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Abstract: We consider the problem of searching for a mobile intruder in a circular corridor by three mobile searchers, 

who hold one flashlight, a variation of the 1-searcher problem in a circular corridor. A circular corridor is a polygon with 

one polygonal hole such that its outer and inner boundaries are mutually weakly visible. The 1-searcher has a flashlight 

and can see only along the ray of the flashlight emanating from his position. In the searching process, each 1-searcher can 

move on the boundary or into the circular corridor, the beam of his flashlight must be irradiated on the inner boundary. 

The previous research of this paper suggests an algorithm which decides whether a given circular corridor is searchable by 

two 1-searchers or not. This paper proves that three 1-searchers always clear a given circular corridor. And a search 

schedule can be reported in O(m) time, where m n2 denotes the walk instructions reported, and n denotes the total number 

of vertices of the outer and inner boundaries. 
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1. INTRODUCTION 

Consider the following scenario. There are two roles 
people in a dark channel, one is extremely dangerous evader, 
called as the intruder, and the other is responsible for ensur-
ing the safety of channel, called as the 1-searcher. In this 
paper, the channel is abstracted as a polygon with one po-
lygonal hole such that its outer and inner boundaries are mu-
tually weakly visible, and called as a circular corridor. Also, 
searching for the mobile intruders in the circular corridor is 
called as circular corridor search problem, in which the in-
truder can move arbitrarily fast, and its location is unknown 
for the 1-searcher who has a flashlight. In the searching pro-
cess, each 1-searcher can move on the boundary or into the 
corridor, and the beam of the flashlight he holds must be 
irradiated on the inner boundary. The task of the 1-searcher 
is to search the entire channel to capture the intruder, and to 
ensure the safety of the channel. If the intruder is irradiated 
by the beam of the flashlight, it is considered to be captured. 
Clearly, one 1-searcher is impossible to clear the circular 
corridor completely. To clear the whole circular corridor and 
capture the intruder, at least two or more 1-searchers are 
needed. The main content of this paper consists of two as-
pects: i), for a given circular corridor such that its outer and 
inner boundaries are mutually weakly visible, we prove that 
it could be cleared by no more than three 1-searchers. ii), a 
search schedule can be reported in time linear in its size. 

The polygon search problem was first introduced by Su-
zuki and Yamashita [1], in which they considered a single 
pursuer looking for a intruder inside a given simple polygon.  
 

They defined different kinds of searchers (pursuers) depend-
ing on the number of flashlights that they held, e.g., a k-
searcher has k flashlights(k 1), and an -searcher has 360°-
vision. This naturally defines a polygon search problem for 
each class of searchers. 

Icking and Klein were the first to study the two-guard 
problem, they defined the “two-guard walkability problem” 
[2], which is a search problem for two guards whose starting 
and goal position are given, and who walk only on the 
boundary of a polygon to force the intruder out of the corri-
dor through the goal position finally, while maintaining mu-
tual visibility. (Note that the two-guard problem is a slightly 
different type of 1-searchers problem). They gave an 
O(nlogn) time algorithm for determining whether a corri-
dor(a simple polygon with an entrance and an exit on its 
boundary) can be swept by two guards, where n denotes the 
number of vertices of the corridor. This result has also been 
improved to (n) by Heffernan [3]. 

Guibas et al. extended the polygon search problem, in 
which multiple searchers were collaborated in order to clear 
a given polygonal region [4]. They showed that determining 
the minimal number of searchers needed to clear a polygonal 
region with holes allowed is an NP-hard problem. It is not 
known whether the same problem for given simple polygons 
in which without any holes is also NP-hard. 

Tseng et al. studied the two-guard problem in which the 
entrance and exit are not given, and gave an O(n logn) time 
algorithm to determine whether there is a pair of vertices for 
supporting a search schedule in a given polygon that allows a 
sweep [5]. This result has also been improved to O(n) [6].  

