
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2014, 8, 835-842 835

 1874-110X/14 2014 Bentham Open

Open Access

Research on the Possibility of Regulating Scheduling Length after Elimi-
nating Intra-Iteration Dependency

Wu Huixin
1,*

, Feigao Li
2
 and Nan Sun

3

1
Department of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou,

450046, China;
2
Department of Electrical Engineering, Henan Polytechnic, Zhengzhou, 450046, China;

3
College of

Computer and Information Engineering, Henan University of Economics and Law, Zhengzhou, 450002, China.

Abstract: Recently, scheduling algorithm which is related to computing tasks and communication transactions is widely

studied. In multi-core systems, adopting certain scheduling algorithm to execute schedule can decrease scheduling length

effectively after eliminating intra-iteration dependency of the computing tasks. In this case, regulating execution order of

computing tasks can make further compression of the scheduling length in consideration of the effect generated by com-

munication tasks. The experiment proved the necessity of decreasing scheduling length by regulating execution order of

computing tasks according to the specific situation after achieving the initial scheduling length by adopting certain sched-

uling algorithm without the intra-iteration dependence of computing tasks. This study has great significance for the design

of scheduling algorithm in the multi-core environment.

Keywords: Multi-core, scheduling length, task scheduling, task execution order.

1. INTRODUCTION

In recent years, scheduling algorithm which contains
computing tasks and communication transactions has ob-
tained extensive research. For cycle application running on
multi-core systems, dependency of computing tasks affects
the parallelism, which reduces the utilization rate of multi-
core [1-3]. Dependency of computing task contains intra-
iteration dependency and extra-iteration dependency [4].
Only intra-iteration dependency will produce the fore men-
tioned affection, but extra-iteration dependency will not.
Therefore the researchers start to consider eliminating intra-
iteration dependency of computing tasks [5], and carrying
out a large number of scheduling algorithm designs based on
the elimination of data dependency of intra-iteration [6-9].
Computing task execution order can be regulated liberally
after eliminating the intra-iteration dependency of the com-
puting tasks. The adjustment of computing task execution
order may affect scheduling length especially when consider-
ing the communication transactions. After eliminating intra-
iteration of computing tasks, whether the adjustment of
computing task execution order can reduce the scheduling
length is a problem worth studying.

2. RELEVANT DEFINITION AND MODELLING

When infra-iteration dependency of computing tasks is
eliminated, the definition of scheduling length and the
scheduling length of data dependency with data iteration is
different. That is because communication happens in different

iteration of the loop. The definition of scheduling length
without infra-iteration data dependency will be given in the
following section.

Definition 1: On considering scheduling of communica-
tion tasks, scheduling length is the latest finish time of all the
computing tasks and communication transactions in the task
graph.

Before the study on computing task execution order, di-

rected acyclic graph standing for application program will be

introduced first: (), , ,G E D C= , represents task set, E

represents the set of directed edge (),
i j
e i j n , W represents

the set of weight of direct edge, that is to say
i
w represents

the execution time of computing task
i
. ijc C represents

the communication time between computing task
i
 and

j
.

Fig. (1) shows one task graph instance. In Fig. (1), nodes

represent computing tasks and the numbers beside the com-

puting tasks represent the number of clock cycles required

by executing computing tasks. The directed edge connecting

two computing tasks represents the communication edge of

the two computing tasks. The computing task from the

communication edge are father computing task (father node),

the computing task pointed by the arrows from the commu-

nication edge are child computing task(child node), the

tagged numbers beside the computing tasks represent the

number of clock cycles required by executing communica-

tion. The directed edge connecting two computing tasks

represents the communication edge of the two computing

tasks. For the situation two computing tasks from connection

of communication edge are assigned to the same processing

core, the communication time between the two computing

836 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Huixin et al.

tasks will be zero. In the multi-core system, if intra-iteration

dependency of computing tasks are eliminated and the origi-

nal computing tasks with intra-iteration dependences map to

the processing core in accordance with certain scheduling

algorithm, then scheduling length could be the time of the

last one computing task finished in all processing core, or

also could be the time of the last one communication task

finished on the bus. This is because once the intra-iteration

dependency of computing tasks are eliminated, the finish

time of communication tasks and computing tasks may over-

lap, or the finish time of communication tasks may be later

than the final completion time of computing tasks. Thence

scheduling length can be calculated by the following for-

mula:

max(max((,)),max(()))

(1,2, , 1, 2, , 1, 2,)

= i k ijmakespan finish p finish e

i n j n k m (1)

makespan --scheduling length.

