
Send Orders for Reprints to reprints@benthamscience.ae

2536 The Open Cybernetics & Systemics Journal, 2015, 9, 2536-2544

 1874-110X/15 2015 Bentham Open

Open Access

Secrets of the Secrets: Text Mining on Dao Canon

Yubing Yang, Jue Jin, Shui Wang and Le Wang*

School of Information Engineering, Ningbo Dahongying University, Ningbo, Zhejiang, China

Abstract: Dao Canon are ancient Chinese documents that recorded the never-ending efforts of Taoists to longevity and

supernatural powers. Text mining analysis may help better understand these documents. This chapter performs text min-

ing on Dao Canon synopsis text utilizing the arulesSequences and tm packages of R, and introduces some related techs &

tricks in dealing with Chinese literals.

Keywords: Ancient chinese, dao canon, daoism, text mining.

1. INTRODUCTION

Daoism (or Taoism) is the ancient Chinese endeavor to
defy the natural law of aging, to be immortal or to get super-
natural powers. Unlike Buddhism or Christianity, although
some of the Daoist literatures and methods have already
spread to the rest of the world (like Dao De Jing and Tai Ji
Quan), Daoism has not yet been a well-studied international
academic topic. Compared with other similar subjects, there
are several characteristics that make Daoism more intricate
to laymen as well as to professionals, such as:

1. Dao literatures were written completely in ancient Chi-
nese, with a complex jargon system, can hardly be sci-
entifically studied by international scholars.

2. Most of the Dao literatures concerns practical exercising
methods that can hardly be judged theoretically.

3. Some of the authors used riddle-like language to shield
the “unqualified” learners from stealing their precious
knowledge.

To perform systematic research on the literatures in Dao
Canon, we introduce text mining methodology into this field;
the reason of utilizing text mining is as follows:

1. The Canon includes enormous amount of documents,
and text mining should help to reveal hidden knowledge.

2. Ancient authors tended to conceal their real names, and
text mining helps to discover the relationship between
documents.

3. The intension of jargons usually are ambiguous, some-
times even deliberately misrepresented; text mining
helps to clarify this situation by utilizing pattern analysis
or other mining processes such as clustering or associa-
tion analysis, etc.

This chapter is a practical introduction on the use of R
when data-mining the documents of Dao Canon, especially

the techs & tricks in dealing with Chinese literals; it also
includes some interoperation techniques of related software
such as MySQL and PHP. The background setup of this
chapter is that we can get digitized Canon data (Web pages)
from several open resources, such as [1] and [2], and trans-
form them to adequate format using other languages such as
Java or PHP. We also have a dedicated Web site for deposit-
ing and sharing related data & result files [3].

2. PREPARING - PART 1: READING DATA FROM
CSV FILES

Some existing Dao Canon related information can be
found in CSV text format, such as the TOC (Table of Con-
tent) data in [4], formatted as the following:

—

1 1—

1 0001 004

2 1—

417 0013 044

3 1—425, 0013 090,

The above style is typical in current Dao canon literature.
The first line is the title of the following data columns, and
they are: serial no., scroll-page, canon title, scroll/page in
Hanfenlou Colletion, category, number of volumes, and
author. Note that the punctuation characters are in Chinese
format, which also need to be transformed for data cleansing.

From the second line, are TOC texts following the style
of the title line. Taken the second line as an example, it
means that the Superior Lingbao Transcending Conon
() is in scroll 1, page 1, classified as
“0001 004” in Hanfenlou Colletion, belongs to
Dongzhen Category, and includes 61 volumes.

To remove the redundant information in the raw data
above,we perform some formatting work to establish the
header, and replace the values in fields “category” and “se-
ries” etc with unique numerical identifiers. The resulting
data are like the following (full data file dao.csv can be
downloaded at [5]):

Secrets of the Secrets: Text Mining on Dao Canon The Open Cybernetics & Systemics Journal, 2015, Volume 9 2537

serial no, category, series, scroll, page, title, volume, author, Hanfen-

lou_scroll, Hanfenlou_page

1,1,1,1,1, , ,,1, 004

2,1,1,1,417, , ,,13, 044

3,1,1,1,425, , , ,13, 090

The Reading from a CSV file can be done using R’s
“read” functions, such as read.csv() or
read.delim().Character encoding should be specified when
reading form Chinese data files. Suppose that the above TOC
data are stored in a CSV file located in “D:/r/dao.csv” with