Park et al. gave a polynomial solution for the case of a 
single 2-searcher and proved that adding more flashlights to 
a single searcher does not increase the class of the polygons 
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[7]. Note that the set of polygons searchable by a single 2-
searcher is a proper subset of the set of polygons searchable 
by two 1-searchers. 

LaValle et al. studied the problem of searching a simple 
polygon (without holes) by a 1-searcher(a single mobile 
searcher), and gave an O(n2) time algorithm [8]. Later, they 
presented an O(n2+nm2+m4) time algorithm for searching a 
simple polygon without any holes by two 1-searchers, where 
n is the number of vertices of the polygon and m is the num-
ber of concave regions [9]. Note that m has a lower bound 

(n) in the worst case. 

Jiang and Tan first focused on searching the circular cor-
ridors by two 1-searchers and did some research work [10]. 
The searchability of a given circular corridor by two 1-
searchers can be determined in O(nlogn) time, and a search 
schedule can be reported in O(m) time, where m denotes 
walk instructions. 

In this paper, we study the variation of the 1-searcher 
problem in a circular corridor which can not be cleared by 
two 1-searchers, and draw a conclusion that a given circular 
corridor can be cleared by three 1-searchers. 

2. PRELIMINARIES 

2.1. Notation 

A polygon is called as a simple polygon if it contains no 
holes nor self-intersections. A polygon, such as inside it con-
tains another simple polygonal hole, we call the circular cor-
ridor, denote it by CC. In this paper, we study the circular 
corridors such that its outer and inner boundaries are disjoint 
and mutually weakly visible. In the rest of this paper, we 
denote the outer boundary and the inner boundary of a given 
CC by P and H respectively. For the convenience of narra-
tion, we denote by P[v, u] the clockwise closed chain of P 
from point v to point u, and P(v, u) the open chain of P from 
v to u, and the points on P will be denoted by p, p , p1, etc. 
Note that we can do the same definition for H but the points 
on H is denoted by h, h , h1, etc. 

As the definition above, for point p P and point h H, we 
say that they are mutually visible if the line segment ph  lies 
in the interior of CC completely, that is to say ph  does not 
intersect with any boundary of P or H, except for two 
boundary endpoints p and h. For two polygonal chains P[p, 
p1] and H[h, h1], we say that P[p, p1] is weakly visible from 
H[h, h1] if each point of P[p, p1] is visible from some point 
of H[h, h1], and vice versa. Just for the sake of convenience, 
we assume that CC is in a general case, no three vertices are 
collinear and no three lines extending three edges of CC 
have a common point. 

A vertex of CC is reflex if its interior angle is strictly 
larger than 180°. Otherwise, it is convex. Note that we con-
sider the region between the boundary of P and the boundary 
of H as the interior of CC. An important definition for reflex 
vertices is that of ray shots. In order to definite a ray shot, we 
need to introduce the concepts of successive vertex and pre-
cursor vertex. For a vertex x of CC, the vertex of CC imme-
diately preceding (succeeding) x on the boundary P or H in 
clockwise(the vertex order is agreed in clockwise direction) 
is called the precursor (successive) vertex of x, denoted by 

Pred(x) (Succ(x)). Now, we define the ray shots as follows: 
the backward ray shot from a reflex vertex r of P(H), denot-
ed by B(r), is the first point of H(P), if it exists, hit by a “bul-
let” shot at r in the direction from Succ(r) to r, and the for-
ward ray shot F(r) is the first point of P(H) hit by a “bullet” 
shot at r in the direction from Pred(r) to r. We call the vertex 
r as the origin of the shots B(r) and F(r) (See Fig. (1)). Note 
that we do not consider the ray shots which are on the same 
boundary as their origins, since P and H are mutually weakly 
visible. 

In the following discussion, we assume that B(r) (F(r)) is 
slightly above (below) the backward ray (forward ray) shot 
from r, as viewed from r, and thus B(r) (F(r)) and Succ(r) 
(Pred(r)) are mutually visible.  