(,)i kfinish p --the finish time of computing task
i
 on

processing core kp

()ijfinish e --the completion time of communication

transaction
ij
e

m --the number of the processing core

The completion time used by computing task
i
 on the

processing core kp is the sum of the start time and execution

time of this task on the processing core kp , and is expressed

as follow.

(,) (,)i k i k ikfinish p start p w= +
 (2)

(,)i kstart p
--start time

i k
w --execution time

The completion time ()i jfinish e of communication

transaction
i j
e is the sum of the start time and execution time

of this communication transaction.

() ()i j i j ijfinish e start e c= +
 (3)

()
i j

start e
--start time

ij
c --communication time

3. BACKGROUND KNOWLEDGE AND PLATFORM
INTRODUCTION

3.1. Principle of Retiming Technique

Retiming technology principle is put forward by Leisers

in 1991 and this technique was originally used to optimize

sequential circuits [10]. While keeping the original function

elements and their connection way invariable, It will remove

delays from each of the input side of one node and add to

each of the output side of the node by rearranging the regis-

ters or in turn so that circuits can be optimized. Later this

technology is brought in parallelization and schedule of em-

bedded system [11, 12] to optimize data flow diagram gained

by the abstraction of application program. Actually its es-

sence of the improvement of program parallelism is though

reassembling the loop body, and making dependency of

computing tasks in the original task graph exist in different

iterations. This technology achieves the purpose of optimiz-

ing loop by rearranging the delays under the situation of

keeping the tasks of the original data flow diagram and de-

pendency among iterations invariable. This technology has

eliminated the intra-iteration dependency of the original data

flow diagram. The loop body can be optimized according to

the retiming data flow diagram after the use of this technol-

ogy on data flow diagram. In the retiming data flow diagram,

if there is no delay at the directed edge which connects two

nodes, the intra-iteration data dependency will represent the

relationship the two computing tasks. Two extra-iterations

existed in different loops will be represented by the edge

with delay, “ ”which connects two different nodes repre-

sents delay, the number of “―” represents how many cycle

times of discrepancy between the two nodes connected on

one edge. For instance, the number of delay in the edge that

connects computing task
i
 and

j
is () 0

ij
e > , showing the

result produced by the computing task
j
 at m-th loop de-

pends on the result produced by the computing task
i
 at

(()
ij

m e)-th loop.

Fig. (2a) provides a loop program. Fig. (2b) provides the

relevant data flow diagram G of this loop program (one

node represents one computing task). The tagged number

beside each computing task represents the periodicity of this

computing task, here assuming that add operation needs one

clock cycle, multiply operation requires two clock cycles.

Fig. (2c) provides one deformational loop program. Fig. (2d)

provides the relevant retiming data flow diagram
r
G . In this

retiming data flow diagram, the retiming value of node A is

3, the retiming value of node B is 2, the retiming value of

node C is 1, the retiming value of node D is 2, and the retim-

1

2

3

5

4

6

7

3

3
4

5

1
2

1
2

2 2
1

4 3

1 3

5

Fig. (1). An example of task graph.

Research on the Possibility of Regulating Scheduling Length The Open Cybernetics & Systemics Journal, 2014, Volume 8 837

ing value of node E is 0. Fig. (2e) provides the scheduling

result gained though the data flow diagram G. Fig. (2f) pro-

vides the assembly line scheduling result gained though the

retiming data flow diagram
r
G .

