
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2014, 8, 957-963 957

 1874-110X/14 2014 Bentham Open

Open Access

An Improved Data Placement Strategy in a Heterogeneous Hadoop
Cluster

Wentao Zhao1, 2, Lingjun Meng1, Jiangfeng Sun1,2,*, Yang Ding1, Haohao Zhao1 and Lina Wang1,2

1
School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China;

2
Opening Project

of Key Laboratory of Mine Informatization, Henan Polytechnic University, Jiaozuo 454000, Henan, China

Abstract: Hadoop Distributed File System (HDFS) is designed to store big data reliably, and to stream these data at high

bandwidth to user applications. However, the default HDFS block placement policy assumes that all nodes in the cluster

are homogeneous, and randomly place blocks without considering any nodes’ resource characteristics, which decreases

self-adaptability of the system. In this paper, we take account nodes heterogeneities, such as utilization of nodes’ disk

space, and put forward an improved blocks placement strategy for solving some drawbacks in the default HDFS. The

simulation experiments indicate that our improved strategy performs much better not only in the data distribution but also

significantly saves more time than the default blocks placement.

Keywords: Data placement, disk space utilization, HDFS, network load, nodes heterogeneity.

1. INTRODUCTION

With the era of explosive information and data coming,
more and more fields need to deal with massive, large scale
data. Cloud computing is emerging as a powerful paradigm
for dealing with big data, which is developed from distrib-
uted processing, parallel processing and grid computing and
is deemed as the next generation of IT platforms that can
deliver computing as a kind of utility [1]. One of the key
consideration of cloud computing is absolutely transparent
for upper layer users who don’t have to know the internal
structure to reduce the burden on user.

Google has been dedicated to promoting application en-
gines based on the techniques of GFS [2] (Google File Sys-
tem), MapReduce [3], Big Table [4] and so on. Hadoop [5-7]
is an open-source implementation of Google’s MapReduce
[8] programming model, which is regarded as a significant
project hosted by the Apache Software Foundation. HDFS
(Hadoop Distributed File System) is the file system compo-
nent of Hadoop and provides a number of APIs for research-
ers and programmers. The architecture of HDFS is mas-
ter/slave and an HDFS cluster has a Namenode and multiple
Datanodes. Files are divided into multiple blocks and dis-
tributed across Datanodes. A typical block size used by
HDFS is 64MB and the replications factor is three by de-
fault. Hence, HDFS is highly fault-tolerant through data
redundancy. Specifically speaking, each block of file will be
replicated to multiple nodes to prevent the failure of one
node from losing all copies of file as Fig. (1) shows:

However, the default HDFS block placement policy ig-
nores the tremendous heterogeneities and great volume

discrepancy existed among computing nodes in a cluster, and
tries to place blocks randomly, which may easily result in the
load imbalance occurrence as well as poor parallelism and
low performance of the system. What’s worse, some serious
phenomenon may emerge, such as some nodes are too busy
to receive requests owing to their capacity constraints or
network congestions, while other nodes are idle so much,
which may accelerate load imbalance and traffic jams, even
lead some nodes crash.

Aiming at the problems mentioned, we propose an im-
proved data placement strategy in heterogeneous Hadoop
clusters in this paper. The simulation experiments demon-
strate that our strategy performs much better not only in the
balance placement but also significantly saving time than the
default blocks placement.

2. THE DEFAULT BLOCK PLACEMENT STRATEGY
OF HDFS

“Rack Awareness” is one of the key concepts of HDFS.
The key iron rule of default block placement is that for every
block of data, two copies will be stored in one rack, another
copy in a different rack. The flowchart of the default block
placement is as the following steps:

Firstly, the policy judges whether the client is a node in
the cluster or not by contains function in Network Topology
class. If it is, the policy will try to select the client as the 1st
selected node by chooseLocalNode function in Replication-
TargetChooser class. If it fails, a random node in the client
will be selected by chooseLocalRack function in Replica-
tionTargetChooser class. If the client is not in the cluster, a
random node in the cluster will be taken as the 1st node by
chooseRandom function in ReplicationTargetChooser class.
Then the 1st selected node information will be saved in the
results array in DatanodeDescriptor of ReplicationTar-
getChooser class.

958 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Zhao et al.

