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Abstract: In this paper, we propose a unified framework for decomposition of a polygon with or without holes, enlight-

ened by approximate convex decomposition. We transform target polygon containing holes into the polygon without holes 

by merging holes into external boundary, thus only need to partition the polygon without holes. Several constraints are en-

forced to ensure generate more visually meaningful decompositions, more elegant final components than that of other 

methods. Moreover, we estimate tolerance  from geometry information of target polygon to obtain a naturally visual de-

composition, a polished hierarchical representation. Our approach computes a decomposition of a polygon, containing ze-

ro or more holes, with n vertices and r notches in O(nr) time. In contrast, exact convex decomposition is NP-hard, or if the 

polygon has no holes, takes much more time. Many experimental results and applications are presented to show the supe-

riority, applicability and flexibility of our approach.  
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1. INTRODUCTION 

Shape is the essence of many geometric problems. Many 
geometric problems have simpler and faster solutions on 
such a restricted type of polygon, so the strategy of solving 
these problems for general polygons is to partition them into 
simpler parts, solve the problem on each part and combine 
the partial solutions [1], therefore, decomposition is a tech-
nique commonly used to break complex models into sub-
models which are easier to process [2]. There is more em-
phasis on the optimality of the decomposition due to polygon 
decomposition often serves as a preprocessing step for many 
geometric algorithms. Besides, polygon decomposition has 
applications in networking area [3, 4].  

In fact, many algorithms perform more efficiently on 
convex objects than on non-convex objects [5], so convex 
decomposition, which partitions the model into convex com-
ponents has applications in many areas including: pattern 
recognition [6], Minkowski sum computation [7], motion 
planning [8], computer graphics, and origami folding [9]. 
Unfortunately, exact convex decomposition can be costly to 
construct and can result in a representation with an unman-
ageable number of components. For instance, the problem is 
NP-hard for polygons with holes by using exact convex de-
composition [10]. 

Recently, [5] proposed a new approach called approxi-
mate convex decomposition (ACD) to decompose polygon. 
ACD is to identify and resolve the concave features of poly-
gon in order of importance, while to preserve the less  
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significant concave features, finally to obtain approximately 
convex pieces. The decomposing results using ACD are both 
significantly smaller and can be computed more efficiently 
due to ACD provides a mechanism to focus on key features, 
and ignore less significant features. However, in [5], ACD 
has not been applied to decomposition of polygon containing 
holes. Moreover, there are some drawbacks for ACD ap-
proach itself, such as, the results of ACD are inaesthetic, not 
sensuous, as a whole; the final partition could not resolve the 
visually noticeable features well, oftentimes. so how to suc-
cessfully apply the ACD strategy to the decomposition of 
polygon containing holes and how to eliminate the problems 
generated by ACD approach have become two important 
issues.  

In this paper, we introduce a novel approach and frame-

work for decomposing a polygon with or without holes. Our 

approach does this task by applying the ACD strategy to the 

target polygon with or without holes neatly to construct a 

unified processing framework, while adding variety of effec-

tive constrained measures to the ACD strategy to improve 

the quality of the partition. Accordingly, firstly, for target 

polygon with holes, we convert it into a new polygon with-

out holes by some merging techniques; for target polygon 

without holes, we don’t change it; secondly, we handle the 

polygon decomposition using the ACD strategy together 

with various constraints; finally, we recursively partition the 

target polygon until all remaining components have concavi-

ty less than tolerance  to obtain a naturally visual, elegant 

decomposition, where  is estimated from geometry infor-

mation of corresponding target polygon.  

The contributions of our approach are summarized in the 
following: 
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Unified framework: Our approach provides a unified 
framework for decomposing any simple polygon, with or  
without holes, especially, can handle the partition of polygon 
containing holes.  

Visually meaningful results: Our approach could 
guarantee generating more visually meaningful, more elegant 
final components by adding variety of constrains in our 
framework. 

Estimated tolerance: Our approach estimates tolerance 
 by analyzing geometry information of target polygon, and 

subsequent self-adaptive adjustment to obtain a naturally 
visual decomposition, a polished hierarchical representation. 

Fast and efficient: Our approach is fast and efficient as 
it has only O(nr) time complexity, where n and r are the 
number of vertices and notches of target polygon with or 
without holes, respectively.  

Besides, we explore the potential applications of our ap-
proach in various aspects. 

2. RELATED WORK 

Polygon decomposition is a well-established research ar-
ea in Computational Geometry. There is a substantial body 
of literature that focuses on developing efficient algorithms 
for decomposing a polygon containing zero or several holes 
with the smallest number of a particular type of sub-
polygons [11].  

