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Abstract: How to effectively evaluate price of volatility risk is the basis of risk management in electricity market. 

Electricity price connotes a grey system, due to uncertainty and incomplete information for partial external or inner 

parameters. A two-stage model for estimating value-at-risk based on grey system and extreme value theory is proposed. 

Firstly, in order to capture the dependencies, seasonalities and volatility-clustering, a GM(1,2) model is used to filter 

electricity price series. In this way, an approximately independently and identically distributed residual series with better 

statistical properties is acquired. Then extreme value theory is adopted to explicitly model the tails of the residuals of 

GM(1,2) model, and accurate estimates of electricity market value-at-risk can be produced. The empirical analysis based 

on the historical data of the PJM electricity market shows that the proposed model can be rapidly reflect the most recent 

and relevant changes of electricity prices and can produce accurate forecasts of value-at-risk at all confidence levels, and 

the computational cost is far less than the existing two-stage value-at-risk estimating models, further improving the ability 

of risk management for electricity market participants. 
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1. INTRODUCTION 

 The introduction of market competitive mechanism has 

provided more lucrative opportunities for electricity market 

participants, but also brought the price of volatility risk 

hitherto unknown at the same time. The distinctive 
characteristics of electric energy, which cannot be effectively 

stored through time and space and needs instantaneous 

balance for supply and demand, make electricity price 

present highly unusual volatility and occasional extreme 

movements of magnitudes rarely seen in traditional financial 

markets. Once financial risk occurs in electricity market, 

there have more serious negative effects on society and 

economy than in traditional financial market [1]. Therefore, 

how to effectively make an accurate assessment on the price 

of volatility risk in electricity market has become a very 

current and important issue. 

 Value-at-risk (VaR) is a risk management tool to 

quantify the level of risk exposure in advance, which 

overcomes the defect of ex-post evaluation for traditional 

risk management method, so VaR has become one of the 

most popular risk measurement tools in practice. By 

introducing capacity sufficient rate and must-run rate as 

exogenous explanatory variables to depict the generators’ 

market power and the supply-demand relationship, a 

generalized autoregressive conditional heteroskedasticity 

model with Gaussian distribution innovations (NGARCH) 
 

 

 

 

has been used to assess the price of volatility risk in 

electricity markets [2]. In view of leverage effects of 

electricity prices, an exponential GARCH (EGARCH) model 

with Gaussian distribution innovations is developed to 

estimate the trading risk for distribution companies [3]. 

Considering that NGARCH based VaR calculating model 
cannot effectively address the leptokurtosis and heavy-tailed 

phenomenon in the data of profit and loss, a re-sampling 

method based on a bias-correction step and the bootstrap has 

been developed, further improving the VaR forecasting 

accuracy of the NGARCH model [4]. By utilizing Gram-

Charlier series expansion of normal density function and 

student-t distribution to depict the residuals distribution of 

ARMAX-GARCH model, an estimating model of VaR 

considering the characteristics of electricity price series such 

as seasonalities, heteroscedasticities, skewnesses and 

lepkurtosises, has been proposed, showing that the model 

with Gram-Charlier series expansion of normal density 
function can rapidly reflect the recent and relevant changes 

of electricity prices and produce accurate forecasts of VaR at 

all confidence levels [5]. 

 With GARCH-based model, the impacts of probability 

distribution assumption for innovations on VaR estimation 

accuracy are analyzed for four distributions: normal, student-

t, skewed student-t and general error distribution (GED). The 

numerical example based on the historical data of the 

Pennsylvania-New Jersey-Maryland (PJM) market shows 
that the accuracy and stability of estimated values of VaR are 

heavily dependent on the selection of probability distribution 

for innovations and the model with GED distribution 

performs better in predicting VaR values [6]. Extreme value 



Estimating Value-at-Risk in Electricity Market The Open Cybernetics & Systemics Journal, 2014, Volume 8       897 

