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Abstract: Given two points p, q and a sequence of n lines (n>1) in the plane, we want to find the shortest path of touring 

all the given lines that starts at p and ends at q. In this paper, we solve the problem by reducing it to the problem of find-

ing the shortest path that tours all the segments in a convex polygon from p to q. We first introduce how to construct the 

convex polygon. Then, we propose the solution to process the intersections of two adjacent segments by crossing over two 

segments. Finally, based on rubber-band algorithm, a new algorithm is proposed which can find the shortest path of tour-

ing segments in a convex polygon, and the O(n
2
) running time can be obtained for this problem, which improves the pre-

vious O(n
3
logn) time. Our algorithm is simple and efficient.  

Keywords: Convex polygon, rubber-band algorithm, shortest path.  

1. INTRODUCTION 

Path planning is one of the central problem areas in com-
putational geometry. The shortest touring path problem is the 
most classical example of path planning, for example, find-
ing the shortest path of touring a given series of obstacles 
between two points in the plane [1]. In this paper, we focus 
on the solution to find the shortest path of touring given lines 
in the plane from p to q. The problem is as follows.  

Assume that there are two points p, q and n>1 line li (for 
i=1,2,… , n) in a plane , we want to find the shortest path 
that tours all the given lines li from the start point p to the 
end point q, see Fig. (1). 

The problem given above is abstracted from the shortest 
watchman route problem, and it is also the key to solve the 
shortest watchman route problem [2, 3]. The watchman route 
problem is derived from the well-known art gallery problem, 
and the goal is to find a shortest closed route in a simple 
polygon G such that one can see each point in the polygon G 
from at least one point of the route. 

Hakan Jonsson has presented an algorithm for finding the 

shortest path that intersects n lines in the plane in O(n
5
) time 

[4]. No more optimal results have been reported recently. 

Many scholars have been studying on the touring segments 

problems and made some effective results. For example, for 

the case in which the given segments don’t intersect, in 

1984, D. T. Lee and F. P. Preparata proposed Funnel algo-

rithm [5]. In 2007, Fajie Li and Reinhard Kettle proposed 

rubber-band algorithm [6, 7] (denoted by R algorithm) with 

K( )·O(n) time, where K( )=(L0-L) / ,  L0 is the initial  

 

   

Fig. (1). The shortest path of touring 5 lines in the plane. 

shortest path length of touring all segment set S, L is the 

actual shortest path, and n is the number of segments. In 

2011, R algorithm is obtained in O(n
2
) time by Wang and 

Huo by the experiment. Furthermore, they improved the al-

gorithm and obtained the O(n) time by introducing divide 

and conquer into R algorithm [8]. For the case in which the 

given segments possibly intersecting, the O(n
3
logn) time 

algorithm for touring a sequence of possibly intersecting line 

segments is known [9]. 

In our paper, the problem of finding the shortest path for 

lines can be converted to the problem of finding the shortest 

path for segments in a convex polygon. We first introduce 

how to construct the convex polygon. Then, on basis of R 

algorithm, a new algorithm is proposed which processes the 

degradation problem caused by the intersection by crossing 

over two segments when two adjacent segments intersect. 

Finally, we have implemented it with C++ program and ob-

tained the O(n
2
) time by experiment. The result shows that 

the algorithm is efficient. 
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2. THE METHOD OF CONSTRUCTING CONVEX 
POLYGON 

We use OPT(L) to denote the shortest path of touring 

given line set L from p to q, since OPT(L) is the shortest 

path, the parts between consecutive points of tour L are line 

segments. Moreover, since a non-convex route in the plane is 

strictly longer than the boundary of its convex hull, and the 

convex hull of a route intersects any target line, we conclude 

that OPT(L) is convex [4]. It implies that OPT(L) visits each 

target line in one of three ways. If the angle of OPT(L) com-

ing into a line li with li (incoming angle) is equal to the angle 

of OPT(L) going away from a line li with li (outgoing angle), 

OPT(L) makes a perfect reflection on the line li (see Fig. 2a). 

If OPT(L) passes the line li twice, OPT(L) makes a crossing 

contact with li (see Fig. 2b). The case in which OPT(L) 

shares a portion of lines with li can be thought of a special 

reflection (see Fig. 2c). 