3.2. RDAG

RDAG algorithm is designed based on retiming principle
whose aim is to obtain computing task retiming value [4].
This algorithm can transform a periodic acyclic graph into a

For i=1 to n do

A[i]=i+1;

B[i]=A[i]+8;
C[i]=A[i]+3;

D[i]=B[i]-2;

E[i]=C[i]*D[i];

End

A

B C

D

E

1

1

2

1

1

(a) (b)

For i=1 to n do

A[i]=i+1;

B[i]=A[i-1]+8;

C[i]=A[i-2]+3;

D[i]=B[i-1]-2;

E[i]=C[i-1]*D[i-1];

End

A

B C

D

E

1

1

2

1

1

(c) (d)

A B D E

C

A B

C

D E A B D E

C

A B D E

C

Processor core 1

A A A A

B

A A

B

A A A A A A

B

A

BB B B B B B B B B

D D D D D

E

D D D D D D

E

D D D

EE E E E E E E E E E E

C C C C C C C C C C C C C

Processor core 2

Processor core 1

Processor core 2

Processor core 3

Processor core 4

Processor core 5

Prolog
Loop kernel Epilogue

(e)

(f)

Fig. (2). (a) A loop program, (b) The relevant data flow graph G , (c) The deformational loop program, (d) The relevant retiming data flow

graph, (e) The scheduling result obtained by data flow graph G , (f) Assembly line scheduling result gained though retiming data flow

diagram
r
G .

838 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Huixin et al.

retiming data flow diagram effectively. In the retiming data
flow diagram, each node has the smallest retiming value so
that the intra-iteration dependency among tasks can be
eliminated effectively. Formula (4) gives the calculation
formula of retiming values.

i

i

max{ [], [] 1 if ô is parent node of
[] (4)

0 if ô is a leaf node

i j j

i

r r
r

+
=

The basic idea of RDAG algorithm is that: first the retim-

ing value of each node will be initialized to zero. Then all of

the leaf nodes found from the original task graph will be put

in one array named after Q. Link list tail of Q is stored in

variable named after tail. After that every time one node

j will come out from array Q, for the father node i of the

node
j
,its retiming value can be computed according to the

formula(4). Finally, determine whether j is tail node, if it is

not, i will be put in the array again, but if it is, the

node i will be seemed as the link list tail. When the queue is

empty, the corresponding retiming task graph can be ob-

tained. In this algorithm, the calculation process of retiming

is carried out in breadth first manner.

3.3. List Scheduling Algorithm

Scheduling of directed acyclic graph in multiproces-
sor/multi-core system is a very complicated problem. Heuris-
tic scheduling algorithm is a good solution. List scheduling
algorithm is one kind of classic static heuristic scheduling
algorithm. Lots of heuristic scheduling algorithms are de-
signed on the basis of list scheduling algorithm. The basic
idea of list scheduling algorithm is that a priority for each
node which can form a scheduling list will be arranged. In
this scheduling list, computing tasks are stored according to
the priority descending order [13]. There are many ways to
decide the priority of nodes such as HLF (Highest Level
First), LP (Longest Path), LPT(Longest Processing Time),
CP (Critical Path) and so forth. The scheduling of list sched-
uling algorithm will be completed in compliance with the
following two rules [14].

(1) Get one node out in accordance with the deposited
order from the scheduling graph;

(2) Map this node to the processing core which can make
this node have the earliest start time.

This is the executive process of the traditional list sched-
uling algorithm and scheduling list cannot be changed once
formed in the traditional list scheduling algorithm. In other
words, the priority of tasks is the pre-determined static prior-
ity. With the further study of scheduling algorithm, some
improved list scheduling algorithms based on dynamic
scheduling list have been put forward. In these algorithms,
after finishing the mapping of each node, the priority of the
nodes that have not scheduled will be recomputed, then the
next node will be chose according to the new priority, and
this process will not stop until every node is scheduled [14].

The list scheduling algorithm in the modified TORSHE
in this paper is based on the maximum completion time pri-
ority. The aim of this priority method is to ensure that the

maximum completion time is minimal. In this paper, after
eliminating the intra-iteration dependency, whether the
analysis of adjustment of computing task execution order can
reduce the scheduling length is suitable for the scheduling
result gained by any scheduling algorithms.