theory (EVT) provides a firm theoretical foundation to study 

the asymptotical distribution of extreme value for order 

statistics, without assuming the probability distribution for 

the sample data. EVT allows extrapolation beyond the 

sample and can accurately describe the behavior of the tails 

of the real data. R Rozario [7] estimated the VaR of 

electricity market using a technique from EVT known as 

peaks over thresholds (POT), showing that the estimated 

results perform well for moderate to very high confidence 
levels (95-90%), but struggle at higher levels (>99%) owing 

to the extreme clustering and other dependence evident in the 

data. Hans NE Bystrom [8] extended the classic 

unconditional EVT approach by first filtering the data via 

GARCH specification to capture some of the dependencies 

in return series, and thereafter applying ordinary EVT 

techniques. In this way the independently and identically 

distributed (IID) assumption behind the EVT-based tail-

quantile estimator is less likely to be violated, and the better 

tail estimates in-sample and better predictions of future 

extreme price changes can be acquired. To describe the 

leverage effects of volatility of electric power price, an 
EGARCH specification [9] is used to filter the return series 

to obtain nearly IID residuals, showing that EGARCH-EVT 

model can rapidly reflect the most recent and relevant 

changes of electricity prices and produce accurate forecasts 

of VaR in the more volatile markets where the distribution of 

returns is characterized by higher levels of skewness and 

excess kurtosis. Up to now electric power energy cannot be 

stored economically and therefore the influencing factors 

such as loads, climates and installed capacity have an un-

tempered effect on electricity prices. In particular, electricity 

price exhibits considerably richer structure than load curve 
and has the following characteristics: mean reversion, 

seasonalities, heteroscedasticities and extreme behavior with 

fast-reverting spikes. To obtain an approximately IID 

residual series with better statistical properties, an ARMAX-

GARCH model with Gram-Charlier series expansion of 

normal density function and skewed-t distribution over the 

error items is used to pre-filter the raw data to capture the 

dependences of price series, further improving the 

effectiveness of the VaR estimates via POT model [10, 11]. 

 Although the approximately IID residual series can be 

acquired by using GARCH models to pre-filter the electricity 

price series, the high non-linearity for the GARCH models 

leads to very large computational costs and hinders the wide 

application in practice. Considering that the properties of 

incomplete and uncertain information for the spot prices are 

in line with the characteristics of grey variables, a grey 

system and extreme value theory based two-stage model for 

estimating VaR is proposed in this paper (referred as 

GM(1,2)-POT-VaR). In stage one, to acquire the 

approximately IID residuals with better statistical properties, 

a grey GM(1,2) model is used to pre-filter the electricity 
price series. In stage two, an EVT based POT model is 

employed to explicitly deal with the right tail of the residuals 

of the GM(1,2), and accurate estimates of VaR in electricity 

market can be produced. There are several contributions. 

First, the paper proposes a model that has the potential to 

generate more accurate quantile estimates for electricity 

market. The heteroscedasticities, skewnesses, kurtosises, 

seasonalities and relationship to system loads of electricity 

prices are accommodated via a grey GM(1,2) specification. 

In forecasting VaR, EVT is applied to the residuals from this 

model. Clearly, the proposed GM(1,2)-POT-VaR model is a 

sophisticated approach to forecasting VaR. The second 

contribution is to acquire an approximately IID residual 

series with better statistical properties by using a GM(1,2) 

model. The effectiveness of the VaR estimates via POT 
model can be further improved. The third contribution of this 

paper is to compare the accuracy of VaR forecasts under the 

proposed model with two conventional approaches: 

ARMAX-GARCH-st [10] and ARMAX-GARCHSK [11]. 