“ANSI” encoding, we can use one of the following
commands to read the TOC data from it:

> toc <- read.delim("D:/r/dao.csv", sep=',', header=TRUE,
fileEncoding='GBK')

> toc <- read.csv("d:/r/dao.csv")

Note that if you saved the CSV file using encodings other
than “ANSI”, you must explicitly provide a value for fileEn-
coding parameter. In fact, the “Notepad” tool in Windows
can save a file in 4 different encodings, and the correspond-
ing parameter values for these encodings are:

 fileEncoding="UTF-16LE" for “Unicode” encoding;

 fileEncoding="UCS-2" for “Unicode big endian”;

 fileEncoding="UTF-8" for “UTF-8”;

 fileEncoding="GBK" for “ANSI”.

Note that for some reason the “UTF-8” encoding of the
Windows Notepad might not work smoothly with R, so you
may want to use “ANSI” as your default file encoding.

Now we can take an overview of the result by

 summary(toc)

 Title Scrolls Author

 : 8

(Comments on Huangdi Yinfu Jing)

 :1036

One scroll

:956

 : 6

(Comments on Dao De Jing)

 : 117

Three scrolls

 : 13

Eds. Du Guangting

(translations are add by the author to help non-Chinese readers

and are omitted hereafter.)

: 5 : 88 : 8

 : 4 : 41 : 5

 : 2 : 32 : 5

 : 2 : 29 : 5

(Other) : 1483 (Other): 167 (Other) :518

It is amazing to see that some of the statistical results
come as a surprise: the most popular sutra may be Yin Fu
Jing () instead of Dao De Jing (as most of the people
may tend to believe), because there are 8 documents with
exactly the same name dedicating to commenting this sutra.
Another 2 popular sutras are Chang Qingjing Jing
() and Zhouyi San Tong Qi ().

3. PREPARING - PART 2: ACCESSING DATA IN

MYSQL

If we want to store & present data through a Web inter-
face, the MySQL database system is an excellent choice for
data storage. The following discusses procedures of using
MySQL for Chinese information.

3.1. Create MySQL Tables for Chinese Information

To ensure compatibility with traditional Chinese literals,
tables in MySQL must be created with UTF-8 encoding; an
example is give as below:

CREATE TABLE `dao` (

`id` int(11) NOT NULL,

`category` varchar(45),

PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Please note that the parameter string “DEFAULT
CHARSET=utf8” is mandatory.

Updating new data to the MySQL server from CSV files
is straight forward and is not discussed in this chapter; it is
safe to know that we already have the data prepared in [3]
and the rest of this chapter will work on this base.

3.2. Reading Data from MySQL Table

Assume MySQL Data Source object name is daotext-
localhost, and with the help of RODBC package [6], we can
access MySQL data in an easy way:

> library(RODBC)

> ch <- odbcConnect(dsn="daotext-localhost",
uid="daouser", pwd="XXXX", DBMSencoding="UTF-8");

> daocategory <- sqlQuery(ch, "select * from daocanon-
category limit 10")

> daocategory

id category

1 1 (Dongzhen Category)

2 2 (Dongxuan Category)

3 3 (Dongshen Category)

4 4 (Taixuan Category)

5 5 (Taiping Category)

6 6 (Taiqing Category)

7 7 (Zhengyi Category)

8 8 (Sequel Canon)

The above commands connects to the MySQL server rep-
resented by the Data Source Name "daotext-localhost" with
user authentication specified by parameter “uid” and “pwd”,
and fetch at most 10 rows of data from table “daocanoncate-
gory”. Note that the value of the “DBMSencoding” parame-
ter must coincide with that of the Data Source object, and
with the actual encoding of the table.

4. FREQUENT SEQUENCES MINING ON TABLE OF
CONTENT OF DAO CANON

Chinese sentences do not contain white space characters
that can segment sentences into words in a “natural” way;

2538 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Yang et al.

instead, context information as well as human experience
play an important part in getting the real meaning from a
sentence. Ancient Chinese documents do not have punctua-
tions – and this makes the situation even worse. For exam-
ple, for the famous “first sentence” of Dao De Jing writes
“ ”, there are at least two different ways of
segmentation: “ , (Truth that can be told is not
the real truth)” and “ , , (Truth can be told
only in an unusual way)”,, and even more ways of interpret-
ing them.