3.4. Platform Introduction

Multi-core embedded system can be divided into homo-
geneous multi-core embedded system and heterogeneous
multi-core embedded system based on chip processing core
style. The method proposed in this paper is applicable to not
only homogeneous multi-core embedded system but also
heterogeneous multi-core embedded system. The system
studied in this paper uses the shared bus as communication
architecture. All of the processing cores share one bus. In
this kind communication architecture with multi-core sys-
tem, the data sent by computing tasks will possess the bus
exclusively. Therefore, it is necessary to set a bus arbiter to
distribute the use right of the bus when the tasks running on
different processing cores apply for the bus simultaneously.
The structure of the bus in this paper is as same as the one in
literature [15].

The principle of bus arbitration in this paper is similar to
the principle in literature [16]:

(1) If there is no computing tasks possessing the bus, and
at this time a computing task applying for the use right of the
bus can gain right to use the bus.

(2) If one computing task has gained the right to use the
bus, and other tasks apply for the bus at the same time, the
bus arbiter will not response until the data transmission is
finished.

(3) If there are multiple computing tasks applying for the
right to use the bus at the same time, the bus arbiter will dis-
tribute the use right to the task with high priority.

4. RELATED WORKS

Due to the elimination of intra-iteration data dependency,
the parallelism and performance can be improved, besides
that, the energy consumption also can be reduced. Therefore
the scheduling algorithm without intra-iteration has aroused
wide concern. Literature [17] proposes a scheduling algo-
rithm which can meet the double restrictions of time and
resource. With the computing task as the scheduling object,
this algorithm adopts main loop scheduling strategy to carry
out the retiming operations for other nodes waiting for being
scheduled and form the channel without feedback without
violating the time constraints. Literation [18] proposes a
method that can realize implicit retiming with cycle rolling
so that a transfer under the resource constrain can be realized
though rolling cycle. This scheduling algorithm in the serv-
ice of computing tasks can compress scheduling cycle and
choose a best scheme from a variety of scheduling scheme
obtained. Considering the voltage conversion overhead and
dynamic power consumption, Literature [19] proposes a
scheduling algorithm which can reduce power consumption
though combining the technology of dynamic voltage scaling
and cyclic rotation scheduling. For the purpose of optimizing
the energy consumption and performance simultaneously,
Literature [4] puts forward a two-stage algorithm based on

Research on the Possibility of Regulating Scheduling Length The Open Cybernetics & Systemics Journal, 2014, Volume 8 839

overhead perception. In the first stage, intra-iteration de-
pendency will be eliminated by loop body deformation. Then
in the second stage, task scheduling and voltage selection
will be adjusted iteratively with spring algorithm

 [4]
. This

method synthesizes dynamic voltage scaling, dynamic power
consumption and software pipelining technology to achieve
the power consumption optimization in multi-core embedded
system. To optimize computing tasks and communication
transactions on multi-core system, literature [6] uses retim-
ing technology to adjust computing tasks and communica-
tion transactions simultaneously which provides the possibil-
ity of minimizing the scheduling length. Literature [20] in-
troduces the real-time loop scheduling technology which
reduces energy consumption by dynamic voltage scaling.

The technology includes IDVS algorithm and DVLS algo-
rithm. With IDVS algorithm conversion cost can be included
in the optimization scheduling scheme. And based on rota-
tion scheduling, DVLS algorithm reorganizes the loop body
repeatedly to achieve the purpose of reducing energy con-
sumption as much as possible within the given time limit.

It can be seen from the above analysis that the research
into computing tasks or communication transactions respec-
tively has been done for long, but there is less done on the
study of both aspects at the same time. Besides, the research
results are just confined to the homogeneous multicore sys-
tem. However the research result proposed in this paper is
suitable for not only homogeneous multicore system but also
heterogeneous multi-core system.

