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Abstract: Phylogenetic trees represent the historical evolutionary relationships between different species or organisms. 

Creating and maintaining a repository of phylogenetic trees is one of the major objectives of molecular evolution studies. 

One way of mining phylogenetic information databases would be to compare the trees by using a tree comparison meas-

ure. Presented here are a new dissimilarity measure for comparing rooted trees and three algorithms to efficiently compute 

it. This new measure operates on clusters of compared trees as in the case of standard Robinson-Foulds distance, but ex-

tracts more subtle differences between clusters, and thus may offer better discrimination than the Robinson-Foulds distance.  
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1. INTRODUCTION 

Phylogenetic trees are widely used in biology to repre-
sent evolutionary relationships of a collection of species. 
Typically, the extant species correspond to the leaves each 
assigned unique labels and the remaining vertices (the inte-
rior vertices) represent ancestral species. One interior vertex 
may be distinguished from the others as the root so that the 
tree becomes rooted, and among interior vertices only the 
root may have degree two. Each vertex of a rooted tree asso-
ciates with a cluster, i.e., the subset of leaf labels in the sub-
tree rooted at this vertex. The set of all such clusters is called 
the cluster representation of the tree. A tree is called a binary 
tree if all its vertices have degree at most three [1].  

With a large number of completely sequenced genomes 
and many more in progress, there is a large publicly avail-
able dataset that can be used to generate phylogenetic trees. 
Building phylogenetic trees is one of the primary objectives 
of phylogenetics [2]. This is typically done on the basis of 
molecular information (e.g., DNA sequences) from these 
species, and there are many methods used for it: parsimony 
[3], maximum likelihood [4, 5], distance matrices [6-8], 
Bayesian approaches [9, 10], etc. The problem is NP-hard 
under most models [3, 5, 11, 12]. 

Since applying different reconstruction methods often re-
sults in different trees for the same input data, many phylo-
genetic trees included in the databases are actually alterna-
tive trees for the same sets of species. This variety makes it 
necessary to compare the trees for measuring their differ-
ences [3]. Moreover, even if a database is made available its 
usefulness will be measured by how it can be queried. Tree  
 

comparison is very useful in querying databases of phyloge-
netic information [13]. Tree comparison is also used for 
other purposes, e.g., to assess the stability of the reconstruc-
tion algorithms [14], and in the comparative analysis of other 
hierarchical cluster structures [15, 16]. 

Tree comparison concerns three related problems: to con-
struct a consensus tree for a given set of trees [17], to com-
pute a consensus index for a given set of trees [18, 19], and 
to measure pairwise dissimilarity between trees. The third 
problem may form the basis of consensus tree or index 
methods [20]. A dissimilarity measure is used to determine 
how far the two compared trees are. The larger the value, the 
more different the two trees are considered to be. 

There have been a number of dissimilarity measures pro-
posed for comparing phylogenetic trees in the literature. 
Some measures are edit distances, such as the nearest-
neighbor interchange distance [21] and the subtree prune-
and-regrafting distance [22]. However, computing such edit 
distances is typically NP-hard [22-24]. Some measures are 
based on the comparison of phylogenetic trees through some 
consensus subtree, e.g., the MAST (Maximum Agreement 
Subtree) distances defined in [25, 26]. Finally, many dissimi-
larity measures compare the encodings of the phylogenetic 
trees, such as the Robinson-Foulds distance [27], the quartet 
distance [8], the triples distance [28], the splitted nodal dis-
tances [29], the cophenetic metrics [30, 31], to name just a 
few. 

The Robinson-Foulds distance is the most widespread 
measure for the comparative analysis of phylogenetic trees. 
For two rooted trees, it is defined as the normalized count of 
the symmetric difference of their cluster representations. It 
can be computed in linear time by using Day’s algorithm 
[20]. For a set of phylogenetic trees, the distance matrix can 
be computed in sublinear time [32]. The main disadvantages 
of this measure come from its poor distribution and sensitiv-
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ity. The Robinson-Foulds distance between two random bi-
nary trees has a highly skewed distribution, in which most 
values equal the largest possible value. It also lacks robust-
ness in the face of small changes in the original tree: one leaf 
relocation may generate a tree at largest possible Robinson-
Foulds distance [33, 34].  