To speculate meaningful segmentation for ancient Chi-

nese sentences, as a case study, we try to mine the frequent

patterns of the title text of Dao Canon.

4.1. Package arulesSequences

Package arulesSequences [7] mines frequent sequences

using cSPADE [8] algorithm.

The core method of arulesSequences is “cspade”, with

format like the following:

cspade(data, parameter = NULL, control = NULL, tmpdir =

tempdir())

The meaning of its arguments are:

data: an object of class transactions with temporal in-

formation.

parameter: an object of class SPparameter or a named

list with corresponding components.

control: an object of class SPcontrol or a named list with

corresponding components.

tmpdir: a non-empty character vector giving the directory
name where temporary files are written.

The most important argument is data, and it is an object

of class transactions. A transactions class represents transac-

tion data used for mining itemsets or rules. It is a direct ex-

tension of class itemMatrix (defined in package arules) to

store a binary incidence matrix, item labels, and optionally

transaction IDs and user IDs. Usually objects of this class are

created by coercion from objects of other classes, as illus-

trated in the following example:

> a_list <- list(

+ c("a","b","c"),

+ c("a","b"),

+ c("a","b","d"),

+ c("c","e"),

+ c("a","b","d","e")

+)

> ## set transaction names

> names(a_list) <- paste("Tr", c(1:5), sep = "")

> a_list

$Tr1

[1] "a" "b" "c"

$Tr2

[1] "a" "b"

$Tr3

[1] "a" "b" "d"

$Tr4

[1] "c" "e"

$Tr5

[1] "a" "b" "d" "e"

 The above list can be coerced into transactions:

> trans <- as(a_list, "transactions")

> trans

transactions in sparse format with

5 transactions (rows) and

5 items (columns)

> inspect(trans)

Items transactionID

1 {a, b, c} Tr1

2 {a, b} Tr2

3 {a, b, d} Tr3

4 {c, e} Tr4

5 {a, b, d, e} Tr5

You can use the summary command for more detailed in-
formation of this transactions object:

> summary(trans)

transactions as itemMatrix in sparse format with

5 rows (elements/itemsets/transactions) and

5 columns (items) and a density of 0.56

most frequent items:

a b c d e (Other)

4 4 2 2 2 0

In arulesSequences, function read_baskets read transac-
tion data in basket format (with additional temporal or other
information) and create an object of class transactions.

4.2. Read in Transaction Data

Transaction data represent the kind of data people use in
supermarket for shopping basket information. As an exam-
ple, the “zaki” sample dataset in package arulesSequences
has the following form:

1 10 2 C D

1 15 3 A B C

1 20 3 A D F

1 25 4 A C D F

2 15 3 A B F

2 20 1 E

3 10 3 A B F

4 10 3 D G H

4 20 2 B F

4 25 3 A G H

Secrets of the Secrets: Text Mining on Dao Canon The Open Cybernetics & Systemics Journal, 2015, Volume 9 2539

The first column is “transaction id”, indicating different
transactions; the second column is “event id”, indicating the
different “event” within a transaction; both the “transaction id”
and the “event id” form the temporal information of transac-
tions; the third column is the size of the transaction, meaning
the number of “items” within this transaction. All other col-
umns represent the shopping “items” of the transactions.

In package arulesSequences we use function
read_baskets to read transaction data in basket format (with
additional temporal or other information) and create an ob-
ject of class transactions.

The format of read_baskets is:

read_baskets(con, sep = "[\t]+", info = NULL, iteminfo =
NULL)

where con is an object of class connection or file name; for
example, we can construct a connection for the “zaki” sam-
ple dataset in package arulesSequences:

> conn <- system.file("misc", "zaki.txt", pack-
age="arulesSequences")

Argument sep of read_baskets is a regular expression
specifying how fields are separated in the data file; the de-
fault separation characters include space and tab; argument
info is a character vector specifying the header for columns
with additional transaction information; argument iteminfo is
a data frame specifying (additional) item information.

The following commands read in the zaki dataset and
build a transactions object:

> x <- read_baskets(conn, info =
c("sequenceID","eventID","SIZE"))

> as(x, "data.frame")

(The singular Chinese literals are taken from Canon ti-
tles.)

