile" Function

"CreateFile" function is used to open and create files,
pipes, communication services, devices, and consoles. This
paper is only concerned with how to use this function to cre-
ate or open a file. Its syntax is:

HANDLE CreateFile

(

LPCTSTR lpFileName,

Study of High-Capacity Data Processing Method in Testing System The Open Cybernetics & Systemics Journal, 2014, Volume 8 629

DWORD dwDesiredAccess,

DWORD dwShareMode,

LPSECURITY_ATTRIBUTES lpSecurityAttributes,

DWORD dwCreationDisposition,

DWORD dwFlagsAndAttributes,

HANDLE hTemplateFile

);

3.2. "ReadFile" Function

"ReadFile" function is used for reading data from the
specified file. Its syntax is:

BOOL ReadFile

(

Handle HANDLE hFile,

LPVOID lpBuffer,

DWORD nNumberOfBytesToRead,

LPDWORD lpNumberOfBytesRead,

LPOVERLAPPED lpOverlapped

) ;

3.3. "WriteFile" Function

"WriteFile" function is used for writing data to the speci-
fied file, the syntax is:

BOOL WriteFile

(

HANDLE hFile,

LPCVOID lpBuffer,

DWORD nNumberOfBytesToWrite,

LPDWORD lpNumberOfBytesWritten,

LPOVERLAPPED lpOverlapped

);

3.4. "FindFirstFile" Function

To get detailed information files, "FindFirstFile" function
can be adopted. Its syntax is:

HANDLE FindFirstFile

(

LPCTSTR lpFileName,

LPWIN32_FIND_DATA lpFindFileData

);

After this function is executed successfully, the variable
"lpFindFileData" will get a WIN32_FIND_DATA structure,
which contains several file information, this paper is more
concerned about the parameters nFileSizeHigh and nFile-
SizeLow, which represent high 32-bit and low 32-bit of file
size respectively. Therefore, it can obtain the file size does
not exceed 16 MTB, which can meet the actual needs at this
stage.

4. ANALYSIS OF LARGE-CAPACITY DATA

In testing system, test data obtained from each channel
needs to be transmitted to the analyzing computer in data file
format, and analyzed. Data analysis includes: channel data
separation, channel data integrity analysis, etc. When neces-
sary, the continuous changing analog signal (voltage, tem-
perature, level, pressure and other parameters) should be
shown in curve or exported quantized value. In addition, the
analysis course should generate a log file, which is used to
give the results of data analysis, including testing duration,
the effective number of frames, whether dropped frames and
other information. General data analysis process is shown in
Fig. (1).

4.1. Data Separation

Since various kind of test data have different sampling
rate, sampling time, etc., the raw data obtained is often a
mixture of various types of data. Therefore, before analyz-
ing, the raw data must be separated and generated separate
files. Each file is corresponding to a kind (or channel) of
data.

Fig. (2) is a case of a package structure with a mixed se-
ries of data frames. The sample contains two types of data,
namely digital data (packet tail is 0X "AA + AA") and ana-
log data (packet tail is 0X "E7 + E7"). Packet count (4 bytes)
is designed for classifying packets in order to judge the in-
tegrity of the package, and two types of data packets are
counted separately.

"Data separation", also called "Data unpack", which is
used for separating various types of data and generating new
data file respectively. In the separation process, it is neces-
sary judge the continuity of packet count. If not continuous,
then an error message should be generated and written to the
log file.

 Acquisition,

Encoding,

Framing

 Channel

Data

.
.
. PC

Data Separate

Channel Data

Analyze

Channel Data

Display Curves,

Other Opertions

Channel Log

File File File

Fig. (1). Universal process of data analysis.

Packet Head
(2Bytes) 0X"55+55"

Valid Data

(92Bytes)

Packet Count

(4Bytes)

Packet Tail(2Bytes)

0X"AA+AA" or " E7+E7"

100 Bytes

Fig. (2). Package structure of mixture framed data.

630 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Ma et al.

Before data separation, the data must to be read from the
data file. If the data file is small (for example, no more than
100MB), which can be directly read into memory com-
pletely. While, for a large amount of data (for example, more
than 1GB), common analysis method is "block reading"
"join data " "block analysis", and finally achieve "full
analysis". That is, firstly read out (e.g. 128KB) block of data
for analysis; Put the remaining unused portion of the block
into a temporary buffer; Read the next block, then join the
previous remaining data and current block of data and per-
form analysis the whole data, thus so on, until the analysis is
complete. The process is shown in Fig. (3), "analyze data"
refers to the judgment of all data packet structure in the cur-
rent block to determine if the packet data belongs to the
"digital data" or "analog data", and then the effective data is
written into the corresponding file.

4.2. Channel Data Analysis

Although the frame structure is different of each type of
channel data, he frame structure is designed to have a pat-
tern, so the flexibility and universality of analysis algorithm
should be considered adequately. A typical data frame struc-
ture shown in Fig. (4).

 Begin

Open Data File

Read out

Block Data

Analyze Data

Store Remaining

Data into Buffer

Previous Remains?

N
Join Data

Completely?

Y

Y

N

End

Close Data File

Fig. (3). Flow diagram of data unpack.