Tail quantiles are estimated under each competing model and 

the frequency with which realized returns violate these 

estimates provides an initial measure of model success. The 

empirical analysis based on the historical data of the PJM 

electricity market indicates that the GM(1,2)-POT-VaR 

model can rapidly reflect the most recent and relevant 

changes of electricity prices and can produce accurate 

forecasts of VaR at all significance levels. Moreover, the 
computational costs is far less than the proposed models in 

[10, 11], further improving the risk management ability of 

electricity market participants. These results suggest that the 

proposed approach is robust and therefore useful. 

2. GM(1,2) MODEL 

 The grey system theory was proposed by J L Deng in 

1982, which is a multidisciplinary theory dealing with those 

systems with lack information. The grey model is a 

modelling method based on the concept of grey generating 

function and differential fitting, having the advantages that 
the predicted results can be tested and less original data are 

needed. Assuming that the observed series of electricity 

prices and loads are (0) ( )
1 1{ (1)}

k
X x=  and (0) ( )

2 2{ (1)}
k

X x=  

respectively, the first-order accumulated generating operation 
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among them, 1,2, ,k n= . Then, the dynamic process of 
(1)
1 ( )x k  can be described by the grey GM(1,2) model: 

(0) (1) (1)
1 1 2( ) ( ) ( ).x k az k bx k+ =          (1) 

The corresponding whitening differential equation is 

(1)
(1)(1)
2

( )
( ) ( ),

dx t
ax t bx k

dt
+ =            (2) 

where, (1) ( )dx t dt  is the grey derivative of (1)
X , a  and b  

are the model parameters to be estimated, 
(1) (1) (1)
1 1 1( ) ( ) (1 ) ( 1)z k x k x k= + (0 1)  is the background 

value. In traditional GM(1,2) model the  is usually taken to 

be a fixed value 0.5. Let [ , ]
T

a a b= , then the estimated 

values by least squares method is 

 1( ) ,T T

N
a B B B Y=           (3) 
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in which, 
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 After calibrated a , the solution to equation (1) with 

initial condition (1) (0)
1 1(1) (1)x x=  is 

(1) (0) (1) (1)
1 1 2 2( 1) (1) ( 1) ( 1).akb b
x k x x k e x k

a a
+ = + + +          (4) 

 From equation (4), and by the first-order inverse 

accumulated generating operation of 
(1)

1 ( 1)x k+ , the 

modelling value 
(0)

1 ( 1)x k+  can be derived to be 

(0) (1) (1)

1 1 1

(0) (1) (1)
1 2 2

( 1) ( 1) ( )

(1) ( 1) ( 1).ak

x k x k x k

b b
x x k e x k

a a

+ = +

= + + +

         (5) 

 With the operation of electricity market, the new data of 

electricity price continue to emerge. In order to utilize the 

rich information contained in the new observed values, the 
new-information grey model is used in this paper. That is, 

each new obtained value will be added to the tail of the 

series, at the same time, the first observed value will be 

removed from the series. The research has shown that new-

information grey model have some advantages such as small 

data sets required, less computational complexity, objective 

and reliable forecasted results [12].  

3. EVT MODEL 

 There exists strong temporal dependence in the electricity 

price series due to the specific features of electric power. It 

violates the underlying assumption that the data series to 
which EVT is applied should be a sequence of IID random 

variables. In this paper, a two-stage approach, provided by 

McNeil and Frey [13], is used to this problem. Firstly, the 

heteroscedasticities, skewnesses, lepkurtosises and 

seasonalities of electricity price series are filtered by the 

GM(1,2) model in section 2 to obtain a nearly IID 

normalized residual series. In stage two, the EVT framework 

is applied to the standardized residuals to better capture the 

heavy-tails and improve the accuracy of VaR estimation. 

 POT is to model the excess distribution for the IID 

sample data that exceed a high threshold. Given the 

distribution function Fz(z) of a random variable Z,the 

distribution function of values of z above a certain threshold 

u, Fu(y), is called the conditional excess distribution function 

and is defined as 

( ) Prob( | ), 0 ,
u F
F y Z u y Z u y z u= >

       
 (6) 

where Z is a random variable, u is a given threshold, y=z-u 

are the excesses and 
F
z  is the right endpoint of Fz(z). 