Convex partition approaches can be classified according 
to the following criteria: (1) Input polygon: simple, holes 
with or without; (2) Decomposition method: additional Stei-
ner points allowed or disallowed; (3) Output partition prop-
erties: minimum number of components, shortest internal 
length. When Blum introduced the medial axis [12] in 1967, 
a partition at its branching points was also suggested. The 
medial axis is region-based and can be defined as the locus 
of centers of maximally inscribed disks. It can capture im-
portant visual cues of the shape, such as symmetry and com-
plexity. However, its drawbacks are its sensitivity to noise 
and it may require extensive pre-processing or post-
processing. A different approach [13] to using skeletons for 
shape decomposition, associates to the medial axis a 
weighted graph, called axial shape graph, the weights are 
seizing both local and global information about the shape. 

As for the case with holes, Narkhede and Manocha [14] 
implemented the algorithm [15] for triangulating polygons 
without holes and extended the code to handle holes. Recent-
ly, Held [16] has also presented an algorithm for triangulat-
ing polygons with holes. So if we eliminate inessential diag-
onals of the triangulations obtained by both algorithms, we 
can obtain convex decompositions. For polygons with holes, 
the convex decomposition is NP-hard for both the minimum 
components criterion [17] and the shortest internal length 
criterion [18].  

 Recently, some approaches have been presented to de-
compose at salient features of a polygon. Siddiqi and Kimia 
[19] use curvature and region information to identify limbs  
 

 

and necks of a polygon and use them to do partition. Dey 
[20] decomposes a polygon into stable manifolds which are 
collections of Delaunay triangles of sampled points on the 
polygon boundary. Although these methods focus on visual-
ly significant features, these approaches require pre-
processing or post-processing to adjust for boundary noise. 
Moreover, Lien and Amato [5] proposes ACD strategy. 
However, this method has many drawbacks and limitations. 

3. PRELIMINARIES 

We define 
p

H
 
as the convex hull of a polygon P, and P 

is convex if P =
p

H . Vertices of P which are not vertices of 

p
H

 
are notches, i.e., notches have internal angles greater 

than 180
o .  

4. OUR FRAMEWORK FOR DECOMPOSING A 
POLYGON WITH ZERO OR MORE HOLES 

4.1. Our Framework  

Inspired by ACD strategy, we develop a new technique 
and framework for decomposing a polygon with zero or 
more holes. Especially, our framework can handle the de-
composition of polygon containing holes, thus not only ex-
pand the scope of polygon decomposition extensively, but 
also promote the application of polygon decomposition 
greatly. In a few words, we explore more effective, more 
robust, more unified approach based on ACD strategy ac-
tively.  

 Our strategy shown in Fig. (1) is that: firstly, for target 
polygon with holes, we merge all holes into its external 
boundary so as to combine them into a single entity without 
holes; for target polygon without holes, we do nothing; sec-
ondly, we use ACD strategy in company with variety of con-
strained measures to do polygon decomposition; finally, we 
recursively decompose the polygon until the concavity of all 
remaining components is less than tolerance  to eventually 
attain a naturally visual, elegant decomposition, where  is a 
specified parameter denoting the non-concavity tolerance 
and it is assessed from geometry information of the target 
polygon beforehand.  

4.2. Merging holes into external boundary  

For target polygon without holes, we would decompose it 

directly. However, for target polygon containing holes, the 

partition problem is far less understood, since this polygon is 

containing holes, holes
i

P
 
are separated from external 

boundary
0

P , and holes 
i

P
 
are isolated each other. Many 

previous methods can not deal with the decomposition of 

polygon containing holes successfully.  

Fortunately, we develop a new technique for the decom-
position of polygon containing holes. In brief, it is that: be-
fore the formal decomposition, we use connecting lines to  
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merge holes into external boundary in order to compose a 
new polygon without holes; then, naturally, we could de-
compose this new polygon conveniently, see Fig. (2). 

Apparently, the goal of merging process is to convert the 
target polygon containing holes into a new polygon without 
holes, thus the holes need to combine with external boundary 
uniformly and in order; and then we need to split this new 
polygon at the notable features, hence the connecting lines 
require revealing the largest possible concavity features of 
holes at the same time. To meet the above requirements, the 
merging process, i.e., computing the connecting lines should 
follow the following important principles: 

• Merging in an organized way:  

Firstly, holes are divided into several groups; secondly, 
we use the unidirectional connecting lines to string every 
hole in each group to form a chain, respectively; finally, eve-
ry chain is linked with the external boundary. In the process, 
different chains do not intersect with each other.  

 

 

• Revealing the external concave features: 

 The connecting lines, which connect one hole with an-
other hole or external boundary are desired to be as shorter 
as possible.  