TmpDat = new UCHAR[BlkLen];

fp.Read(TmpDat, BlkLen);

FCnt1 = 0; FCnt2 = 0; //previous and current frame count

for(i=0; i< BlkLen; i++)

{

if((TmpDat[i]==FHead[0])&&(TmpDat[i+1]== FHead[1]))

{

if((TmpDat[FLen-2]==FTail[0])&&(TmpDat[FLen-1]==

FTail[1]))

{

//Find a valid data frame;

//Judge the continuity between the adjacent frame (2-byte

count for example)

FCnt1 = FCnt2;

FCnt2 = (TmpDat[FLen-4]<<8) + TmpDat[FLen-3];

if ((FCnt1+1)!= FCnt2)

{

//Write an error message to the log file

}

}

}

}

Fig. (5). Typical code of data analysis.

As before mentioned, different channels often contain
different data frame structures. In order to adapt to different
data analysis, relational analysis parameters (frame head,
data length, frame count number and frame tail) should be
set. Data analysis procedures should be adapted to analyze
different data frame structure, typical code as follows in Fig.
(5).

4.3. Design of Data Analysis Software

In this paper, Visual C++ 6.0 is adopted for data analysis
software design, which is shown in Fig. (6). According to the
general process of data analysis, the software is divided into
"data unpack", "channel data analysis", "channel data export
or curve shows" and other modules.

CONCLUSION

Data is an important indicator and foundation of system
performance and working conditions. In this paper, large-
capacity data in testing system processing method issued,
combined with C++, Win32 API functions, such as support

Frame Tail

(2 Bytes) 0X"14+6F"

Frame Data

(DLen Bytes)

Frame Count

(CntLen Bytes)

Frame Head

(2 Bytes) 0X"EB+90"

FLen Bytes

Fig. (4). A typical data frame.

Study of High-Capacity Data Processing Method in Testing System The Open Cybernetics & Systemics Journal, 2014, Volume 8 631

for file operations, discussed the analysis methods of large-
capacity binary data files, and designed the data processing
software in Visual C++ 6.0 environment. Through the self-
test data and the actual test data analysis and processing, the
analysis method has high efficiency and stability, better able
to deal with large-capacity data. In addition, how to analyze
large capacity and even massive amounts of data need to
employ more advanced technologies, such as: multi-threaded
programming [3, 4], memory mapping, parallel technology
[5], multi-core technology [6], “Big Data” operation [7-10],
cloud computing [11, 12], these are the follow-up studies of
this paper’s direction.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

The authors wish to thank for the support in part by Na-
tional Natural Science Foundation of China (No. 51275491).

REFERENCES

[1] K. Chen, and W. Zheng, “Cloud computing: system instances and

current research”, Journal of Software, vol. 20, pp. 1337-1348,
May. 2009.

[2] D. Zhu, and Y. Song, “Accomplishment of algorithm of massive
data analysis and processing”, Journal of Changchun University,

vol. 21, pp. 42-45, Aug. 2011.
[3] Y. Li, Y. Zhao, M. Li, and Y. Du, “Tread partitioning algorithm for

speculative multithreading based on path optimization”, Journal of
Software, vol. 23, pp. 1950-1964, Aug. 2012.

[4] X. Hu, S. Pan, Y. Hu, and X. Li, “Mitigating voltage emergency in
simultaneous multithreading processor by memory level parallelism

aware thread scheduling”, Chinese Journal of Computes, vol. 36,
pp. 1065-1075, May. 2013.

[5] H. Wei, J. Yu, H. Yu, and M. Qin, “A method on software pipe-
lined parallelism for data flow programs”, Chinese Journal of Com-

putes, vol. 34, pp. 889-898, May. 2011.
[6] H. Liu, and P. Zhao, “A multi-core fair memory scheduling model”,

Chinese Journal of Computes, vol. 36, pp. 2191-2199, Nov. 2013.
[7] X. Meng, and X. Ci, “Big data management: concept, techniques

and challenges”, Journal of Computer Research and Development,
vol. 50, pp. 146-169, Jan. 2013.

[8] J. Li, and X. Liu, “An important aspect of big data: data usability”,
Journal of Computer Research and Development, vol. 50, pp. 1147-

1162, Jun. 2013.
[9] S. Wang, H. Wang, X. Qin, and X. Zhou, “Architecting big data:

challenges, studies and forecasts”, Chinese Journal of Computes,
vol. 34, pp. 1742-1752, Oct. 2011.

[10] X. Meng, Y. Li, and J. Zhu, “Social computing in the era of big
data: Opportunities and challenges”, Journal of Computer Research

and Development, vol. 50, pp. 2483-2491, Dec. 2013.
[11] P. Wang, L. Zhang, C. Ren, and Y. Guo, “The analytical model and

simulation research in phase space of cloud computing”, Chinese
Journal of Computes, vol. 36, pp. 286-296, Feb. 2013.

[12] Z. Liu, Z. Wen, and H. Zhang, “Cloud computing and cloud data
management technology”, Journal of Computer Research and De-

velopment, vol. 49, pp. 26-31, Jun. 2012.

Received: September 22, 2014 Revised: November 30, 2014 Accepted: December 02, 2014

© Ma et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

Fig. (6). Data analysis software.