A backward deadlock is formed by a pair of vertices 

p P, h H, if both the three points p, Succ(p), B(h) on P and 

the three points h, Succ(h), B(p) on H are in clockwise order 

(see Fig.(1)(a)). Also a forward deadlock is formed by a pair 

of vertices p P, h H, if both the three points F(h) P, 

Pred(p), p on P and the three points F(p) H, Pred(h), h on H 

are in clockwise order (Fig.(1)(b)). Two vertices p and h are 

called the defining vertices of the deadlock. Two edges 

( )pSucc p , ( )hSucc h in Fig. (1)(a), and two edges ( )Pred p p , 

( )Pred h h  in Fig. (1)(b) are called the defining edges of the 

deadlock. Clearly, when a backward (forward) deadlock is 

formed, the two backward (forward) rays are intersected. 
 

 

Fig. (1). Illustration of ray shots and deadlocks. 

2.2. Problem Definition  

Let S(t) CC (the 1-searcher can move into the inner re-
gion of CC ) and F(t) H denote the position of the 1-
searcher S and his lightpoint F (i.e., the point of the inner 
boundary illuminated by the flashlight) at a time t  0. A 
point x CC is said to be detected or illuminated at time t if x 
is on the line segment ( ) ( )S t F t . We consider three 1-
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searchers and their illuminated points in this paper, denoted 
by Sa , Sb , Sc , Fa , Fb , Fc , respectively. 

A region is considered as contaminated , if it might con-
tain the intruder (whose position is unknown to the 1-
searchers as he is capable of moving arbitrarily fast) at a 
time; otherwise, it is clear. If a region becomes contaminated 
again, it is referred to as recontaminated. A search schedule 
of three 1-searchers for CC is defined by three sequences of 
piecewise-continuous functions {Sa , Sb , Sc}: [0, 1] CC and 
{Fa , Fb , Fc}:[0, 1] H, such that the intruder is contained in 

( ) ( )x xS t F t , x is a, b or c, no matter how fast the intruder 
moves.  

Suppose that all trivial movements are removed from the 
considered search schedule, we can define the movements or 
search instructions of a 1-searcher as follows: 

(i) During the movement, the 1-searcher S and his 
lightpoint F move along single edges of P and H in the same 
direction (e.g., in clockwise), respectively, such that no in-
tersections occur among all line segments ( ) ( )S t F t . 

(ii) During the movement, the 1-searcher S and his 
lightpoint F move along single edges of P and H in the op-
posite direction, respectively, such that any two segments of 

( ) ( )S t F t  intersect each other. 

(iii) The lightpoint F jumps from a reflex vertex x H to 
another point y H or from the point y to the vertex x. 

(iv) The 1-searcher S (e.g., Sa in Fig. (2)(iv)) moves in 
the interior of CC, while aiming his flashlight at a point of H. 
 

 

Fig. (2). Search instructions of a 1-searcher. 

 

For the instructions of type (i) to (iv), some examples are 
shown in Fig. (2) in which the shaded region denotes the 
clear region and the dotted arrows give the directions of the 
1-searcher or his lightpoint moves. For any instructions of 
type (i) or (ii), the 1-searcher S and his lightpoint F are con-
tinuous on P and H, respectively (see Fig. (2)(i) and (ii) ). It 
is worth pointing out that an instruction (ii) can simply be 

performed by rotating the line segment connecting S and F 
around the intersection point of the starting and ending seg-
ments. The instruction of type (iii) gives the only possible 
discontinuities of the lightpoint F on H, it is usually termed 
as the lightpoint jumps. Finally, the instruction of type (iv) 
means that the 1-searcher can move into inner of CC. Note 
that instructions of type (iv) defined here is differ from the 
definition in [10]. In the case of two 1-searchers, the 1-
searcher must be limited to the clear region to prevent recon-
tamination occurs (Fig. (2)(iv)), but in the case of tree 1-
searchers, one of the 1-searchers can move into the contami-
nated region since other 1-searchers are limited to the clear 
region.  