Transaction ID.

Sequence ID

Transaction ID.

Event ID

Transaction ID.

SIZE
Items

1

2

3

4

5

6

7

8

9

10

1

1

1

1

2

2

3

4

4

4

10

15

20

25

15

20

10

10

20

25

2 {C,D}

3 {A,B,C}

3 {A,D,F}

4 {A,C,D,F}

3 {A,B,F}

1 {E}

3 {A,B,F}

3 {D,G,H}

2 {B,F}

3 {A,G,H}

4.3. Preprocess of the TOC Title Text

For our purpose – to find the frequent patterns of words
across all title texts – we must first split the title text into
single words and prepare them to create a transactions ob-
ject. We leave this job to the PHP server because we have
already put all the TOC information in the MySQL database
as described in Section 2. We may suggest 3 additional tips
if you want to do this yourself:

(a) Use UTF-8 encoding for your PHP web page (you can
do this by adding the following HTML clause to the
“<head>” section of you PHP file: <meta http-
equiv="content-type" content="text/html;charset=utf-
8">);

(b) Save you PHP file in UTF-8 format.

(c) Make sure to have the following statements at the be-
ginning of your each PHP file that tries to communicate
with MySQL:

// Read UTF-8 encoded text correctly from MySQL:

mysql_query("SET character_set_server=utf8");

mysql_query("SET character_set_results=utf8");

The result is provided in [9] (the canon_title_csv.php
page), and it has the form like this:

0,1, , , , , , , , , ,

1,1, , , , , , , , , , , ,

2,1, , , , , , , , , ,

3,1, , , , , , ,

4,1, , , , , , , , , , , ,

5,1, , , , , ,

6,1, , , ,

7,1, , , , , , , ,

8,1, , , , , , , , ,

9,1, , , , , , , ,

10,1, , , , , , , ,

The first column is “sequence ID”, indicating different

transactions; the second column is “event ID”, indicating the

temporal order within a transaction. Save the above data to a

local file (such as “D:/r/title.csv”) and execute the following

commands:

> library(arulesSequences)

> x <-
read_baskets("D:/r/title.csv",sep=",",info=list('sequenceID',
'eventID'))

> as(x, "data.frame")

Transaction

ID.s Equence

ID

Transaction

ID. Event ID
Items

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

1{ , , , , , , , , , }

1{ , , , , , , , , , , , }

1 { , , , , , , , , , }

1 { , , , , , , }

1

{ , , , , , , , , , , , }

1 { , , , , , }

1 { , , , }

1 { , , , , , , , }

1 { , , , , , , , , }

1 { , , , , , , , }

2540 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Yang et al.

As we can see, the single characters in one “item” are re-
arranged automatically by the function to a different order
other than the original order as the title text.

4.4. Frequent Pattern Mining of the TOC Title Text

Now we can perform the mining (the “parameter” argu-
ment in cspade function specifies that we want the minimum
support to be 10%):

> y <- cspade(x, parameter=list(support=0.1))

> as(y, "data.frame")

sequence support

1 <{ }> 0.1438038

2 <{ }> 0.1086812

3 <{ }> 0.1669980

4 <{ }> 0.4254473

5 <{ }> 0.1709742

6 <{ }> 0.1285620

7 <{ }> 0.3638171

8 <{ }> 0.2982107

9 <{ }> 0.1053678

10 <{ }> 0.1590457

11 <{ }> 0.2670643

12 <{ , }> 0.1391650

13 <{ , }> 0.1013917

14 <{ , }> 0.1981445

15 <{ , }> 0.2511597

16 <{ , , }> 0.1769384

17 <{ , }> 0.1086812

18 <{ , }> 0.2345924

19 <{ , }> 0.1033797

20 <{ , }> 0.1166335

21 <{ , }> 0.1047051

The result is self-explaining, but some of the frequent se-
quences, like { (holy), (superior)}, is confusing. Obvi-
ously, the order of appearance of “ (superior)” and
“ (holy)” is incorrect; this is the side effect of the
read_baskets function when creating the transactions object.
To solve this problem, we have to split one title text into
multiple “event” to ensure the order. The resulting dataset is
provided in [10] (the canon_title_multievent_
csv.php page) and has the following form:

