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Abstract: Chaotic attractors are created by iterating functions that are equivariant with respect to the cyclic or dihedral 

groups. An improved color scheme based on the visit frequency of the pixels is proposed to render chaotic attractors. By 

normalization and scale transformation, aesthetic patterns which simultaneously have several kinds of cyclic or dihedral 

symmetries are generated. This method can be used to yield a great number of aesthetic patterns automatically.  
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1. INTRODUCTION 

Kinds of the symmetry groups in the Euclidean plane are 
well understood [1]. Up to isomorphism, they are classified 
as cyclic or dihedral groups, frieze groups and wallpaper 
groups. It is surprising that chaotic attractor is compatible 
with symmetry. Automatic generation of symmetrical pat-
terns has been an active topic of recent study [2-7]. There are 
many methods dedicated to yield patterns with cyclic or di-
hedral symmetry. For example, Field and Golubitsky con-
structed polynomials that are equivariant with respect to 
these groups and created a great many of chaotic attractors 
[2]. Reiter proposed a convenient group summation tech-
nique to generate similar planar or three-dimensional attrac-
tors [8]. Colored cyclic or dihedral patterns were produced 
by Lu et al. from a dynamic systems’ point of view.  

In [9], a smart way was established to yield interesting 
dueling chaotic attractors. In that paper, two functions of the 
plane having distinct symmetries are intertwined using a 
sinew function to create a function of three variables having 
different symmetries in different regions. However, this 
strategy is no longer proper for lager k (k is the number of 
cyclic or dihedral symmetries of the attractor). The reason is 
that, on the one hand, the construction of sinew function 
would become difficult since it should simultaneously satisfy 
several different kinds of symmetries. On the other hand, 
even if one could construct similar sinew functions, the color 
scheme employed in [9] is no longer proper to produce ap-
pealing patters since the constructed function would be quite 
complex.  

This paper article concerns with generating beautiful pat-
terns which simultaneously have several kinds of cyclic or 
dihedral symmetries. The remainder of this paper is orga-
nized as follows. In Section 2, we introduce how to create 
chaotic attractors with desired symmetries. In Section 3, we  
 

 

 

present the method of generating chaotic attractors that have 
several kinds of cyclic or dihedral symmetries. In Section 4, 
we show some aesthetic patterns and detailed implements.  

2. FUNCTIONS THAT ARE EQUIVARIANT WITH 
RESPECT TO CYCLIC OR DIHEDRAL GROUPS 

The cyclic group is generated by n-fold rotations about a 
single point. The dihedral group contains those rotations and 
reflections through the point of rotation. The completeness 
enumeration of groups andis called Leonardo’s Theorem 
[10]. 

In order to generate attractors with specified symmetries, 
we need functions that preserve symmetries in a certain 
manner. In particular, A function is said to be equivariant 
with respect to the symmetries of G if for all, where.  

Letbe a rotation and be anequivariant function with re-
spect to. Then the iteration of the rotation of a point is the 
same as the rotation of the iteration of the point. This means 
that the attractors associated with tends to have the desired 
symmetries. 

In [2], Field and Golubitsky constructed a truncated 
equivariant complex function of the form  

where is the real part of complex, and are complex con-
stants. (1) is equivariant with respect to dihedral symmetry 
when. 

Proposition 1. Let be an arbitrary function, be a finite 
group realized by matrices acting on. Assume is a function 
defined as 

Then, is equivariant with respect to.  

The proof of Proposition 1 can be found in [8]. It was 
proposed by Reiter to create chaotic attractors with cyclic or 
dihedral symmetry. In this paper, we adopt formula (2) in-
stead of (1) since the freedom ofin (2) would provide great 
convenience for creating chaotic attractors. We next give the 
matrix presentations ofand. 
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 Let and be, respectively, cyclic and dihedral groups. De-
note and. Then is the generator of and is the realization of. 
We will consider being equal to that set of matrices. Since is 
a reflection through the origin, set is a presentation of group.  