In [10], Jiang and Tan defined two different time periods 
of the “start phase” and the “end phase”, in which the two 1-
searchers cooperatively clear a group of deadlocks (if it ex-
ists). More precisely, two 1-searchers start at the same posi-
tion, and then cooperatively clear a group of deadlocks in the 
start phase. Analogously, after clearing a group of deadlocks, 
they finish the search at the same position in the end phase. 
Suppose that at least one deadlock is cleared by two 1-
searchers in the start phase, and the defining vertices of the 
deadlock are denoted by p0 and h0 (See Figs. (3) and (4)). Let 
all points on P (H) are ordered clockwise with respect to 
p0 P (h0 H), then the inequality v < u implies that the point 
v is encountered before u by a clockwise searcher on P (H), 
starting at p0 (h0). 

For a given CC, by introducing the concept of “non- sep-
arated” deadlocks, we know that a pair of non-separated 
deadlocks cannot be cleared in the end phase by two 1-
searchers [10]. However, it can be cleared by three 1-
searchers in any phases, even if the non-separated deadlocks 
exist. As an important concept, we need to define BF-
deadlocks, FB-deadlocks, BB-deadlocks and FF- deadlocks 
as follows, and thus the a non-separated deadlock can be 
defined as well.  

Definition 1. Suppose that there are two pairs of the ver-
tices <p1, h1> and <p2, h2> in the contaminated region, p1 < 
p2 and h1 < h2 hold, thus, <p1, h1> and <p2, h2> form a pair of 
BF-deadlocks if <p1, h1> causes a backward deadlock and 
<p2, h2> causes a forward deadlock (Fig. (3) (a)). 

Definition 2. Suppose that <p1, h1> causes a forward 

deadlock, and <p2, h2> causes a backward deadlock, p1 < p2 

and h1 < h2 hold, thus, <p1, h1> and <p2, h2> form a pair of 

FB-deadlocks if either of the following conditions is true: 

The first one is that there are no points x  H[h1, h2] such 

that H[h1, x] and H[x, h2] are weakly visible from P[p0, p1) 

and P(p2, p0], respectively, and nor points y  P[p1, p2] such 

that P[p1, y] and P[y, p2] are weakly visible from H[h0, h1) 

and H(h2, h0], respectively (Fig. (3)(b)). The second one is 

that there exists no internal segment ph , p  P(p2, p1) and h 

 H(h2, h1), which has two edges 1 1( )p Pred p , 2 2( )p Succr p  to 

its one side and two edges 1 1( )h Pred h , 2 2( )h Succr h  to its an-

other side in the contaminated region (Fig. (3)(c)). 

Definition 3. Suppose that <p1, h1> and <p2, h2> cause a 
backward deadlock, respectively, p1 < p2 and h1 < h2 hold, 
thus, <p1, h1> and <p2, h2> form a pair of BB-deadlocks if 
both the following conditions are true: The first one is that 
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the chain H[h1, h2] is not weakly visible from P(p2, p0), or 
P[F(v), p(h1)] is not weakly visible from H[h1, v] when F(v) 
< p(h1) holds. The second one is that the chain P[p1, p2] is 
not weakly visible from H(h2, h0) (Fig. (4)). 

Definition 4. Suppose that <p1, h1> and <p2, h2> cause a 
forward deadlock, respectively, p1 < p2 and h1 < h2 hold, 
thus, <p1, h1> and <p2, h2> form a pair of FF-deadlocks if 
both the following conditions are true: The first one is that 
the chain H[h1, h2] is not weakly visible from P(p0, p1), or 
P[p(h2), B(u)] is not weakly visible from H[u, h2] when p(h2) 
<B(u) holds. The second one is that the chain P[p1, p2] is not 
weakly visible from H(h0, h1). 

Definition 5. If the deadlocks caused by <p1, h1> and 
<p2, h2> form a pair of BF-deadlocks, FB-deadlocks, BB-
deadlocks, or FF-deadlocks in the end phase, then we call 
them as the non-separated deadlocks. 
 