0, 1,

0, 2,

0, 3,

0, 4,

0, 5,

0, 6,

0, 7,

0, 8,

0, 9,

0, 10,

1, 1,

1, 2,

1, 3,

1, 4,

1, 5,

1, 6,

1, 7,

1, 8,

1, 9,

1, 10,

1, 11,

1, 12,

Save the above data to a file (such as “D:/r/title1.csv”)
and perform the mining process:

> x <-
read_baskets("D:/r/title1.csv",sep=",",info=list('sequenceID'
, 'eventID'))

> x

transactions in sparse format with

12388 transactions (rows) and

987 items (columns)

> s2 <- cspade(x, parameter=list(support=0.1))

> s2

set of 19 sequences

> as(s2, "data.frame");

sequence support

1 <{ }> 0.1438038

2 <{ }> 0.1086812

3 <{ }> 0.1669980

4 <{ }> 0.4254473

5 <{ }> 0.1709742

6 <{ }> 0.1285620

7 <{ }> 0.3638171

8 <{ }> 0.2982107

9 <{ }> 0.1053678

10 <{ }> 0.1590457

11 <{ }> 0.2670643

12 <{ },{ }> 0.2405567

13 <{ },{ }> 0.1007290

14 <{ },{ }> 0.1047051

15 <{ },{ }> 0.2345924

16 <{ },{ }> 0.1974818

17 <{ },{ }> 0.1371769

18 <{ },{ },{ }> 0.1729622

19 <{ },{ }> 0.1153082

Note: if you get a “system invocation failed” when call-
ing cspade, try reduce the support value and re-execute the
mining command.

These frequent patterns provide valuable information for
understanding and segmentation (tokenization) of ancient
Chinese text.

5. SEGMENTATION OF CHINESE TEXT

As we have mentioned before, segmentation of Chinese
text is more complicated than that of English. Fortunately
there are several segmentation algorithms that have already
be well implemented and ready for use for our application.
One of them is “mmseg4j” [11], an MMSEG algorithm [12]
implementation in Java language.

The reason that we can use a Java program for our R pro-
ject is that we can call Java functions within the R script.
Package “rJava” [13] provides us with this probability.

You must utilize at least two functions of rJava to create
a Java function call:

Secrets of the Secrets: Text Mining on Dao Canon The Open Cybernetics & Systemics Journal, 2015, Volume 9 2541

(1) .jnew: this function creates a new Java object. The call-
ing format of .jnew is:

.jnew(class, ..., check=TRUE, silent=check)

Where class is a fully qualified class name in JNI nota-
tion (e.g. "java/lang/String"); “…” may be any parameters
that will be passed to the corresponding constructor; the pa-
rameter types are determined automatically and/or taken
from the jobjRef object. This function returns the reference
(jobjRef) to the newly created object or null-reference if
something went wrong.

Here is a straight forward example to show a minimized
java AWT window:

f <- .jnew("java/awt/Frame","Hello")

.jcall(f,,"setVisible",TRUE)

(2) .jcall: calls a Java method with the supplied arguments.
The calling format is:

.jcall(obj, returnSig = "V", method, ..., evalArray = TRUE,

evalString = TRUE, check = TRUE, interface = "Rcall-
Method",

simplify = FALSE, use.true.class = FALSE)

Arguments:

obj: Java object (jobjRef as returned by .jcall or .jnew) or
fully qualified class name in JNI notation (e.g.
"java/lang/String").

returnSig: Return signature in JNI notation (e.g. "V" for
void, "[I" for int[] etc.). For convenience additional type "S"
is supported and expanded to "Ljava/lang/String;", re-
mapping "T" to represent the type short.

method: The name of the method to be called.

Any parameters that will be passed to the Java method.
The parameter types are determined automatically and/or
taken from the jobjRef object. All named parameters are
discarded.

evalString: This flag determines whether string result is
returned as characters or as Java object reference. It should
be set to FALSE to because the Chinese string can not be
evaluated correctly and must be returned as a Java object,
and it can later be fetched using .jstrVal.