 

Fig. (1). A chaotic attractor with symmetry. 

  

Fig. (2). A chaotic attractor with symmetry. 

In Proposition 1, letor. Then, the attractor generated by-
will possess cyclic or dihedral symmetry. Figs. (1) and (2), 
respectively, show two chaotic attractors generated byand . 

3. ALGORITHM FOR GENERATING ATTRACTORS 
WITH SEVERAL CYCLIC OR DIHEDRAL SYMME-

TRIES 

It is well known that global cyclic or dihedral symmetries 
are incompatible in a pattern except for trail situation. Here 
“the pattern with several kinds of cyclic or dihedral symme-
tries” means that different ring regions have different cyclic 
or dihedral symmetries. We use basic geometric transforma-
tions to achieve the target.  

Fig. (3) shows how to transform an attractor into speci-
fied ring region . At the top of Fig. (3), assume the yellow 
pentagon is a chaotic attractor centered at origin with range. 

Let and be the radii of circles. First, is normalized into cir-
cles of radius, see the middle of Fig. (3). Then, by translation 
and scale transform, the normalized attractor is transformed 
into the target region, see the bottom of Fig. (3). We summa-
rize the detailed method as follows: 

Step 1. By proposition 1, create an attractor with cyclic 
or dihedral cyclic or dihedral symmetry.  

Step 2. Assume is a point of attractor, let. For, denote. 
Then is a point of unit disc and we get the normalized attrac-
tor. 

Step3. Assume is scaling factor. For, denote.  

 

 

  

Fig. (3). Schematic diagram that transforms an attractor into the 

desired ring region.  
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Step 4. Let be a new attractor, be a ring region adjacent 
to. With a similar process used in Step 1-3, we can transform 
to. If we repeat this algorithm times, we thus obtain a pattern 
with kinds of cyclic or dihedral symmetries.  

In Fig. (4), we show a ring pattern of symmetry obtained 
by this method. 

 

Fig. (4). An annular attractor with symmetries transformed by Steps 

1-3. 

 

Fig.(5). An aesthetic pattern with symmetry.  

4. EXAMPLES AND IMPLEMENTS 

In this section, we show some aesthetic patterns and im-
plements used in generating attractors.  

The color scheme based on visit frequencies of the pixels 
is the most popular method in rendering chaotic attractor. 
We also employ this scheme to color attractors. For more 
details of the scheme, please refer to [2-5, 11-13]. 

The accurate r used in Step 2 is difficult to find since our 
systems are all chaotic. In practice, we iterated equivariant 
functions for 1000 times and selected the maximum module 
asof Step 2. Our experiment results showed that this method 
served well.  

All the functions used in this paper are trigonometric 
functions. For example, the function used to create Fig. (1) 
is. 

 

Fig. (6). An aesthetic pattern with symmetry. 

To yield visually appealing attractors, we computed the 
Ljapunov exponent [14] in advance and selected functions 
that have positive Ljapunov exponent. 

Attractors shown in this paper were obtained by iterating 
equivariant functions over 200 million times. We have ar-
ranged that the ring width s  in Step 3 is always 1. For con-
venience, the symbol represents that, from inner to outer, the 
corresponding pattern hassymmetries respectively. In Figs. 
(4-7), we show four resulting patterns of this kind. 

 

Fig. (7). An aesthetic pattern with symmetry. 

CONCLUSITON 

Automatic generation of chaotic attractors with several 
kinds of cyclic or dihedral symmetries method is realized by 
normalization, translation and scale transform techniques. 
The traditional color scheme used to render chaotic attractor 
is based on the frequency of the pixels visited. We improve it 
and develop a more efficient and convenient approach to 
color chaotic attractors. The algorithm can accurately control 
the color percentage of an image, which shows great conven-
ience in rendering chaotic attractors. Our method can be applied 
to create a great many of beautiful patterns automatically. 
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