In this paper, we introduce a new pairwise dissimilarity 

measure for comparing rooted phylogenetic trees. Similarly 

to the Robinson-Foulds distance, this measure is based on 

comparing clusters. However, it considers not only the iden-

tity of clusters, but also more subtle differences between 

clusters, and transforms the values of dissimilarity between 

clusters to the final score of the dissimilarity of compared 

trees. The proposed measure can be regarded as a weighted 

extension of the Robinson-Foulds distance, and may offer 

better discrimination than it. We propose three algorithms to 

compute this new measure whose running times are 
3( )O n , 

2( )O n  and 
2( log )O n n , respectively, where n  is the 

number of leaves in a tree. The running time of the third al-

gorithm becomes 
2( log )O n n  if the compared trees are 

balanced, i.e., trees of the height at most (log )O n .  

The remainder of this paper is organized as follows. In 

Section 2, we review terminology needed, and then define a 

new dissimilarity measure. In Section 3, we present three 

algorithms to compute the new measure efficiently. We con-

clude this paper in Section 4. 

2. PRELIMINARIES 

The notations and definitions used here mainly follow 

Semple and Steel [1]. For sets ,A B , let 

( \ ) ( \ )A B A B B A=  be their symmetric difference. 

Denote by | |A  the cardinality of set A . A graph 

( , )G V E=  is a structure consisting of a set V  of vertices 

and a set {{ , }: , }E x y x y V  of edges. A sequence of 

contiguous edges in G  is called a path. A cycle is obtained 

from a path by identifying its two ends without any retrac-

ing. G  is connected if, for any pair of vertices 

, ( )u v V G , there is a path in G  from u  to v . 

An unrooted tree ( , )T V E=  is a connected graph with 

no cycles. An unrooted phylogenetic tree (on L ) is an un-

rooted tree whose leaves are labeled bijectively by a set L  

(species) and no vertex has degree 2. A rooted tree contains 

a distinguished vertex, called the root, from which every 

vertex can be reached through exactly one path. A rooted 

phylogenetic tree (on L ) is a rooted tree whose leaves are 

labeled bijectively by a set L  and no vertex but the root may 

have degree 2.  

Since we consider rooted phylogenetic trees in this paper, 

we neglect the unrooted case. Hence, we often use the term 

“tree” instead of “rooted phylogenetic tree” in the following 

for brevity. We identify leaves with their labels. That is, for 

tree T , let ( )L T  denote the set of leaves of T  or the set of 

labels of those leaves. See Fig. (1) for an example. 

 

Fig. (1). An example. 
1
T  and 

2
T  are two rooted phylogenetic trees 

with 
1 2( ) ( ) { , , , }L T L T a b c d= = . 

1
T  is a binary tree, while 

2
T  

is not. 

A rooted tree defines naturally a partial order relation 
T

 

on its vertices. For two vertices , ( )u v V T , we have 

T
u v  if the path in T from u  to the root of T contains 

v . We shall say that u is a descendant of v  and also that v  

is an ancestor of u . In particular, 
T

v v for any 

( )v V T . 

Given a vertex v  of T , the subtree of T rooted at v  is 

a subgraph of T , ( , )T V E= , such that V  is the set of 

descendants of v (including v  itself) in T  and E  consists 

of those edges of T with both ends in V .  

Each vertex u  of T associates with a cluster denoted by 

( )L u , i.e., the set of leaf labels in the subtree rooted at u . 

The set of all such clusters for T  is called the cluster repre-

sentation of T and is denoted by ( )T , from which T can 

be reconstructed in linear time [1]. Among the clusters in 

( )T , those associated with the leaves or the root are called 

trivial clusters since they can be found in every tree, and the 

remaining clusters are called non-trivial clusters. Denote by 

*( )T the set of all non-trivial clusters of T . For the rooted 

trees in Fig. (1), * 1( ) {{ , },{ , }}T a b c d= and 

* 2( ) {{ , , }}T a b c= . 

Cluster representations play an important role in design-

ing dissimilarity measures between phylogenetic trees. For 

example, the Robinson-Foulds distance is defined to be the 

number of different clusters in compared trees (divided by 

2). For the rooted trees in Fig. (1) the Robinson-Foulds dis-

tance is 1.5. 

We now introduce the new dissimilarity measure. With-

out loss of generality, we assume that {1,2, , }L n= …  

from now on.  