Secondly, a random node in the remote rack will be se-
lected as the 2nd node by chooseRemoteRack in Replica-
tionTargetChooser class. If it fails, a random node in the
same rack the 1st node will be chosen and saved in the re-
sults array.

Finally, the default policy will check whether the first
two selected nodes are in the same rack by isOnSameRack
function in NetworkTopology class, if they’re, the policy
tends to select a random node besides this rack by
chooseRemoteRack in ReplicationTargetChooser class. A
random node in the same rack as the 2nd node will be se-
lected by chooseLocalRack function and regarded as the 3rd
selected node. Then the 3 selected nodes in the array will be
returned to the client.

3. PROBLEMS OF DEFAULT BLOCK PLACEMENT
STRATEGY IN HDFS

The replicas placement is very important to HDFS per-
formance. The default block placement strategy is highly
fault-tolerant through data redundancy. Besides, it also re-
duces the inter-rack write traffic by the “replication pipeline”
policy. What’s more, the default strategy benefits from the
“Rack Awareness” concept of HDFS as well, since the
chance of a rack failure is far less than that of a node failure.
In a word, the default strategy not only places replicas effi-
ciently, but also takes the network bandwidth and fault toler-
ance into consideration.

However, there’re still many shortcomings to be made up
for. Current block placement assumes all Datanodes in the
cluster are homogenous, and Namenode select node just by
“Rack Awareness” without taking any resource characteris-
tics into account. Actually, tremendous heterogeneities and

great volume discrepancies existed among computing nodes.
The most serious aspect lies in the fact that the default policy
ignores nodes’ disk space utilization. Consequently, load
imbalance may occur easily, that’s to say, some nodes are
fully occupied, whereas others are idle so much. Although
HDFS provided a balancer procedure, which is deployed as
an application program that can be run by the cluster admin-
istrator, that’s to say, the default balancer procedure cannot
work without the administrator manually calls (sh
$HADOOP_HOME/bin/start-balancer.sh –t ‘threshold’).
Moreover, blocks migration would take up much network
bandwidth once the procedure is called. What’s worse, the
principle of the default balancer procedure fails to optimize
the overload racks preferentially, since it firstly balances
within the rack and then balances among racks.

How to improve the default block load balancing strategy
has become a critical subject, and a great number of scien-
tists and researchers have been devoting themselves into
improving performance of Mapreduce by designing optimal
data placement for Hadoop cluster. The priority method
given in reference [12] sets priorities to Datanodes so that it
can distribute network load according to the priority, but
network load is always changing, so the fixed priority is not
that suitable in terms of nodes’ real-time and self-
adaptability of HDFS. Jiong et al. proposed a method to im-
prove the performance of MapReduce by allocating data
according to computing capacity of each node in reference
[13], however, it does not take account disk space utilization
and fails to support various applications at the same time.
Besides, an evaluation of power-efficient data placement for
HDFS was proposed in reference [14], it will increase the
network overhead significantly, since it always has to mi-
grate data from inactive node to active node.

Fig. (1). The placement mechanism of replicas.

An Improved Data Placement Strategy in a Heterogeneous Hadoop Cluster The Open Cybernetics & Systemics Journal, 2014, Volume 8 959

4. AN IMPROVED BLOCK PLACEMENT STRATEGY
IN HDFS

Hence, we take impact of nodes great volume discrepan-
cies and network load heterogeneities into considerations,
and put forward an improved data placement strategy in het-
erogeneous Hadoop clusters in this paper. We improve the
default strategy based on the “Rack Awareness” of HDFS to
guarantee that the strong fault tolerance properties of
Hadoop are retained.

4.1. Principle of the Improved Strategy

The premier principle of this improved block placement
strategy is as follows: we assort all nodes into two parts:
high network load group and relatively small network load
group. Provided the difference of network load between
these two groups is not larger than the threshold we set, the
nodes in the small network load group with the larger disk
space can be selected in preference. Otherwise, the improved
strategy tend to select nodes in the high network load group
with the larger disk space, which realizes load balance as far
as possible because this new placement strategy focuses on
load balancing by selecting optimal node to place replica,
instead of realizing balance by the default balancer procedure.