An Example:

> .jcall("java/lang/System","S","getProperty","os.name")

[1] "Windows XP"

By studying the source code of mmseg4j, we can find
that the core function for segmentation is the “segWords”
method in Complex.java in package com.chenlb.mmseg4j.
example, and it has the form:

public String segWords(String txt, String wordSpilt) throws IOExcep-
tion {

return segWords(new StringReader(txt), wordSpilt);

}

It is obvious that we can get the segmentation result by
calling segWords method of a Complex object. So we write a
R script function to do this chore:

mmseg_java <- function(text=" (Input

Chinese text for segmentation)", delimiter=" ")

{

library(rJava)

.jpackage(name="rJava",jars="mmseg4j-all-1.8.5-with-dic.jar")

c <- .jnew("com/chenlb/mmseg4j/example/Complex");

outRef <- .jcall(c, "S", "segWords", text, delimiter, evalString = FALSE)

#.jstrVal returns the content of a string reference

.jstrVal(outRef)

}

Make sure you already have the "mmseg4j" library file (a
jar file) copied to the "java" subdirectory of the rJava pack-
age before you call this R function.

The following are some straight forward examples of this
function call:

> mmseg_java()

[1] " "

The input Chinese sentence are correctly segmented to words; more

examples are given in the following:

> mmseg_java(" ")

[1] " "

> mmseg_java(" ")

[1] " "

> mmseg_java(" ")

[1] " "

While the first two examples give perfect results, if you
carefully compare the last two examples, you can find that
there are some slight differences between them, where the
characters “ (serenity)” can be identified as a word, but
the traditional form “ (another writing style of ‘seren-
ity’)” can not. This is a serious problem when perform text
mining tasks on ancient Chinese. One probable way of solv-
ing this problem might be first sequential pattern mining to
determine the proper word segmentation approach and build
a customized dictionary system. The customized dictionary
file can then be put in a directory specified by the
“mmseg.dic.path” directive so it will be included for word
segmentation.

The dictionary file for mmseg4j is simply a text file
(UTF-8 format) with one word a line. Suppose we have such
a file named words-my.dic (the file name must start with
“words” and end with “.dic”) and its content is:

(Taishang Laojun, an important God in Daoism)

(commentary)

(The first line is left blank intentionally to avoid the
UTF-8 “BOM” issue in Windows system). The above dic-

2542 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Yang et al.

tionary file add 2 customized words for segmentation. Sup-
pose we would like to put this file in C:/dic, the R code to
activate this customized dictionary is:

> library(rJava)

> .jinit()

> p <- .jcall("java/lang/System", "S", "setProperty",
"mmseg.dic.path", "C:/dic");

This script invokes Java System.setProperty method to
set the "mmseg.dic.path" environment variable. Then we can
use mmset_java for segmentation again:

> mmseg_java(" ")

[1] " "

Although the customized dictionary can produce better
performance for the segmentation process, the dictionary
itself may take much more effort to built, especially when
the ancient Chinese characters may have multiply allograph
(variants, such as “ (commentary)” and “ (another writ-
ing of ‘commentary’)”, “ (quietness)” and “ (another
writing of ‘quietness’)”). Systematic research on stop words,
allograph and general lexicon are needed for the study of
ancient Dao documents.

6. TEXT MINING ON CHINESE CORPUS

For a simple tryout, we now perform some text mining
tasks upon Dao Canon Synopsis text. These text can be ob-
tained from [14], but we have imported them into our
MySQL database and you can easily download them as plain
text data [15] (the canon_synopsis.php page).

The synopsis of one single Dao document has the form as
the following (the text is taken from the synopsis of the 3rd
document of Dao Canon):

27

“ ”() " "()

We use tm package [16] for text mining tasks. tm re-
quires that a text corpus should be built before performing
the mining tasks. A corpus can be built from multiple type of
sources, such as a data.frame object (called 'Data-
frameSource'), or a directory of document files (called 'Dir-
Source'), or other kind of sources (URISource, XMLSource,
etc). The most commonly used Source type is the DirSource,
where all document files are stored in a single directory. Be-
cause tm can not handle Chinese document directly, we have
to transform the above text into a collection of “segmented”
words, like this:

. 27.

.

.

.

.

.

.

.

.

.

.