Here, we respectively take the starting point p and the 

ending point q as the intersection of two lines, thus the num-

ber of lines in set L is n+4. We bound the region in the plane 

where OPT(L) visits the set L, and consider the convex hull 

C of all crossings(see Fig. 3a). For sets L containing no par-

allel target lines, it can be shown that OPT(L) lies in C, and 

the point p and q lies in C or on the boundary of C. However, 

if there are parallel lines in set L, OPT(L) may be not con-

tained in the convex hull C (see Fig. 4). Since C is convex, 

each of its tangents partitions the plane into two half-planes 

of which the active half-plane totally contains C. We make 

all tangents of C that are normal to target lines, denoted by 

the set N, and consider the intersection G of the active half-

planes of all tangents in set N (see Fig. 3b), we can conclude 

OPT(L) is contained in G [4]. Thus, we can reduce this prob-

lem to compute the shortest path between p and q which vis-

its segments in the convex polygon G.  

3. COMPUTE THE SHORTEST PATH OF SEG-
MENTS IN A CONVEX POLYGON 

For the case in which the segments in a convex polygon 
are disjoint, the solution has been described in detail in ref-
erences [6-8]. For the case in which the segments possibly 
intersect, a new algorithm has been introduced as follows.  

3.1. The Method of Dealing with the Intersected Seg-

ments 

When the segments intersect, suppose that the segment si 

intersects with si+1 at the point C, and qi-1 is the path point on 

si-1 and qi+2 is the path point on si+2. There are three cases 

between q
i 1
q
i+2  

and the segments si and si+1, which are as 

follows. 

Case 1 q
i 1
q
i+2

 intersects with si and si+1  

In this case, obviously, 
1 2i i

q q
+

is the local shortest path, 

denoted by d , 
  
d = q

i 1
q

i+2
, and the order of  d  passing 

through si and si+1 is the touring order, if d  first passes 

through si, the touring order is si and si+1, otherwise, that is 

si+1 and si, see Fig. (5). 

   
(a) 

   
(b) 

   
(c) 

Fig. (2). Three types of contacts between OPT(L) and a line li. 

   
(a) The convex hull C 

   
(b) The polygon G (shaded and containing C) 

Fig. (3). Constructing convex polygon. 

 

Fig. (4). OPT(L) is not contained in C. 
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(a) 

   
(b) 

Fig. (5). 
1 2i i

q q
+

intersects with si and si+1. 

   
(a) Reflection point lies on si 

    
(b) Reflection point lies on si+1 

Fig. (6). 
1 2i i

q q
+  

intersects with si or si+1. 

Case 2 q
i 1
q
i+2

 intersects with si or si+1 

In this case, to find the shortest path, computing the re-
flection point r on the line segment si or si+1 is needed (see 
Fig. 6). 

The approach in the iteration process is as follows. If 

  
q

i 1
q

i+2  
only intersects with si or si+1, the reflection point r 

lies on the segment which does not intersect with 
  
q

i 1
q

i+2
, 

 d =
  
rq

i 1
+

  
rq

i+2
, and the touring order is the order of  d  

passing through si and si+1, if d  first passes through si, the 

touring order is si and si+1, otherwise, that is si+1 and si. 

   

(a) Reflection point lies on si. 

   

(b) Reflection point lies on si+1. 

Fig. (7). 
1 2i i

q q
+  

doesn’t intersect with si and si+1. 

Case 3 
  
q

i 1
q

i+2
doesn’t intersect with si and si+1 

In this case, there are two cases which are shown in Figs. 
(7) and (8). 

(1) the case of computing one reflection 

The two segments can be visited by computing a reflec-

tion point (see Fig. 7). In this case, obviously, 

 d =
  
rq

i 1
+

  
rq

i+2
, here, when d  passes through si or si+1 

twice, we can deal with it as above, if d  first passes through 

si, the touring order is si and si+1, otherwise, that is si+1 and si.  

 (2) the case of computing two reflections 

When the two segments can’t be toured by computing a 

reflection point, it needs to compute two reflections. The 

approach is as follows. We make the reflection points, de-

noted by q'i-1 and q'i+2, of qi-1 and qi+2 with respect to si and 

si+1 respectively.  

In this case, there are also three situations when comput-
ing the local shortest path, see Fig. (8). 

(1) if q '
i 1
q '
i+2

 intersects with si at the point qi and inter-

sects with si+1 at the point qi+1, and the two path points qi and 

qi+1 are on the same side of qi-1 and qi+2, they are the two re-

flections and also the path points. If 
  
q

i 1
q

i
 does not intersect 

with 
  
q

i+1
q

i+2
, d =

  
q

i 1
q

i
+ 

  
q

i
q

i+1
+ 

  
q

i+1
q

i+2  
is the local short-

est path, and the order of d  passing through si and si+1 is the 

touring order (see Fig. 8a). Otherwise, we need to change the 

touring order of si and si+1 in order to get the local shortest 

path, then d =
  
q

i 1
q

i+1
+

  
q

i+1
q

i
+

  
q

i
q

i+2
, see Fig. (8b). 
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(a) 

 
(b)  

 
(c) 

 
(d) 

Fig. (8). qi-1 and qi+2 lie on the same side of si and si+1 (two reflec-

tion points). 