1

1

2

4

1

1

2
3

4

5

6
7

2

2

2
3

3

2

3

2

2

5

2

1

1

2

4

1

1

2
3

4

5

6
7

2

2

2
3

3

2

3

2

2

5

2

(a) (b)

1

2

4

0 2 3

1-2* 3-5* 5-7*

4 6 7 8

6 7

5

3

12

Processor core 1

Bus

Processor core 2

(c)

1 4 6

2 7

3 5

1 -2* 1-3 * 2 -4* 2-5 * 5 -6* 5- 7* 6-7*

0 2 3 4 5 7 9 10 13 14 16

Processor core 1

Processor core 2

Processor core 3

Bus

(d)

1 46

2 7

3 5

1 -2* 2 -4* 2-5* 5 -6* 5- 7*6-7 *

0 2 3 4 5 8 11 14 151

1-3*

6

Processor core 1

Processor core 2

Processor core 3

Bus

(e)

Fig. (3). (a) The task graph with 7 computing tasks. (b) The corresponding retiming task graph. (c) The scheduling result on multi-core

system with 2 processing cores. (d) The scheduling result on multi-core system with 3 processing cores. (e) The scheduling result on multi-

core system with 3 processing cores after adjusting the execution order of computing tasks.

840 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Huixin et al.

1

2 3

4 5

6

1

2

1

2 1

1

1

1

1

2

3
4

1

2 3

4
5

6

1

2

1

2 1

1

1

1

1

2

3
4

 (a) (b)

1 3 5

5-6*

62 4

0 2 3 5 7 8

Processor core 1

Bus

Processor core 2

(c)

1
3

5

62 4

0 2 3 5 7

5-6*

Processor core 1

Bus

Processor core 2

(d)

1

6

3 4

1-2* 1-3* 2-4* 3-5*

0 2 3 4 5 7

Processor core 1

Processor core 2

Processor core 3

Bus

5

2

1 6

4-6* 5-6*

8

(e)

Fig. (4). (a) The task graph with 6 computing tasks. (b) The corresponding retiming task graph. (c) The scheduling result on multi-core

system with 2 processing cores. (d) The scheduling result on multi-core system with 2 processing cores after adjusting the execution order of

computing tasks. (e) The scheduling result on multi-core system with 3 processing cores.

5. CHOICE OF SCHEDULING LENGTH AND DE-

TERMINATION OF TASK PRIORITY

For the application which contains dependency comput-
ing tasks, the most popular multi-core scheduling algorithms
usually adopt list scheduling strategy, heuristic algorithm
and so forth to obtain the scheduling scheme and determine
the priority of the computing tasks. For the tasks eliminating
intra-iteration dependency, there are no more free time slots
existing in the processing core, but the communication be-
tween the computing tasks of the father node and the child
node in different iteration still exists because of extra-
dependency existing among the computing tasks. It is possi-
ble that the scheduling length is the finish time of the last
communication transaction. For the same application with
the intra-iteration dependency, the scheduling result can

make sure that the optimized scheduling length can be ob-
tained within the time limit. But after eliminating the intra-
iteration dependency among the computing tasks, it is neces-
sary to improve the scheduling result and adjust the execu-
tion of the computing tasks to obtain the optimized schedul-
ing length within the time limit. In this paper, we set the ini-
tial priority of the computing tasks the same with the priority
of the list scheduling algorithm in TORSCHE. After obtain-
ing the initial mapping with list scheduling algorithm, in
order to make sure the scheduling length is the shortest, it is
necessary to adjust the execution order of the computing
tasks. When multiple computing tasks apply for the use right
of bus at the same time, the execution order of computing
tasks gained by breadth traversal will determine which
communication transaction has the right to use the bus. For

Research on the Possibility of Regulating Scheduling Length The Open Cybernetics & Systemics Journal, 2014, Volume 8 841

the communication transactions sent by the same computing
task, the use right of the bus is determined bases on the
breadth traversal too.