 

Fig. (3). (a) The pairs of BF-deadlocks; (b)-(c) the pairs of FB- 

deadlocks. 

 

 

Fig. (4). The pairs of BB-deadlocks. 

 

Lemma 1. (See [10]). A given CC is not searchable by 
two 1-searchers if (i) all deadlocks in CC cannot be split by 
any internal line segment ph  and (ii) there are three dead-
locks in CC such that any two of them are non-separated. 

The proof of Lemma 1 is given in [10]. Here, we give 
some examples only which are not searchable, shown in 
Figs. (3)-(5). 

In the rest of this paper, we usually denote by Sa, Sc the 1-
searchers whose flashlight move in CC counterclockwise 
and Sb the 1-searcher whose flashlight moves in CC clock-
wise. If the given CC is not searchable by two 1-searchers, 
we need the third 1-searcher to clear the whole CC. Without 
loss of generality, assume that three 1-searchers always 
start(end) at the same position. At the beginning, we take Sa 
and Sc together as one 1-searcher with Sb to search CC just 
like two 1-searchers in [10]. When they encounter the non-
separated deadlocks, let Sb stop moving, then Sa and Sc begin 
to separate and mutually cooperate to clear the rest of CC, 
and end at the position of Sb finally. Fig. (5) illustrates an 
example for clearing a circular corridor by three 1-searchers. 
The starting positions of three 1-searchers are shown in Fig. 
(5)(a). Before they do not encounter the non-separated dead-
locks, Sa and Sc always move together, Sc does not play his 
role. Sa and Sb mutually cooperate to clear the deadlock 
formed by <p0, h0>, just like two 1-searchers (Fig. (5)(b)). 
When they encounter the non-separated deadlocks caused by 
<p1, h1> and <p3, h3>, Sb stops moving, Sa and Sc begin to 
separate (Fig. (5)(c)). Sa and Sc mutually cooperate to clear 
the deadlock formed by <p1, h1>, then end at the same posi-
tion and continue to search (Fig. (5)(d)). Sa and Sc clear the 
deadlock caused by <p2, h2> (Fig. (5)(e)). Sa and Sc clear the 
deadlock caused by <p3, h3>. Finally, end at the position of 
Sb (Fig. (5)(f)). The search is completed. 
 

 

Fig. (5). Snapshots of a search schedule of three 1-searchers. 

 

3. ALGORITHM 

In this section, we prove that for a given CC, if the non-
separated deadlocks are in start or end phase, three 1-
searchers can also clear it. In other words, no matter how fast 
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the intruder moves, the given CC could be searchable by no 
more than three 1-searchers. At the beginning, two 1-
searchers move together counterclockwise and the third 
moves clockwise along the outer boundary. When they en-
counter the non-separated deadlocks, the former 1-searchers 
begin to separate and “mutually cooperate” to clear the dead-
lock, then end at the same position and continue to search. 
Finally, three 1-searchers meet at the same position and the 
search is completed. In the process of “mutually cooperat-
ing”, one of two 1-searchers moves first, separate deadlocks 
by its flashlight and the other moves to clear the region 
blocked by the flashlight. 

Lemma 2. (See [2, 3]). A corridor (Q, u, v) is searchable 
by two guards if and only if the chains L and R are mutually 
weakly visible and no deadlocks occur between L and R, 
where Q is a simple polygon, u and v are the entrance and 
exit on its boundary. It takes (n) time to determine the 
walkability of a corridor, and O(n logn + m) time to output a 
search schedule of minimum length, where m( n2) denotes 
the number of the instructions reported. 

Without loss of generality, from lemma 3 to lemma 8, we 
assume that at least one deadlock caused by <p0, h0> is 
cleared in the start phase, and then the three 1-searchers en-
counter the non-separated deadlocks. If they do not encoun-
ter the non-separated deadlocks, only two 1-searchers can 
clear the CC. From this time, Sb stops moving, Sa and Sc 
begin to separate and mutually cooperate to clear all the 
deadlocks they encountered. For ease of presentation, we 
also assume that all points on P(H) are ordered clockwise, 
with respect to p0 P (h0 H). So, the inequality v<u implies 
that the point v is encountered before u by a clockwise walk-
er on P(H), starting at p0(h0). 