We verify Fu(y) that can be written in terms of Fz(z), i.e. 

( ) ( ) ( ) ( )
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 The theorem of Balkema-De Haan-Pickands states that 

for large u, the conditional excess distribution function Fu(y) 

is well approximated by the generalized Pareto distribution 

(GPD) G , (y), which is defined as 

1

,
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        (8) 

for y [0, ) if 0 and y [0,- / ] if <0.  is the shape 

parameter or tail index and >0 is the scaling parameter. In 

general, we cannot fix an upper bound for financial losses, so 

only distributions with shape parameter >0 are suited to 
model fat-tailed distributions. 

 If T is the total number of observations and Tu the 

number of observations above the threshold u, the value of 

Fz(u) can be well approximated by the estimate (T-Tu)/T for 

sufficiently high u. Replacing Fu(y) by the GPD and Fz(u) by 

(T-Tu)/T, we obtain the estimate of Fz(z) from Equation (7) 

1
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( )
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î
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T î
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T
e î

T

+ ?
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          (9) 

for z>u.  

 A reasonable threshold u must be chosen to effectively 

estimate the values of parameters  and . So far, no 

automatic algorithm with satisfactory performance for choice 

of threshold u is available. A popular graphical tool for 
visually selecting u is the sample mean excess plot defined 

by the points (u,en(u)). Let z(1)>z(2)>…>z(T) represent the IID 

order random variables, en(u) can be calculated by 

( )( ) ( ) ( 1) ,
n

n i

i k

e u z u n k

=

= +         (10) 

where k=min{i|z(i)>u}, n-k+1 is the number of observations 

exceeding threshold u [14]. If the GPD provides a good 

description of the data en(u) should be approximately linear 
in u. So we can select the value that locates at the beginning 

of the sample mean excess plot which is roughly linear as the 

suitable threshold. If the sample mean excess plot is upward 

sloping when z u? , the distribution of the observations 

exceeding threshold u is the GPD with positive ; If the 

sample mean excess plot is downward sloping when z u? , 

the observations exceeding threshold u follows a distribution 

with short tails; If the sample mean excess plot is horizontal 

when z u? , the distribution of the observations exceeding 

threshold u is the exponential distribution. 
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 Having determined a threshold, the estimates of  and  

of the GPD can be obtained by applying maximum 

likelihood estimation for the excesses of a threshold u. 

Replacing the values of parameters by their estimates and 

inverting equation (9) for a given probability c, the estimates 

of the c-th tail quantile for the sample distribution can be 

gotten, 

( )( )
( )

1 1 0
( ) ,

ln 0

î

u

z

u

ó
u Tc T î

F c î

u ó Tc T î

+ ?
=

=

       (11) 

which is valid for positive excesses, that is z > u. 

4. ESTIMATION AND EVALUATION OF VAR 

 Some characteristics of electricity spot price data 

naturally lend itself to EVT analysis. For instance, electricity 

itself is non-storable. As such the equilibrium between 

supply and demand must be maintained to guarantee a 

continuous stream of electricity. This leads to an extremely 

turbulent market where spot prices can rise from average 

levels to many times this within a very brief period. Large 

spot price movements expose market participants to 

significant market risk over short periods of time. In this 

situation risk managers will be interested in a risk measure 
like VaR. The strong temporal dependence in the sequence 

of electricity prices, due to the specific characteristics of 

electric power, violates the underlying assumption that the 

data sequence to which EVT models are applied should be a 

sequence of IID random variables. In this paper, a two-stage 

approach, provided by A J McNeil and R Frey [13], is used 

to this problem. Firstly, the dependences, heteroscedasticities, 

skewnesses, lepkurtosises and seasonalities of electricity 

price series are filtered by a grey GM(1,2) model to obtain a 

nearly IID residual series { t}. In stage two, the EVT 

framework is applied to the tails of the nearly IID residuals 

to better capture the heavy-tails and improve the accuracy of 
VaR estimation. 