4.2. Algorithm Model

We would like to take account nodes’ heterogeneities, in-
cluding network load and disk space utilization, and at the
same time avoid leaving nodes disk space unbalanced. Ac-
cording to this notion, we model our algorithm as follows:

Firstly, we define the packages number that the i th node

deals with during a fixed period as its network load during

this period. i.e.

p(i, t) ,

p i, t + t() respectively stand for

packages number of the i th node at time t and (t + t). The

detailed network load expression is represented as:

p i, t() = p i, t + t() p(i, t) i 1,N (1)

In Eq. (1), N represents the total number of nodes in the
cluster.

Then, all nodes can be easily partitioned into two sets by
nodes network load. If its network load is larger than the ts1,
it will be taken as low network load node. Otherwise, it be-
longs to the high network load. The partition strategy can be
evaluated as:

S = i | p(i, t) < ts

1
, i 1, N{ } (2)

L = j | p(j, t) ts

1
, j 1, N{ } (3)

In Eq. (2) (3), S represents a set which contains small
network load nodes, whereas L set contains large network
load nodes. Both i and j range from 1 to N.

Next, denote as the critical factor to decide which node to
select. It reflects nodes’ performance difference overall. The
detailed expression is given by:

G =

G(j)
j L

card(L)

G(i)
i S

card(S)
(i S , j L) (4)

In Eq. (4), G is a function to work out the i th node
available disk space (hereafter referred as G value), reflects

average difference of G values between large network load

nodes and relatively small ones on the whole.

In order to select an optimal node for replicas placement,

G will directly decide how to choose an optimal node. The
detailed expression can be formulated as:

P =

Max(L) G ts
2

Max(S) G<ts
2{ (5)

In Eq. (5), ts2 is a threshold the administrator sets. Pro-
vided is smaller than ts2, which illustrates that difference of
G values between S set and L set is acceptable, we pick out
node in the S set with the largest available disk space, since
network load plays a more critical role for the selection. Oth-
erwise, when the difference of G values between the two sets
is too large, which proves that the small network load nodes
are occupied intensively, we should select an optimal node
from the L set with the largest available disk space, since disk
space utilization plays a more critical role for the selection.

4.3. Algorithm Implementation

The proposed strategy in this paper has been conducted
on Hadoop-0.20.2. The detail procedures are as follows:

(1) Firstly, we need to construct NetLoad class in the
package of org.apache.hadoop.hdfs.server.datanode, by
which can we compute nodes’ network load. Then we create
3 functions in NetLoad class, including getPackages func-
tion, getNum function and getNetLoad function respectively.
As its name suggest, getPackages function is used to calcu-
late package number a node deals with during a certain pe-
riod and the result is saved as string, getNum function can
transfer the string result to integer format for mathematical
operation. GetNetLoad function finally calculate network
load by calling the two functions above twice and subtract-
ing the two returned package number.

(2) Next, we need to rewrite heartbeat protocol, by which
can we communicate with Namenode. The node network
load is a novel concept we propose, so it can not to convey
by the default heartbeat protocol. The functions we need to
rewrite contain SendHeartbeat function in DataNode class,
HandleHeartbeat function in FSNamesystem class, and Up-
dataHeartbeat function in DatanodeDescriptor class.

(3) Lastly but most significantly, we need to rewrite my-
ChooseTarget function in ReplicationTargetChooser class,
which implements blocks placement strategy directly, we
need to create and rewrite functions as follows:

1) We need to define a dynamic array named chosen-
Nodes in the function of myChooseTarget, by which can we
save get most information of each node, e.g. its name, its
total disk space and its available disk space, etc. In addition,
we also need to define a result array in myChooseTarget
function, by which can we save the available disk space of
each node.

2) We also need to create a function named Select in the
NetworkTopology class, by which can we return all nodes.
The core function in the improved algorithm is myChoose-
NetLoad function, by which can we change the default ran-

960 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Zhao et al.

dom mechanism and take both disk space utilization and
network load into account and this core function will be
called in the whole process of selecting nodes, (including 1st
node, 2nd node and 3rd node).

3) We need to remove the illegal nodes from the dynamic
array, since the array ChosenNodes saves all the information
about nodes, including the illegal nodes in excludedNodes.
Then the optimal node is returned by chooseMyNode func-
tion from the chosenNodes.