In this paper, there are some appoints as follows: 

  Before clearing a deadlock, the 1-searcher Sa and Sc are at 
the same position. It is easy to be done, since they move 
together while without finding any deadlocks, and move 
to the same position after clearing a deadlock. 

  The backward deadlock found by Sa and Sc is appointed 
that the defining vertices, denoted by p1 and h1, are mutu-
ally visible (see Fig.(6) for an example where p1 and h1 
are mutually visible, but p' and h' are not visible). There 
are some backward deadlocks caused by such as < p', h'>, 
< p', h1>, < p1, h'>, but p' and h', p' and h1, p1 and h' are 
all not mutually visible, so we consider they are not 
backward deadlocks, p' and h' are not defining vertices. 
Since they can be easily cleared as well during Sa and Sc 
mutually cooperating to clear the backward deadlock 
caused by < p1 , h1> following lemma 7 and 8. 

  To facilitate processing, we take a concave vertex which 
is in the contaminated region and Sa (Fa) as a pair of de-
fining vertices of a backward deadlock, if the concave 
vertex exists, and is not defining vertex of any deadlocks 
(see Fig. (7)(a) or Fig. (7)(b)). This case is caused by the 
following process. After clearing a forward deadlock, 
say, caused by <p1 , h1>, Sa and Sc are at the same posi-
tion, and they find a concave vertex which does not form 
a deadlock in the contaminated region (the vertex h2 

shown in Fig. (7)(a), or the vertex p2 shown in Fig. 
(7)(b)). When both the three points Pred(p1), p1, B(h2) on 

P and the three points F(p1), h2, Succ(h2) on H are in 
clockwise order (both the three points F(h1), p2, Succ(p2) 
on P and the three points Pred(h1), h1, B(p2) on H are in 
clockwise order), we can consider the h2 (p2) and Sa (Fa) 
as a pair of defining vertices of a backward deadlock; 
Otherwise, a deadlock formed with h2(p2) as its defining 
vertex. 

 

 

Fig. (6). p' is not visible to h'. 

 

 

Fig. (7). Consider h2(p2) as a defining vertex of a backward dead-

lock. 

 

Now we show a search schedule for clearing a given cir-
cular corridor by three 1-searchers as follows. 

Lemma 3. The first deadlock found by Sa and Sc is a 
backward deadlock, say, caused by <p1, h1>, p1 P, h1 H. If 
the following two conditions are satisfied, then Sa and Sc can 
mutually cooperate to clear this backward deadlock, and then 
Sa and Sc can meet at the same position. 

  H[h1, Succ(h1)] is in the cleared region, and P[p1, 
Succ(p1)] is in the contaminated region. 

  There are no defining edges on P[p1, Sa] except 

1 1( )p Succ p . 
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Fig. (8). Illustration for the proof of lemma 3. 

 

Proof. Since <p1, h1> caused a backward deadlock, so 

the line segments 
1 1( )p B p  and 

a aS F  must be intersected 

(Fig. (8)(a)). There are no defining edges on P[p1, Sa] except 

1 1( )p Succ p . Let Sa stop moving, Sc searching forward along 

the outer boundary arrives at p1, and aims his flashlight at 

B(p1) to clear P[p1,Sa] using the instructions of type (i), (ii) 

and (iii) described as above (Fig. (8)(b)). Suppose that the 

vertex v H is the first point visible to p1 on the inner bound-

ary from Fa in counterclockwise. Then Sa moves into CC to 

arrive at B(p1) (Fig. (8)(c)), and moves along 
1 1( )p B p  to ar-

rive at p1, and aims his flashlight at v to clear H[v,B(p1)] 

(Fig. (8)(d)). In this process, the instruction (iv) is used. Fi-

nally Sc moves to the position of Sa, since H[v, h1] is cleared. 