4.1. GM(1,2)-POT-VaR Estimating Model 

 VaR is one of the most intuitive and comprehensible risk 

measures. It is based on the standard statistical technology 

and has become an international popular risk measurement 

technology. Assuming normal market conditions and no 

trading in a given portfolio, VaR is defined as a threshold 

value such that the probability that the worst loss on the 

portfolio over a target horizon exceeds this value is the given 

level of probability. Mathematically, the VaR of the portfolio 
with a confidence interval c, VaRc, is defined as 

{ }inf | Pr ob( ) 1
c

VaR x R P x c= ? ,        (12) 

where Prob( )i  denotes the portfolio probability distribution 

and P the portfolio losses over the given holding period. 

 For a given time horizon t, suppose that the system 

demand for electricity is Qt, the retail price to ultimate 

customers is P0, the spot price is pt=E(pt|It-1)+ t, It-1 the 

information set available at time t-1 and t the random shock 

such that E( t)=0 and E( t s)=0, t s? , where E is the 

conditional expectation operator. The trading losses of an 

electric utility over the target horizon t is 

( )1 0E( | I )t t t t tP Q p å P= + .         (13) 

 As the retail price, P0, is a regulated price approved by 
electricity regulatory departments and the electric power 

demand, Qt, can be accurately forecasted (generally 

forecasted error is below 3%), Qt and P0 can be regarded as 

constant. Let f ( t |It-1) denote the conditional probability 

density function of t conditional on It-1. The VaR of an 

electric utility in the specified period t with the pre-assigned 

probability level c, denoted by VaRc,t, is 

, 1 0
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        (14) 

Now inverting equation (14) for the given probability c, we 

obtain 

( )1

, 1 0 1E( | I ) ( | I ) ,c t t t t å tVaR Q p P F c= +         (15) 

where F (·) is the conditional cumulative distribution 

function of t, 
1

F  is the quantile function defined as the 

inverse of the distribution function F . 

 The spot price presents the properties of incomplete and 

uncertain information. It is in line with the characteristics of 

grey variables, so we can estimate the expected values of the 

electricity spot price E(pt|It-1) and the c-quantile 1

1( | I )
å t
F c  

of the residual series t by equations (5) and (11). Then we 

can calculate the VaR of an electric utility in the specified 

period t by equation (15). 

4.2. Backtesting For VaR Estimates 

 It is of crucial importance to assess the accuracy of VaR 

estimates, as they are only useful insofar as they accurately 

characterize risk. Backtesting or verification testing is the 

way that we verify whether forecasted losses are in line with 

actual losses. The most widely known backtesting method 

based on failure rates has been suggested by Kupiec. 
Kupiec’s test measures whether the number of violation 

exceptions (losses larger than estimated VaR) is in line with 

the expected number for the chosen confidence interval. 

Denoting the number of times that the actual portfolio 

returns fall outside the estimated values of VaR as N and the 

total number of observations as T, we may define the number 

of violation exceptions as: 

1

,

,

,

1

0 .

T

t

t

c tt

t

c tt

N I

if p VaR
I

if p VaR

=

=

>
=

         (16) 

 Under the null hypothesis that the VaR estimated model 

is correct at a pre-assigned confidence interval, the number 
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of violation exceptions N should follow a binomial 

probability distribution 

( , ) (1 )N T N
T

P N T
N

= ,        (17) 

where T is the sample size and  corresponding to the 
significance level chosen for the VaR approach. If the 

sample size T is input and  is set to one minus the level of 

confidence, the binomial function produces the likelihood 

that a specific number of VaR breaks is to occur.  