6. EXPERIMENTAL RESULTS

In this paper, we mainly focus on the two task graphs
based on Gaussian elimination mentioned in literature [23,
24] and transform the list scheduling algorithm proposed in
literature [22] based on the maximum completion time
method, and then install the modified TORSCHE on the
MATLAB software environment. Firstly, we get the corre-
sponding retiming task graphs of this two task graphs using
the method in literature [4] and obtain a loop scheduling re-
sult on a respective multi-core system with 2-3 processing
cores with the modified list scheduling algorithm. Then, we
will analyze the scheduling result and find out whether the
scheduling length can be compressed further by adjusting the
execution order of the computing tasks. In the following ex-
periment, we mainly discuss impacts of execution order on
scheduling length. Fig. (3a) shows a task graph with 7 com-
puting tasks. For this task graph, firstly use the retiming
technology to get its corresponding retiming task graph and
then the scheduling result with the revised list scheduling
algorithm. Fig. (3b) is the retiming task graph of this task
graph after eliminating the intra-iteration dependency. Fig.
(3c) shows the scheduling result for the retiming task graph
on the multi-core system with 2 processing cores. From Fig.
(3c), we can see that the scheduling length cannot be com-
pressed by adjusting the execution order of computing tasks.
From Figs. (3d) and (3e), we can see that the scheduling
length can be compressed by adjusting the execution order of
computing tasks on the multi-core system possessing 2 proc-
essing cores. For the task graph with 6 computing tasks, we
can obtain the scheduling result by its corresponding retim-
ing task graph. Fig. (4a) shows a task graph with 6 comput-
ing tasks. Fig. (4b) is the retiming task graph of the task
shown in Fig. (4a) after eliminating the intra-iteration
dependency. Fig. (4c) shows the scheduling result with the
revised list scheduling algorithm on the multi-core system
with 2 processing cores. Fig. (4d) shows the scheduling re-
sult after adjusting the execution order of the computing
tasks. From Fig. (4c) and Fig. (4d), we can see that the
scheduling length can be compressed by adjusting the execu-
tion order of computing tasks. However, for the multi-core
system with 3 processing cores, the scheduling length cannot
be compressed by adjusting the execution order of comput-
ing tasks (shown in Fig. (4e)).

CONCLUSION

In this paper, we mainly discuss the influence of comput-
ing task execution order on scheduling length on the multi-
core systems. We respectively test the task graph with 6
computing tasks and 7 computing tasks on the multi-core
systems with 2-3 processing cores. The experimental result
shows that when considering communication transactions,
we should analyse the necessity for adjusting the execution
order of computing tasks to reduce scheduling length in view
of different variable characteristics. The conclusion of this
article is of great significance to optimize regulating schedul-
ing length after eliminating intra-Iteration dependency on the
multi-core systems.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work is supported by National Nature Science
Foundation of China (No.61171051), Science and Technol-
ogy Innovation Team Foundation of Zhengzhou city (No.
131PCXTD595).

REFERENCES

[1] LIU Wei, YIN Hang, DUAN Yu-Guang, DU Wei, WANG Wei,
ZENG Guo-Sun, “Adaptive Threshold-Based Energy-Efficient

Scheduling Algorithm for Parallel Tasks on Homogeneous DVS-
Enabled Clusters,” Chinese Journal of Computers, (02) ,pp.393-

407, 2013.
[2] Li DaiPing, Luo ShouWen, Zhang XinYi, Fang HaiXiang, “Re-

search of Parallel Task Partition Strategy on Grid,” Application Re-
search of Computers,(10),pp.80-82, 2005.

[3] Wang Qianjin, Gao Yong, Li Cunhua, “Research on Multi-Core-
Based Multitask Parallel Processing Technology,” Computer Appli-

cations and Software, 29(7), pp.141-143, 2012.
[4] Liu Hui, Shao Zili, Wang Meng, et al, “Overhead-Aware System-

Level Joint Energy and Performance Optimization for Streaming
Applications on Multiprocessor Systems-on-Chip,” Euro micro

Conference on Real-Time Systems, pp.92-101, 2008.
[5] ZHANG Lei, TAO Bin-xian, QIAN Ju, “Using Points-to Combina-

tions to Optimize Dependence Graph Construction,” Computer Sci-
ence,(01), pp.139-143. 2013.

[6] Wang Yi, Liu Duo, Wang M, “Optimal Task scheduling by remov-
ing inter-core communication overhead for streaming applications

on MPSoC,” IEEE Transactions on Computers, 62(2), pp.336-350,
2013.