(2) if 
  
q '

i 1
q '

i+2
 passes the point C, the reflection points 

coincide with C and they are also the path points(qi=qi+1=C), 

 d = q
i 1
C +Cq

i+2
, and the order of d  passing through si and 

si+1 is the touring order. We can make two auxiliary points q'i 

and q'i+1 on si and si+1 and prove that easily, see Fig. (8c). 

(3) if
1 2
' '
i i

q q
+

doesn’t pass the point C and 
1 2
' '
i i

q q
+

is 

on the different side of 
1iq C  and 

2iCq
+

, d =
1iq C +

2iCq
+

, 

the path points qi and qi+1 also coincide with C, and the order 

of d passing through si and si+1 is the touring order, see Fig. 

8d). It can be proved as follows. In Fig. (8d), we select a 

point q'i on segment si and a point q'i+1 on si+1, since 

1
' '
i i

q q + 
1

' '
i i

q q
+

 + 
1 2
' '
i i

q q
+ +

 = 
1
'

i i
q q  + 

1
' '
i i

q q
+

 + 

1 2
'
i i

q q
+ +

, 
1
'iCq +

2
'iCq
+

 = 
1iCq +

2iCq
+

, obviously, 

  
q '

i+2
q '

i+1
+ q '

i+1
q '

i
+ q '

i
q '

i 1
 

2 1
' 'i iCq Cq
+

> + , then 

q
i+2
q '
i+1
+  q '

i+1
q '
i
+ q '

i
q
i 1

> 
2 1i iCq Cq

+
+ , d =

 

2 1i iCq Cq
+
+  follows. 

3.2. Algorithm 

In this paper, on basis of R algorithm, we apply a new al-

gorithm to compute the shortest touring path, with crossing 

over two segments to process the intersection of them when 

these two segments intersect. The algorithm is as follows. 

Assume that si interests with si+1, we can compute the path 

point qi on si and the path point qi+1 on si+1 according to the 

position relation between points and segments descried 

above. Next, we judge the position relationship of si+1 and 

si+2, if s
i+1

s
i+2

= , we compute the path point qi+2 on si+2 

and qi+3 on si+3. Otherwise, we compute the path point qi+1 on 

si+1 and qi+2 on si+2. 

The algorithm is composed of four functions which are 
Main function, UpdatePoint function, SkipOne function and 
SkipTwo function. Main function calculates the shortest path 
by calculating all the iteration process. UpdatePoint function 
calculates the shortest path in every iteration. SkipOne func-
tion calculates the shortest path with crossing over one segment. 
SkipTwo function calculates the shortest path with crossing 
over two segments. SkipTwo function is the key to the algo-
rithm. In reference [8], Main function, UpdatePoint function, 
SkipOne function have been described in detail. Here, we 
mainly give the SkipTwo function, it is described below. 

SkipTwo (
1 1 2
, , ,

i i i i
q s s q

+ +
) function. 

In this function, si and si+1 denote segments, qi-1 and qi+2 

denote path points calculated on segments si-1 and si+2 respec-

tively. The function is used to calculate the local optimal 

path of touring si and si+1 from qi-1 to qi+2, and the path points 

qi and  qi+1 can be obtained. 

Denote by 
1 2i i

r q q
+

= , L the path calculated by 

SkipOne function, and si intersected with
  
s

i+1
at q. 

Case 1 
  
q

i 1
q

i+2
 intersects with si and si+1  

If ( r s
i

 && r s
i+1

), we consider that s
i
 in-

tersects with r at 
  
c

1
 and 

  
s

i+1
 intersects with r at 

  
c

2
 respec-

tively, let 
  
q

i
= c

1
 and 

  
q

i+1
= c

2
, and if (

  
q

i 1
r

2
< q

i 1
r
1

), call 

change (
 
s

i
,
  
s

i+1
) and call change (

 
q

i
,
  
q

i+1
). 

Case 2 
1 2i i

q q
+

 intersects with si or si+1 
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if (
 
r s

i
|| 

  
r s

i+1
) 

if (
 
r s

i
), call SkipOne (

  
q

i 1
,
  
s

i+1
,
  
q

i+2
), and we 

consider that s
i
intersects with L at c

1
 and s

i+1
 intersects with 

L at 
2
c respectively.  