 The observed failure rate N/T should act as an unbiased 

measure of the level of significance =1-c as sample size is 

increased. Assuming that the proposed model is accurate, the 

following likelihood ratio (LR) 

( )( )2log 1

2log 1

N T N

N T N

LR c c

N N

T T

=

+
         (18) 

is asymptotically 2
÷  (chi-squared) distributed with one 

degree of freedom. If the value of LR exceeds the critical 

value of the 2
÷  distribution, the null hypothesis will be 

rejected and the model is deemed as inaccurate. On the 

contrary, the null hypothesis will be accepted and the model 

should be considered correct.  

5. EMPIRICAL RESULTS 

 The PJM is organized as a day-ahead market. Participants 

submit their buying and selling bid curves for each of the 

next 24 hours. Then the market operator aggregates bids for 

each hour and determines market clearing prices and 

volumes for each hour of the following day. In this paper, a 

total of 1197 observations of average daily electricity spot 

prices in dollars per megawatt hour ($/MWh) and average 

daily loads in gigawatt (Gw) are employed to validate the 

performance of the VaR calculating model. The sample 

period begins on 1st June 2007 and ends on 9th September 
2010. Table 1 presents some descriptive statistics for the 

average daily electricity spot price and load series. It can be 

seen from Table 1 that electricity prices and loads are quite 

volatile, highly non-normal, clearly skewed rightward, and 

with a median well below the mean. In fact the nulls of 

normality of electricity price and load series are rejected with 

the Jarque-Bera test. This is typical of electricity spot prices 

in a competitive market. 

5.1. Estimates of GM(1,2) Model 

 Taking the significant Weekly Seasonality of the spot 

price series into account, in order to improve the filtering 

effects of GM (1,2) and to acquire the approximately IID 

residuals with better statistical properties, the data window 

length is set to 7 in this paper. The estimated results of 

GM(1,2) have been depicted in Fig. 1. As seen from Fig. 1, 

the estimated values of GM(1,2) model and the observed 

ones are in good conformity, reflecting the basic change 

rules of electricity prices. But the electricity prices in the 

peak and valley periods are very unstable due to the impacts 

of the bidding strategies of generation companies on the 

market clearing prices, resulting larger estimated errors in 

these periods. 

 

Table 1. Descriptive statistics of the sample. 

Statistics Price($/MWh) Load(GW) 

Mean 53.52041 81.19221 

Median 49.97068 79.89221 

Maximum 189.6557 115.7839 

Minimum 24.87494 58.34586 

Std. Dev. 20.20158 10.50560 

Skewness 1.420081 0.375318 

lepkurtosis 6.594566 2.582759 

Jarque-Bera 1046.748 36.78506 

p-value 0.000000 0.000000 
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Fig. (1). Estimated results of GM(1,2) model. 

 

 Table 2 illustrates the Ljung–Box Q statistics and the 

corresponding probability values (p-Values) for the residuals 

and their square sequences. It is seen from Table 2, the 
Ljung–Box Q statistics of the square series are not 

significant at up to 24 lags, suggesting that no potential time-

varying volatility exists in the residual series; the Ljung–Box 

Q statistics at 7 or 24 lags for the residual series are far less 

than the daily average electricity spot price series, indicting 

that there are still weak serial dependences, so we can 

conclude that the residual series is a stationary series with 

weakly serial correlation and without volatility clustering, 

meeting the prerequisite of EVT modelling [15]. 
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Table 2. Ljung-box test for residuals of GM(1,2). 