Obviously this is not the ideal segmentation result (e.g.,
the word “ (commentary)” is separated into two singular
literals), perhaps you can deal with this problem later, but
right now we have to build our text mining experiments on
this base. The following R script retrieves synopsis data from
MySQL, segments each text, and saves them as separate text
files (as 1.txt, 2.txt, 3.txt, etc.) to D:/corpus:

first load Java support for R

library(rJava);

.jpackage(name="rJava",jars="mmseg4j-all-1.8.5-with-dic.jar")

create the object for Chinese segmentation

segObj <- .jnew("com/chenlb/mmseg4j/example/Complex");

load ODBC support for accessing MySQL

library(RODBC)

connect to database, using UTF-8 encoding

ch <- odbcConnect("daotext-localhost", DBMSencoding="UTF-8");

fetch all synopsis text

x <- sqlQuery(ch,"select * from daocanonsynopsis ")

get the total number of documents

n <- dim(x)[1]

set corpus directory (this directory must already exist)

cdir <- "D:/corpus/"

using a loop to save segmented synopsis to files

i <- 1

while(i<=n){

s <- paste(as.character(x[i,2]), ". ", as.character(x[i,3]));

outRef<-.jcall(segObj, "S", "segWords", s, ". ",evalString = FALSE)

output the segmentation result to a file

cat(.jstrVal(outRef), file=paste(cdir, x[i,1], ".txt", sep=""), sep="")

i<-i+1;

}

After the corpus has been set up, we can build a Source
object linked to this corpus:

> library(tm)

> txt <- DirSource("D:/corpus ", encoding = "GBK");

> intros <- Corpus(txt);

> inspect(intros);

Secrets of the Secrets: Text Mining on Dao Canon The Open Cybernetics & Systemics Journal, 2015, Volume 9 2543

A corpus with 1485 text documents

The metadata consists of 2 tag-value pairs and a data frame

Available tags are:

create_date creator

Available variables in the data frame are:

MetaID

$`10.txt`

. 14.

. . …

$`100.txt`

. 4.

. …

……

$`999.txt`

. 3.

.

The next step is to build the TermDocumentMatrix; the
syntax is:

TermDocumentMatrix(x, control = list())

Where x is a corpus, and control is a named list of control
options. Note that because we inserted a dot (period) after
every word when segmentation to let tm correctly differenti-
ate the separated words, we have to carefully set the re-
movePunctuation option to TRUE for control to get a correct
result. Other options that could affect the result include
stopwords and wordLengths (the latter is an integer vector of
length 2. Words shorter than the minimum word length
wordLengths[1] or longer than the maximum word length
wordLengths[2] are discarded. Defaults to c(3, Inf), i.e., a
minimum word length of 3 characters). See the following
example:

> dtm <- TermDocumentMatrix(intros,

+ control = list(wordLengths = c(2, Inf),

+ removePunctuation = TRUE,

+ removeNumbers = TRUE,

+ stopwords=TRUE))

The above command constructs the term-document ma-
trix for all the words with length longer that 2 after removes
all punctuations and numbers and stop words.

Once the term-document matrix has been built, we can
use it for further analysis; the simplest one is to find out the
frequent words of a certain range:

> findFreqTerms(dtm, lowfreq=200, highfreq=Inf)

[1] " " " " " " " " " " " " " " " "

[9] " " " " " " " " " " " " " " " "

[17] " " " " " "

Or you can find associations in a term-document matrix
for those terms that correlate with a term (e.g., “ (center
of super power)”) more than a certain limit (e.g., 20%):

> findAssocs(dtm, " ", 0.2)

1.00 0.47 0.39 0.38 0.38 0.38 0.33 0.28

0.28 0.28 0.27 0.27 0.27 0.27 0.25 0.23

0.22 0.21 0.21 0.20

> dtm <- removeSparseTerms(dtm,0.99)

> findAssocs(dtm, " ", 0.05)

1.00 0.28 0.16 0.16 0.10 0.10 0.09 0.09 0.08 0.08 0.07

0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

0.06 0.06 0.05 0.05 0.05 0.05

Combined with other packages, such cluster, kernlab,
class, etc., you can do cluster analysis, kernel principal com-
ponents analysis, k-nearest neighbour classification, etc.,
with just one or two lines of code, and even use visualized
graphics to present the result. Considering the confusion and
ambiguity in understanding the ancient documents by human
intuition, the application potential of text mining on Dao
Canon is promising.