This completes the proof. 

If there are defining edges on P[p1, Sa] except 
1 1( )p Succ p , 

the backward deadlock caused by <p1, h1> is not the first 
deadlock they found. 

Lemma 4. The first deadlock found by Sa and Sc is a 
backward deadlock, say, caused by <p1, h1>, p1 P, h1 H. If 
the following two conditions are satisfied, then Sa and Sc can 
mutually cooperate to clear this backward deadlock, and then 
Sa and Sc can meet at the same position. 

  P[p1, Succ(p1)] is in the cleared region, and H[h1, 
Succ(h1)] is in the contaminated region. 

  There are no defining edges on H[h1, Fa] except 

1 1( )h Succ h . 
 

 

Fig. (9). Illustration for the proof of lemma 4. 

 

Proof. The proof for Lemma 4 is similar to Lemma 3. 
Fig. (9). 

If there are defining edges on H[h1, Fa] except 
1 1( )h Succ h , 

the backward deadlock caused by <p1, h1> is not the first 
deadlock they found. 

Lemma 5. The first deadlock found by Sa and Sc is a 
forward deadlock, say, caused by <p1, h1>, p1 P, h1 H. If 
the following two conditions are satisfied, then Sa and Sc can 
mutually cooperate to clear this forward deadlock, and then 
Sa and Sc can meet at the same position. 

  P[Pred(p1), p1] is in the cleared region, and H[Pred(h1), 
h1] is in the contaminated region. 

  There are no complete deadlocks between <Sa, Fa> and 
<F(h1), h1>.  

Note that the complete deadlock means that one defining 
vertex is on P[F(h1), Sa] and the other defining vertex is on 
H[h1, Fa]. 

 

 

Fig. (10). Illustration for the proof of lemma 5. 



2748    The Open Cybernetics & Systemics Journal, 2015, Volume 9 Bo et al. 

Proof. Since there are no complete deadlocks between 

<Sa, Fa> and <F(h1), h1>, the simple polygon P1 composed 

of P[F(h1), Sa], a aS F , H[h1, Fa] and 
1 1( )h F h  is a LR-

visibility polygon with respect to Fa and F(h1), and no dead-

locks formed in P1. In this case, let Sa stop moving, Sc moves 

into CC to arrive at Fa and aims his flashlight at Fa (Fig. 

(10)(a)-(b)). Next, Sc moves along 
a aS F  and the outer 

boundary from Sa to F(h1) and ends at F(h1) to clear P1 fol-

lowing lemma 1 (Fig. (10)(c)). Finally, Sc aims his flashlight 

at h1 and Sa moves to the position of Sc to clear the forward 

deadlock caused by <p1, h1>. This completes the proof.  

If there are complete deadlocks between <Sa, Fa> and 
<F(h1), h1>, the forward deadlock caused by <p1, h1> is not 
the first deadlock they found. 

Lemma 6. The first deadlock found by Sa and Sc is a 
forward deadlock, say, caused by <p1, h1>, p1 P, h1 H, and 
both p1 and h1 are in the contaminated region. Sa and Sc can 
mutually cooperate to clear the defining edge 

1 1( )Pred p p , 
and then Sa and Sc can meet at the same position. 
 

 

Fig. (11). Illustration for the proof of lemma 6. 

 
Proof. Since there are no complete deadlocks between 

<Sa, Fa> and <p1, h1>, Sa and Sc can arrive at p1 and aim their 
flashlights at h1 to clear P[p1,Sa] and H[h1,Fa] following 
lemma 2. Suppose s P is the first point visible to h1 on the 
outer boundary from p1 in counterclockwise, let Sa stop mov-
ing, Sc moves into CC to arrive at s, and aims his flashlight at 
h1 (Fig. (11)(a)-(b)). At this time, P[Pred(p1), p1] is still in 
the contaminated region. Next, Sa moves along the outer 
boundary to arrive at s to clear P[s,p1] (Fig. (11)(c)-(d)). In 
this process, the beam of Sa always intersects with 

1sh . Fi-
nally, Sa aims his flashlight at h1. This completes the proof.  