Statistics 
Electricity Prices 

($/MWh) 
Residuals ($/MWh) 

Ljung-Box Q(6) 3868.28(0) 28.87(0.000) 

Ljung-Box Q(24) 11348.94(0) 51.21(0.001) 

Ljung-Box Q2(6) 3117.13(0) 1.37(0.968) 

Ljung-Box Q2(24) 7892.50(0) 3.62(0.999) 

 

5.2. Estimates of GM(1,2)-POT-VaR Model 

 To apply EVT, the threshold can be selected by the mean 

excess function or Hill plots. We use the mean excess 
function to calculate the threshold. Fig. 2 shows the sample 

mean excess function for the residuals of the grey GM(1,2) 

model. From a closer inspection of the plot, we find that the 

sample mean excess plot e(x) is roughly linear when the 

value of the threshold u is about 3.837. So we fix the 

threshold u to 3.837. In this case, the number of resulting 

excesses are 119, accounting for 9.94% of the sample, which 

is consistent with percentages suggested by McNeil and Frey 

[13]. 
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Fig. (2). Mean excess function plots of residuals. 
 

 After selecting the threshold u, the residuals above the 

selected threshold u, which will be used as the sample data 

for EVT implementation, are also determined. The estimates 
of the shape and scale parameters,  and , can be 

determined by fitting the GPD to the residuals via maximum 

likelihood estimator. Inserting the estimates of  and  into 

equation (11), the tail quantiles of the standardized residual 

series at a given confidence level c can be calculated. Table 

3 reports the estimated results for tail index, scale parameter 

and tail quantiles. It can be seen that the  estimates is 

positive and statistically significant, indicating that the right 

tail of the distribution of standardized residuals is 

characterized by the Fréchet distribution. 

Table 3. Estimates of GPD parameters & quantiles. 

Threshold Shape Scale Confidence Level Tail Quantile 

95.0% 5.453875 

97.5% 7.111029 

99.0% 9.343275 

3.837 0.023371 2.333667 

99.5% 11.06395 

 

5.3. VaR Estimates and Backtesting 

 Without loss of generality, in this paper we assume that 

an electric utility has the obligation to serve 1MW of load 24 

hours a day and the retail price has been frozen at a level 

equivalent to 0$/MWh. Substituting the calculated results at 
subsection 5.1and 5.2 into equation (15), the VaR at each 

confidence level can be estimated. Fig. 3 shows the 

estimated results of the dynamic VaR at the 99% confidence 

level. It can be seen from Fig. 3, the estimates of GM(1,2)-

POT-VaR model can reflect the changes of electricity prices 

sensitively, showing better dynamic characteristics. 
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Fig. (3). Dynamic VaR for electric power company. 
 

 The Kupiec’s test results for actual and forecasted losses 

are shown in Table 4. It can be seen from Table 4 that the 

null hypotheses of ARMAX-GARCH-st-VaR [10], 

ARMAX-GARCHSK-VaR [11] and our proposed GM(1,2)-

POT-VaR models cannot be rejected in each significance 
levels. Summarizing the results for the Kupiec’s tests, the 

VaR predictions by these methods are insignificantly 

different from the proposed downfall probability, but 

because the GM(1,2)-POT-VaR model is easier to deal with 

and possesses the advantages of less computational costs, 

this further improves the risk management ability for 

electricity market participants to some extent. 
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CONCLUSION 

 The distinctive characteristics of electric energy make 

electricity price present highly volatility and occasional 

extreme movements of magnitudes rarely seen in markets for 

regular financial assets, thus volatility of price risk 

identification, evaluation and management in electricity 

market are more important than in financial markets. 
Considering the pertinences of electricity prices, a grey 

system and extreme value theory based two-stage model for 

estimating VaR is proposed. In stage one, to acquire the 

approximately IID residuals with better statistical properties, 

a grey GM(1,2) model is used to pre-filter the electricity 

price series. In stage two, an EVT based model is employed 

to explicitly deal with the right tail of the residuals of the 

GM(1,2)l, and accurate estimates of VaR in electricity 

market can be produced. The empirical analysis indicates 

that the GM(1,2)-POT-VaR model can rapidly reflect the 

most recent and relevant changes of electricity prices and can 
produce accurate forecasts of VaR at all significance levels. 

The computational costs is far less than the methods in [10, 

11], further improving the risk management ability of market 

participants. These results present several potential 

implications for risk hedging strategies in electricity market. 
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