The total flowchart of our improved strategy is as follow-
ing Fig. (2). the pink blocks, the blue blocks and the purple

blocks coupled with the light blue blocks represent selection
of the 1st, 2nd, and the 3rd nodes respectively:

5. EXPERIMENTAL RESULTS AND ANALYSIS

5.1. Experimental Environment

We implement our proposed strategy based on “Rack
Awareness” concept of the default one, but we change the
random way that it adopts, and take nodes disk space utiliza-
tion and network load into consideration.

We present the experimental verification on Hadoop-
0.20.2, and our experimental platform consists of 25 nodes.

Fig. (2). The flowchart of the improved block placement.

An Improved Data Placement Strategy in a Heterogeneous Hadoop Cluster The Open Cybernetics & Systemics Journal, 2014, Volume 8 961

We take node0 as Namenode, and nodes from node1 to
node24 are regarded as Datanodes, and they are connected
by a Gigabit network in a total rack. The environmental con-
figuration of system nodes is shown in Table 1.

We evaluate the effect by comparing data distribution af-
ter uploading big files to HDFS by these two different strate-
gies, the file we intend to upload is around 750G, each rep-
lica of the file is the default 64M and total block number is
12195.

We write a script to increase some nodes’ network load
so that the final comparison of data distribution can be much
more obvious. In our experiment, we accelerate network load
of these 5 nodes: node1, node13, node17, node19 and
node20.

5.2. Experimental Results and Analysis

We evaluate the effect of the data placement strategy on
the data distribution by comparing the default block place-
ment strategy (DBPS) and the improved block placement
strategy (IBPS). We record the used disk space by DBPS and
IBPS respectively and calculate the used ratio of each node,
the detail results are as following Table 2:

It can be obtained from Table 2 that the standard devia-
tion of disk space used ratio by DBPS is 6.66, and the stan-
dard deviation of disk space used ratio by IBPS is 1.54,
which demonstrates that IBPS performs much more balanced

than DBPS. As Fig. (3) shown, our block placement strategy
performs much more evenly and uniformly in the data distri-
bution, and the platform keeps far more balanced if IBPS is
adopted. What’s more, once the balancer procedure is called,
the investigated strategy can save much more time, because
the unbalanced blocks that need to be migrated by the pro-
posed policy are far less than that of the default one. This is
because our IBPS mechanism maintains the load balance of
the system efficiently, by taking the impact of network load
and disk space utilization of each node into account.

Next, we investigate the effect of the time costs by com-
paring DBPS and IBPS. In our experiment, we record the
time it costs as the size of the file from 50GB to 250GB. As
shown in Fig. (4), the time that our block placement strategy
costs is much less than the default one. The average time by
using the default policy is 35257 s, whereas the average time
by IBPS is 25270 s, which saves 28.32%. This is because our
IBPS mechanism can prevent the heavy network load nodes
from being occupied and tend to select optimal nodes with
small network load and large disk space in preference.

CONCLUSION

In this paper, we take the impact of resource characteris-
tics, e.g. disk space utilization and network load into consid-
eration. Based on these considerations, we improve the de-
fault block placement strategy and put forward an improved

Table 1. Node specification in a hadoop heterogeneous cluster.

 Number Total Space (G) Memory (G) CPU OS

Namenode 1 130.54G 18G Xeon(R)2.40GHz SUSE Server 10

DataNode 24 130.54G 18G Xeon(R)2.40GHz SUSE Server 10

Table 2. Disk space used ratio by DBPS and IBPS.

Disk Space used Ratio (%) Disk Space used Ratio (%)
Name

DBPS IBPS

Name

DBPS IBPS

node1 78.12 72.85 node13 75.76 75.74

node2 54.39 81.68 node14 79.48 77.48

node3 66.56 71.87 node15 79.49 79.86

node4 76.38 76.05 node16 79.26 79.4

node5 73.67 74.92 node17 79.51 79.33

node6 64.93 75.43 node18 79.43 79.29

node7 80.4 73.38 node19 75.63 75.61

node8 86.88 80.99 node20 78.28 75.68

node9 73.73 79.34 node21 79.22 79.3

node10 74.16 78.82 node22 79.73 78.45

node11 84.78 72.68 node23 78 79.41

node12 76.85 74.91 node24 79.34 79.41

962 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Zhao et al.

mechanism. Our approach is designed based on the principle
that the strong fault tolerance properties of HDFS are re-
tained. The experimental studies are conducted to demon-
strate that the proposed strategy not only performs much
more balanced (without balancer procedure) in the data dis-
tribution but also significantly saving time than the default
strategy. Our future work will take account some other fac-
tors based on our current work, e.g. CPU load and real-time
of each node to achieve a better performance.