Lemma 7. The first deadlock found by Sa and Sc is a 
backward deadlock, say, caused by <p1, h1>, p1 P, h1 H, 
and both p1 and h1 are in the contaminated region. If there 
are no defining edges on H[h1, Fa] except 

1 1( )h Succ h , then Sa 
and Sc can mutually cooperate to clear this backward dead-
lock and meet at the same position as shown in Fig. (12). 

 

Fig. (12). Illustration for the proof of lemma 7. 

 

Proof. Suppose s P is the first point visible to h1 on the 
outer boundary from Sa in counter clockwise, since there are 
no defining edges on H[h1,Fa] except 

1 1( )h Succ h , Sa and Sc 
can arrive at s and aim their flashlights at h1 to clear P[s, Sa] 
and H[h1, Fa] following lemma 2. If there are no defining 
edges on P[Succ(p1), Sa], then the deadlock can be cleared 
following lemma 3. Otherwise, they find another deadlock to 
be the first deadlock. These deadlocks can be cleared follow-
ing lemma 3 to lemma 6. This completes the proof. 

Lemma 8. The first deadlock found by Sa and Sc is a 
backward deadlock, say, caused by <p1, h1>, p1 P, h1 H, 
and both p1 and h1 are in the contaminated region. If there 
are no defining edges on P[p1, Sa] except 

1 1( )p Succ p , then Sa 
and Sc can mutually cooperate to clear this backward dead-
lock and meet at the same position as shown in Fig. (13). 
 

 

Fig. (13). Illustration for the proof of lemma 8. 

 

Proof. The proof for Lemma 8 is similar to Lemma 7.  

For the first deadlock Sa and Sc found, they first cooper-
ate to clear its one defining edge, and then cooperate to clear 
the other defining edge. The deadlock is either a forward 
deadlock or a backward deadlock. If it is not cleared, either 
its two defining edges are all in the contaminated region or 
one defining edge is in the contaminated region and the other 
is in the cleared region. So from lemma 3 to lemma 8 contain 
all the cases of the first deadlock Sa and Sc found. If a dead-
lock they found is not satisfied a lemma of lemma 3 to lem-
ma 8, then the deadlock is not the first deadlock they found. 
After they clear the first deadlock, the next deadlock will be 
the first deadlock they found. When they encounter a non-
separated deadlock, they take the nearest deadlock to them as 
the first deadlock to clear, then clear the other deadlock. 
Such as Sa and Sc encounter the non-separated deadlock 
caused by <p1, h1> and <p2, h2> in Fig. (5)(c), the deadlock 
caused by <p1, h1> is the first deadlock they found. They 
first cooperate to clear it, and then the deadlock caused by 
<p2, h2> becomes the first deadlock, they continue to clear it. 
The non-separated deadlock caused by <p1, h1> and <p2, h2> 
is cleared. So the 1-searchers Sa and Sc in counterclockwise 
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can clear all the deadlocks one by one, and finally end at the 
position of Sb to clear CC. The search schedule can be ob-
tained from lemma 3 to lemma 8, and the total walk instruc-
tions are O(n2) in the worst case, where n denotes the total 
number of vertices of P and H. Hence, a search schedule of a 
given CC can be reported in O(m) time, where m n2 denotes 
walk instructions. 

CONCLUSION 

We study the variation of the 1-searcher problem in a cir-
cular corridor which can not be cleared by two 1-searchers, 
and prove that any one circular corridor can be cleared by no 
more than three 1-searchers. Moreover, a search schedule 
can be reported in O(m) time, where m n2 denotes walk in-
structions, and n denotes the total number of vertices of P 
and H. 

A more ambitious goal is to provide an algorithm for 
searching a circular corridor such that its outer and inner 
boundaries are not mutually weakly visible with any number 
of 1-searchers.  
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