Let 
  
q

i
= c

1
,
  
q

i+1
= c

2
 and 

  
rTmp = c

2
q

i+2
, 

if (
 
rTmp s

i
), call chang (

 
s

i
,
  
s

i+1
),  

and call change (
 
q

i
,
  
q

i+1
). 

else call SkipOne (
1i

q ,
i
s ,

2i
q

+
),we consider that 

i
s in-

tersects with L at 
1
c  and 

1i
s

+
 intersects with L at 

2
c respec-

tively. 

Let 
  
q

i
= c

1
,
  
q

i+1
= c

2
 and 

  
rTmp = c

1
q

i 1
. 

if (
  
rTmp s

i+1
) call change (

 
s

i
, 

  
s

i+1
), and call 

change (
 
q

i
,
  
q

i+1
). 

Case 3 
  
q

i 1
q

i+2
 doesn’t intersect with si and si+1 

Call SkipOne (
  
q

i 1
,
 
s

i
,
  
q

i+2
). Denote by L intersecting 

with 
 
s

i
 at 

  
c

1
 and rTmp = c

1
q
i 1

. 

if (
  
rTmp s

i+1
), and the intersection is 

  
c

2
, then let 

  
q

i
= c

1
, q

i+1
= c

2
, call change (

 
s

i
,
  
s

i+1
) and call change 

( q
i
, q

i+1
). 

else call SkipOne (
  
q

i 1
,
  
s

i+1
,
  
q

i+2
). Denote by L intersect-

ing with 
  
s

i+1
at 

  
c

2
, and rTmp = r

2
q
i+2

. 

if ( rTmp s
i

), and 
 
rTmp  intersects with s

i
at c

1
, 

else we compute the reflection points, denoted by q'i-1 and 

q'i+2, of qi-1 and qi+2 with respect to i
s and s

i+1
respectively, let 

1 2
' 'i irTmp q q

+
= , and denote

i
s intersecting with rTmp  at 

1
r and 

1i
s

+
intersecting with rTmp  at 

2
r . 

if (q
 

and 
1i

q
 

lie on the same side of rTmp ), let 

1i i
q q q

+
= = . 

else let 
  
q

i
= c

1
 and 

  
q

i+1
= c

2
.  

if (
  
r
1
q

i 1   
q

i+1
q

i+2
), call change (

 
s

i
,
  
s

i+1
) and call 

change ( q
i
, q

i+1
). 

4. THE ANALYSIS OF RUNNING RESULT 

In this paper, we have implemented the algorithm with 
C++ program. Here, we give an example of touring 10 seg-
ments in a convex polygon. In Fig. (9), the solid lines are the 
segments which the lines intersect with the convex polygon, 
and the intersections are the endpoints of segments. The path 
shown in dotted lines is the shortest path of touring the 10 
lines from S to T.  

We can see that the order of segments is from s1 to s10, 

while the output order is different from that of input. Moreo-

ver, the three cases of path points and segments described 

above have been contained. 
  
q

1
, s

3
, s

2
, q

6
 is the case 1, 

  
q

2
, s

6
, s

5
, q

7  
is the case 2, and 

  
q

7
, s

8
, s

10
, T  is the case 3.  

The running time of the algorithm is complex and diffi-
cult to analyze, so in this paper, we adopt the method of 
analysis by running time counting to analyze the algorithm’s 
time complexity. We have tested the algorithm applying a 
large of segment sets (for example 500), and the segments 
number is 1000 in every segment set. Based on the results, 
we have got the fitting curve equation of the algorithm, that 
is y= 1E-05x

2－0.011x + 3.810, see Fig. (10). The results 
show that the algorithm is in O(n

2
) time, and it is superior to 

 
Fig. (9). The running result of 10 segments in a convex polygon. 
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the O(n
3
logn) time of reference [9]. It can be seen that our 

algorithm is efficient.  

CONCLUSION 

In this paper, we convert the problem of computing the 
shortest touring path for lines to the problem of computing 
the shortest touring path for segments in a convex polygon, 
and we present an algorithm for computing the shortest tour-
ing path of segments in a convex polygon, especially, we 
have implemented it. The result shows that our algorithm is 
efficient.  

This research has made preliminary results. If the seg-
ments haven’t been given the order, it has been proved to be 
a NP hard problem, if we study the shortest path of touring 
rays, which is open and lies in between the problems con-
cerning lines and segments. Those problems need to be fur-
ther studied. 
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Fig. (10). The fitting curve equation of the algorithm. 