CONFLICT OF INTEREST

No conflict of interest exits in the submission of this
manuscript, and manuscript is approved by all authors for

publication. I would like to declare on behalf of my co-
authors that the work described was original research that
has not been published previously, and not under considera-
tion for publication elsewhere, in whole or in part.

ACKNOWLEDGEMENTS

This work is supported by the Provincial Key Technolo-
gies R & D Program of Henan under Grant No.
142402210435.

REFERENCES

[1] C.Lee, R.Buyya, P.Roe, “Future generation computer system”,
Future Generation Computer Systems. vol.18, pp.599-616, 2002.

Fig. (3). Data distribution.

Fig. (4). Time spent on uploading files.

An Improved Data Placement Strategy in a Heterogeneous Hadoop Cluster The Open Cybernetics & Systemics Journal, 2014, Volume 8 963

[2] G. Sanjay, G. Howard and S-T. Leung, “The google file sys-
tem”,Operating Systems Review (ACM), vol.37, pp. 29-43, 2003.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Process-
ing on Large Clusters”, Proceedings of 6th Symposium on Operat-
ing System Design and Implementa-tion(OSDI), pp. 137–150,
2004.

[4] N. M. Patel, N.M Patel, M. I. Hasan, P. D. Shah and M. M. Patel,
“Improving HDFS write performance using efficient replica
placement”, Proceedings of the 5th International Conference on

Confluence 2014, pp. 36-39, 2014.
[5] Apache Hadoop, http://hadoop.apche.org/.
[6] X.L. Ye, M.X. Huang, D.H. Zhu and P. Xu, “A Novel Blocks

Placement Strategy for Hadoop”, 2012 IEEE/ACIS 11th Interna-

tional Conference on Computer and Information Science, pp. 3-7,
2012.

[7] Z.D. Cheng, Z.Z. Luan, Y. Meng, Y.J. Xu and D.P. Qian. “ERMS:
An Elastic Replication Management System for HDFS”, 2012

IEEE International Conference on Cluster Computing Workshops,
pp. 32-40, 2012.

[8] Q.S. Wei, B. Veeravalli, B.Z. Gong, L.F. Zeng and D. Feng,
“CDRM: A Cost-effective Dynamic Replication Management
Scheme for Cloud Storage Cluster,” 2010 IEEE International Con-
ference on Cluster Computing, pp. 188-196, 2010.

[9] X.L. Shao, Y.G. Wang, Y.L. Li and Y.W. Liu, “Replication Place-
ment Strategy of Hadoop”, CAAI Transactions on Intelligent Sys-
tems, vol.8, pp. 489-496, 2013.

[10] O. Khan, R. Burns, J. Plank, W. Pierce and C. Huang, “Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recov-
ery and Degraded Reads”, Conference on File and Storage
Technologies (FAST), pp. 1-14, 2012.

[11] H.H.Le, S.Hikida and H.Yokota, “Accordion: An efficient gear-
shifting for a power-proportional distributed data-placement
method”, IEICE Transactions on Information and Systems, vol.98,
pp. 1013-1026, 2015.

[12] H. Rahmawan and Y. S. Gondokaryono, “The simulation of static
load balancing algorithms”, Proceedings of the 2009 International

Conference on Electrical Engineering and Informatics, pp. 640-
645, 2009.

[13] J. Xie, S. Yin, X.J. Ruan, Z.Y. Ding, Y. Tian and J. Majors, A.
Manzanares, and X. Qin, “Improving MapReduce Performance
through Data Placement in Heterogeneous Hadoop Clusters”, Pro-
ceedings of the 2010 IEEE International Symposium on Parallel

and Distributed Processing, pp. 1–9, 2010.
[14] K. Shvachko, H.R. Kuang, S. Radia and R. Chansler, “The Hadoop

Distributed File System”, 2010 IEEE 26th Symposium on MSST,
pp. 1-10, 2010.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Zhao et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