Each cluster of a tree T  associates with a binary vector 

 of length n : For any leaf i , set [ ] 1i =  if i is in this 

cluster, otherwise set [ ] 0i = . Denote by ( )BV T  and 

*( )BV T  the sets of binary vectors associated with the clus-

ters and non-trivial clusters of T , respectively. For a binary 

vector ( )BV T , let C  be the cluster associated with it. 
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Given two trees 
1
T  and 

2
T with 1 2( ) ( )L T L T L= = . 

The cluster dissimilarity between 
1
T  and 

2
T  is defined as 

follows: 

2
* 1

1
* 2

1 2
( )

( )

( )
( )

( , ) ( ( , )

                     ( , )) / 2

H
BV T

BV T

H
BV T

BV T

Cd T T Min d

Min d

= +

      (1) 

where ( , )
H
d  is the classical Hamming distance between 

the two vectors  and . It is easy to see that 

( , )
H
d C C= . 

Each binary vector associated with a cluster of a tree has 

a most similar binary vector associated with a (not necessar-

ily non-trivial) cluster of another tree. The most similar bi-

nary vector has the smallest Hamming distance from the 

binary vector. Compute the sum of the Hamming distances 

between each binary vector and its most similar binary vec-

tor. The cluster dissimilarity between two trees is equal to 

this sum divided by 2. Since each binary vector associated 

with a trivial cluster of a tree has the same binary vector in 

another tree, we need not count the Hamming distance be-

tween them in (1). 

For the trees 
1
T  and 

2
T  shown in Fig. (1), the cluster 

dissimilarity between 
1
T  and 

2
T , 1 2( , )Cd T T , is equal to 

(1 1 1) / 2 1.5+ + = .  

3. THREE ALGORITHMS 

In this section we will present three algorithms to com-

pute 1 2( , )Cd T T  efficiently. These algorithms are all based 

on tree post-order traversal, but different in the methods to 

compute
2( )

( , )
H

BV T

Min d  and 
1( )

( , )
H

BV T

Min d  before 

using (1), and thus have different time complexity.  

Algorithm 1: 

Step 1. Traverse 
1
T  and 

2
T  in post-order respectively, 

and get all of the binary vectors associated with the clusters 

in 
1
T  and 

2
T . 

Step 2. For each * 1( )BV T , compute the Hamming 

distance between and each 2( )BV T . Choose the 

smallest one from among the obtained values as 

2( )
( , )

H
BV T

Min d . 

Step 3. For each * 2( )BV T , compute the Hamming 

distance between and each 1( )BV T . Choose the 

smallest one from among the obtained values as 

1( )
( , )

H
BV T

Min d . 

Step 4. Compute 1 2( , )Cd T T  by (1). 

We then get the following theorem. 

Theorem 1. Algorithm 1 computes the cluster dissimilar-

ity between two trees 
1
T  and 

2
T in 

3( )O n  time, where n  is 

the number of leaves in 
1
T  and 

2
T . 

Proof. Steps 1 and 4 can be executed in ( )O n  time. 

Computing the Hamming distance between two clusters re-

quires ( )O n  time. Since there are at most 2 1n  clusters 

in a tree, each 
2( )

( , )
H

BV T

Min d  and 
1( )

( , )
H

BV T

Min d  

can be obtained in 
2( )O n  time. Since there are at most 

2n  non-trivial clusters in a tree, Steps 2 and 3 can be 

executed in 
3( )O n  time. Hence the running time of Algo-

rithm 1 is 
3( )O n .  

We now modify Algorithm 1 to reduce the time complex-

ity to 
2( )O n . We only need to show that in fact each 

2( )
( , )

H
BV T

Min d  and 
1( )

( , )
H

BV T

Min d  can be com-

puted in ( )O n  time.  

Fix a non-trivial cluster * 1( )C T . Denote by 
1
n  the 

number of labels in C . Traverse 
2
T  in post-order. Suppose 

that the current cluster is 2( )C T during the traversal. 

Let 
1
l  be the number of labels that are in both C  and C , 

and 
0
l  be the number of labels that are in C  but not in 

C . Then we get 1 1 0( , )
H
d n l l= + . Compute the 

Hamming distance between and each 2( )BV T  in 

this way. Choose the smallest one from among the obtained 

values as 
2( )

( , )
H

BV T

Min d . 