CONCLUSION

This Chapter performs basic text mining tasks on synop-
sis text of ancient Chinese Dao Canon documents, explains

some techs & tricks in dealing with Chinese literals. While
these experiments do provide us with some interesting per-

spectives on the ancient Daoist wisdom, it is still far from
practical insights or innovative findings – and we don’t even

touch the scripture text themselves, whose formal digitiza-
tion is still not complete. To advance these studies, it seems

that the most urgent task is to build a reliable customized
dictionary specially for the ancient Dao documents; and

while this task can hopefully be achieved with the help of
frequent pattern mining, a lot of hard work must be done

before we can get an applicable result. The content of this
Chapter is obviously only a beginning on utilizing text min-

ing techniques in Dao Canon studies, but we hope it will lead
a way to further research works to reveal more secrets of this

ancient Chinese mysterious philosophy – the way to defy
aging, and the way to better life.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work is supported by Ningbo Natural Science Foun-
dation (2013A610115) and Zhejiang Social Science Re-
search Project (14NDJC056YB).

2544 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Yang et al.

REFERENCES

[1] M. Jiang, "Digital Resources of Traditional Chinese Daoism Cul-

ture for Free Download," 2011. [Online] Available From:
http://www.byscrj.cn/. [Accessed: July 1, 2012].

[2] Daoism Academic Information Website, "Digital Dao Canon Da-
tabase," 2012. [Online] Available From: http://www.ctcwri.idv.tw/
CMT000.htm. [Accessed: May 5, 2012].

[3] S. Wang, "Dao Canon Academic Research," 2012. [Online] Avail-
able From: http://www.daotext.org/index.html. [Accessed: July 1,
2012].

[4] M. Jiang, "Tao Sutra Contents," 2009. [Online] Available From:
http://www.byscrj.cn/jmm/Tao_Sutra_Contents.htm. [Accessed:
July 20, 2012, 2012].

[5] S. Wang, "Dao Canon TOC CSV," 2012. [Online] Available From:
http://www.daotext.org/data/dao.csv. [Accessed: July 20, 2012].

[6] B. Ripley and M. Lapsley, "RODBC: ODBC Database Access,"
2012. [Online] Available From: http://CRAN.R-project.org/
package=RODBC. [Accessed: July 20, 2012].

[7] C. Buchta, M. Hahsler and D. Diaz, "arulesSequences: Mining
frequent sequences," 2012. [Online] Available From: http://CRAN.
R-project.org/package=arulesSequences. [Accessed: July 20, 2012].

[8] M. J. Zaki, "SPADE: an efficient algorithm for mining frequent
sequences," Machine Learning Journal, vol. 42, pp. 31-60, 2001.

[9] S. Wang, "Transaction data for Dao Canon TOC, single event,"
2012. [Online] Available From: http://www.daotext.org/canon_
title_csv.php. [Accessed: July 1, 2012].

[10] S. Wang, "Transaction data for Dao Canon TOC, multiple event,"
2012. [Online] Available From: http://localhost/canon_title_
multievent_csv.php. [Accessed: July 1, 2012].

[11] B. Chan, "mmseg4j: MMSEG for java lucene chinese analyzer, or

for solr," 2012. [Online] Available From: http://code.google.com/p/
mmseg4j/. [Accessed: July 23, 2012].

[12] C. Tsai, "MMSEG: A Word Identification System for Mandarin
Chinese Text Based on Two Variants of the Maximum Matching

Algorithm," 1996. [Online] Available From: http://technology.
chtsai.org/mmseg/. [Accessed: July 23, 2012].

[13] S. Urbanek, "rJava: Low-level R to Java interface," 2011. [Online]
Available From: http://CRAN.R-project.org/package=rJava. [Ac-
cessed: June 4, 2012].

[14] Daoism Academic Information Website, "Synopsis of Zhengtong

Daozang Contents - Dongzhen Volume," 2012. [Online] Available
From: http://www.ctcwri.idv.tw/CMT09 /CMTS00-
1.htm. [Accessed: May 5, 2012].

[15] S. Wang, "Synopsis of Dao Canon," 2012. [Online] Available
From: http://www.daotext.org/canon_synopsis.php. [Accessed:
July 20, 2012].

[16] I. Feinerer, K. Hornik and D. Meyer, "Text Mining Infrastructure in
R," Journal of Statistical Software, vol. 25, pp. 30-36, 2008.

Received: June 10, 2015 Revised: July 29, 2015 Accepted: August 15, 2015

© Yang et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-

commercial use, distribution and reproduction in any medium, provided the work is properly cited.