[7] Liu D, Wang Y, Shao Z, et al. “Optimally Maximizing Iteration-
Level Loop Parallelism,” IEEE Transactions on Parallel and Dis-

tributed Systems (TPDS), 23(3), pp.564-572.
[8] Wang Y, Liu H, Liu D, et al., “Overhead-Aware Energy Optimiza-

tion for Real-Time Streaming Applications on Multiprocessor Sys-
tem-on-Chip,” ACM Transactions on Design Automation of Elec-

tronic Systems (TODAES), 16(2),pp.1-32, 2011.
[9] Zhang Jun, Deng Tan, Gao Qiuyan, et al. “Optimizing Data Place-

ment of Loops for Energy Minimization with Multiple Types of
Memories,” Signal Processing Systems, 72(3), pp.151-164, 2013.

[10] Leiserson C E, Saxe J B, “Retiming synchronous circuitry,” Algo-
rithmica, (6): 5-35, 1991.

[11] Chao L F, LaPaugh A S, Sha E H M, “Rotation scheduling: A loop
pipelining algorithm,” IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems(TCAD), 16(3), pp.229-239.
[12] ZHOU Ben-hai, QIAO Jian-zhong, LIN Shu-kuan, “Research on

Parallel Scheduling Algorithm of Task Graph Model on Multi-core
Processing Platform,” Mini-micro Systems,(11), pp.2485-2492,

2012.
[13] Wang Li-Zhe, von Laszewski Gregor, et a1. “Towards energy

aware scheduling for precedence constrained parallel tasks in a
cluster with DVFS,” Proceedings of the 10th IEEE/ACM Interna-

tional Conference on Cluster, Cloud and Grid Computing
(CCGrid). Melbourne, Australia, 368-377, 2010.

[14] Zamani R, Afsahi A, Qian Y, Hamacher C, “A feasibility analysis
of power awareness and energy minimization in modern intercon-

nects for high performance computing,” Proceedings of the 9th
IEEE International Conference Cluster Computing (Cluster 07).

Austin, USA, pp.l18-128, 2007.
[15] Zhang Fa, Antonio Fernandez Anta, Wang Lin, Hou ChengYing,

Iiu Zhi Yong, “Network energy consumption models and energy ef-
ficient algorithms,” Chinese Journal of Computers, 35(3), pp.603 -

615, 2012.
[16] Orso A, Sinha S, Harrold M J, “Classifying data dependences in the

presence of pointers for program comprehension, testing, and de-
bugging.” ACM Transactions on Software Engineering and Meth-

odology, 13(2), pp.199-239, 2004.

842 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Huixin et al.

[17] Yang Dayu, Lin Zhenghui, “A Fast Loop Pipelining Algorithm,”

JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY, (12),
pp.1717-1720, 2002.

[18] Xu Bao-wen, Qian Ju, Zhang Xiao-fang, et a1., “A brief survey of
program slicing,” ACM SIGSOFT Software Engineering Notes,

30(2), pp.10-45, 2005.
[19] Godefroid P, Nori A V, Rajamani S K, et a1, “Compositional may

must program analysis unleashing the power of alternation,” Pro-
ceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, 43-56, 2010.
[20] Shao Z, Wang M, Chen Y, et al., “Real-Time Dynamic Voltage

Loop Scheduling for Multi-Core Embedded Systems,” IEEE Trans-
actions on Circuits and Systems II (TCAS-II), 54(5), pp.445-449,

2007.

[21] Hua G, Wang M, Shao Z, Liu H, et al. “Real-Time Loop Schedul-

ing with Energy Optimization Via DVS and ABB for Multi-core
Embedded System,” International Conference on Embedded and

Ubiquitous Computing, pp.1-12, 2007.
[22] http://rtime.felk.cvut.cz/scheduling-toolbox/.

[23] Koji Hashimoto, Tatsuhiro Tsuchiya, Tohru Kikuno, “Fault-Secure
Scheduling of Arbitrary Task Graphs to Multiprocessor Systems,”

International Conference on Dependable Systems and Networks,
pp.1-10, 2000.

[24] Zong Ziliang, Qin Xiao, Xiaojun Ruan, et al. “Energy- Efficient
Scheduling for Parallel Applications Running on Heterogeneous

Clusters,” the 36th International Conference on Parallel Process-
ing, pp.1-8, 2007.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Huixin et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