For the clusters associated with the leaves of 
2
T , the val-

ues of 
1
l  and 

0
l  can be obtained in (1)O  time. For any 

cluster associated with an interior vertex of 
2
T , the values of 

1
l  and 

0
l  can be computed respectively by adding the values 

of 
1
l  and 

0
l of all the children. Hence for each 

* 1( )BV T , 
2( )

( , )
H

BV T

Min d can be computed in 

( )O n  time.  

Similarly, for each * 2( )BV T ,
1( )

( , )
H

BV T

Min d  

can be computed in ( )O n  time.  
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Algorithm 2: 

Step 1. Traverse 
1
T  in post-order, and get all of the clus-

ters in 
1
T . For each * 1( )BV T , compute 

2( )
( , )

H
BV T

Min d  in ( )O n  time using the above method. 

Step 2. Traverse 
2
T  in post-order, and get all of the clus-

ters in
2
T . For each * 2( )BV T , com-

pute
1( )

( , )
H

BV T

Min d  in ( )O n  time using the above 

method. 

Step 3. Compute 1 2( , )Cd T T  by (1). 

We then get the following theorem. 

Theorem 2. Algorithm 2 computes the cluster dissimilar-

ity between two trees 
1
T  and 

2
T in 

2( )O n time, where n  is 

the number of leaves in 
1
T  and 

2
T . 

In order to compute 
2( )

( , )
H

BV T

Min d  for 

* 1( )BV T , we have to compare  with each element in 

2( )BV T  in the two algorithms presented above. Actually, a 

technique used in [35] allows us to compare  with just a 

proper subset of 2( )BV T . This is the basic idea of Algo-

rithm 3 presented below. 

Before we describe the algorithm, some preliminary 

definitions and initial lemmas are necessary.  

The Least Common Ancestor (LCA) of vertices u and v  

in a tree T , denoted by LCA( , )u v , is the shared ancestor 

of u and v  that is located farthest from the root, i.e., 

LCA( , ) min{ | , }
T T

u v w u w v w= . 

Lemma 1. [36, 37] Given a tree T . There are algorithms 

that can answer LCA query in T  in constant time after only 

linear time preprocessing of the tree. 

Given ( )X L T . The restriction of T to X , denoted 

by |T X , is constructed by first finding the minimal subtree 

of T containing X , and then suppressing all vertices of 

degree two except the root. 

Lemma 2. [35] A tree T can be preprocessed in linear 

time so that for any ( )X L T , |T X can be computed in 

( log )O X n time, where n  is the number of leaves in T . 

In the proof of this lemma in [35], the authors first sort 

the leaves of T according to the in-order traversal, and then 

find the leaves with labels in X . Suppose that these leaves 

are 
1 2
, , ,

m
s s s…  in the order. |T X  is constructed as fol-

lows: 1LCA( , )
m

s s  is the root, 
2 1
, ,

m
s s…  is inserted one 

by one such that each interior vertex of |T X is actually an 

interior vertex of T representing an LCA. 

For a set S  of vertices inT , if there is a vertex 

u S such that 
T

v u  for anyv S , then we let max S  

be u , otherwise max S is undefined.  

For any vertex ( )u V T , let ( , )D u X  be the set of all 

the vertices in |T X  that are under u in T , i.e., 

( , ) { |  and | }
T

D u X v v u v T X= . 

Lemma 3. [35] If ( , )D u X , then max ( , )D u X is 

well defined. 

For * 1( )BV T , denote by 2( )M T  the cluster 

associated with 
2( )

arg ( , )
H

BV T

Min d . Similarly, For 

* 2( )BV T , denote by 1( )M T  the cluster associ-

ated with 
1( )

arg ( , )
H

BV T

Min d . 

Lemma 4. Given two trees 
1
T  and 

2
T . For each 

* 1( )BV T , M  must be associated with a vertex in 

2 |T C . Similarly, for each * 2( )BV T , M  must be 

associated with a vertex in 1 |T C . 

Proof. Consider * 1( )BV T . Suppose that 

[ ] 1i = for some {1,2, , }i n… . Let e  be the binary 

vector in which [ ] 1e i =  and [ ] 0e j = for any j i . 

We have ( , ) 1
H
d e C= . It follows that 

2( )
( , ) 1

H
BV T

Min d C . 

Now consider a vertex v  such that 2( )v V T  but 

2( | )v V T C . Let 
v

 be the binary vector associated 

with the cluster ( )L v . We distinguish between two different 

cases: 

If ( , )D v C = , then M  cannot be associated with 

v because otherwise we get
2( )

( , )
H

BV T

Min d C> . 

If ( , )D v C , then set max ( , )w D v C= . 

Lemma 3 ensures that w  is well defined. Let 
w

 be the 

binary vector associated with the cluster ( )L w . Since 

( ) ( )L w L v and ( ) ( )L w C L v C= , we get 

( , ) ( , )
H v H w
d d> . Therefore, M  cannot be asso-

ciated with v .  

The second half of the lemma can be proved similarly. 
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We are now ready to describe the third algorithm. 

Algorithm 3: 

Step 1. Traverse 
1
T  and 

2
T  in post-order respectively, 

and store at each vertex the number of leaves under it. 

Step 2. For each * 1( )BV T , compute 

2( )
( , )

H
BV T

Min d  as follows. First construct 2 |T C , and 

then traverse it in post-order. During the traversal compute 

for each vertex 2( | )v V T C  the number of leaves under 

v  in 2 |T C , i.e., ( )C L v , where ( )L v  is the set of 

leaf labels in the subtree of 
2
T  rooted at v . (Every vertex of 

2 |T C  must be a vertex of 
2
T .) Let 

v
 be the binary vec-

tor associated with the cluster ( )L v . We can now compute 

( , ) ( ) ( ) 2 ( ) .
H v
d C L v C L v C L v= = +

 For each 2( | )v V T C compute ( , )
H v
d as described 

above and then choose the smallest one from among the ob-

tained values as 
2( )

( , )
H

BV T

Min d . 

Step 3. For each * 2( )BV T , compute 

1( )
( , )

H
BV T

Min d  as follows. First construct 1 |T C , and 

then traverse it in post-order. During the traversal compute 

for each vertex 1( | )u V T C  the number of leaves under 

u  in 1 |T C , i.e., ( )C L u , where ( )L u  is the set of 

leaf labels in the subtree of 
1
T  rooted at u . (Every vertex of 

1 |T C  must be a vertex of 
1
T .) Let 

u
 be the binary vec-

tor associated with the cluster ( )L u . We can now compute 

( , ) ( ) ( ) 2 ( ) .
H u
d C L u C L u C L u= = +

 For each 1( | )u V T C compute ( , )
H u
d  as de-

scribed above and then choose the smallest one from among 

the obtained values as 
1( )

( , )
H

BV T

Min d . 

Step 4. Compute 1 2( , )Cd T T  by (1). 

We then get the following theorem. 

Theorem 3. Algorithm 3 computes the cluster dissimilar-

ity between two trees 
1
T  and 

2
T in 

1 2( ) ( )
( ( ) log ( ) log )

u V T v V T
O L u n L v n+ time, 

where n  is the number of leaves in 
1
T  and 

2
T . The time 

complexity is 
2( log )O n n in the worst case and 

2( log )O n n  when 
1
T  and 

2
T  are balanced. 

Proof. Lemma 4 ensures the correctness of Algorithm 3. 

Steps 1 and 4 can be executed in ( )O n  time. By Lemma 2, 

Steps 2 and 3 can be executed in 

1 2( ) ( )
( ( ) log ( ) log )

u V T v V T
O L u n L v n+  time.  

Each ( )L u  and ( )L v  is at most n  and there are at 

most 2 1n  vertices in each tree, hence the time complexity 

of Algorithm 3 in the worst case is 
2( log )O n n . Observe 

that the total cardinality of the clusters at the same depth of a 

tree is at most n . Hence if 
1
T  and 

2
T  have height at most 

(log )O n , the time complexity of Algorithm 3 reduces to 

2( log )O n n .   

CONCLUSION 

We introduced a new dissimilarity measure for compar-
ing rooted phylogenetic trees. We showed that this measure 
can be computed in quadratic time in the worst case, and in 
roughly linear time for balanced trees. It would be interesting 
to investigate whether this measure can be computed in sub-
quadratic time in the worst case. 
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