• Revealing the interior concave features:  

 The antipodal pair of each hole, which represents the di-
ameter of hole, can reflect the concave features of hole effec-
tively. So we need to compute the antipodal pair of each 
hole, and then use the connecting lines to connect corre-
sponding antipodal pair of one hole with corresponding an-
tipodal pair of another hole or external boundary.  

Here, we compute shortest paths between all pairs of ver-
tices in the mesh generated by triangulating each hole, and 
choose a pair whose length of shortest path is maximal as the 
antipodal pair. During the process, the mesh can be generat-
ed in linear time, and the available pair can be found in linear 
time too, therefore our method is simple and fast.  

 

 

 

Fig. (1). The pipeline of our framework. 

 

 

Fig. (2). The merging process: (a) Target polygon containing two holes; (b) A new polygon without holes, the blue broken lines denote the 

connecting lines, A and A', B and B', C and C', D and D' are the same point, respectively. The corresponding path is A-B-C-D- D'- C'- B'- 

A'.  
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It is worthwhile to note that the connecting lines them-
selves are a part of all splitting lines, from the point of de-
composition. Therefore, our approach for merging holes into 
external boundary is heuristic, smart, and simple.  

4.3. Measuring concavity  

 Here, the measurement of boundary concavity (including 

hole’s boundary) in our framework is listed as following:  

Concavity (P) = { }max concavity( )
x P

x ;  (1) 

If 
0

x P , then  

Compute concavity(x), using H-Concavity [5];  

Concavity (
0

P ) = ( ){ }
0

max concavity
x P

x ;  (2) 

If 
0i

x P
>

, then  

Concavity (
i

P ) = concavity (
0

P ) + concavity (cx) + dist  

(
i

P , cx) + dist (
i

e , cw (
i

e )).  (3) 

Concavity(x) = concavity (
0

P ) + concavity (cx) + dist  

(
i

P , cx) + dist (
i

e , x);  (4) 

(
i

P : hole, 
0

P : the external boundary, 
i

e , cw(
i

e ): the an-

tipodal pair points of hole 
i

P , cx: the connecting point with 

i
P , if 

0
cx P , concavity (cx) is known, else 

0j
cx P

>
, 

concavity (cx) = concavity (
j

P ), dist (
i

e , x): distance of the 

shortest path from 
i

e
 
to x in hole 

i
P , and 

i
e

 
is one of the 

antipodal pair points, which is near to 
0

P ) 

4.4. Selection of Non-Concavity Tolerance  

In our framework,  needs to be setted as a logical value 
beforehand, since  is a specified parameter denoting the 
non-concavity tolerance of the application. Here, we propose 
a method which is estimation with apriority combined with 
self-adaptive adjustment to obtain the optimal numerical 
value of . 

 

 

4.4.1. Estimation with Apriority  

Firstly, we give the estimated expression about tolerance 

 with apriority, see Fig. (3)  

 = min (Box_length, Box_width);  (5) 

Box_length (Box_width): The length (the width) of the 
encasing box which envelops the polygon (target polygon 
without holes) or the external polygon (target polygon con-
taining holes);  

: The tunable parameter, 0 1<   

From Fig. (3), since encasing box could evaluate the 

global geometry information of polygon well, 

_
P

Box width=  denotes the concavity of vertex P related 

to its associated bridge AB, which is an edge of the encasing 

box. From visual perception, vertex P which is related to 

bridge AB is too visually salient to be resolved, so 
P  

is 

upper bound of tolerance ; On the other hand, local geome-

try information of polygon, including angle and length ratio 

of adjacent edges, is more complicated, then we use  (

0 1< ) as a tunable parameter to adjust 

4.4.2. Self-adaptive Adjustment  

Next, we should consider user needs and applications to 
do self-adaptive adjustment of 

(1) If user feels that the degree of decomposing is too 
weak or too strong, we divide or multiply the initial value of 
 by 2 to attain the new tolerance , afterwards, according to 

the new tolerance , we do polygon decomposition re-
newedly. We repeat the above steps monotonously until we 
meet user requirements. 

 (2) During (1) process, if user considers that the visible 
concave features is resolved too little or too much, we divide 
or multiply the current value of  by 2 to attain the new tol-
erance , after that, we do polygon decomposition renewedly 
by the new tolerance but user realizes that the situation 
reversals, i.e. the visible concave features is resolved too 
much or too little, so we update  by setting the average  
 

 

 

Fig. (3). Dotted blue box of a rectangle is the encasing box of the target polygon. 
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value of the old(current) tolerance  and the new tolerance 
Then, we do polygon decomposition newly by the updat-

ed tolerance , judging the partition situation constantly, 
setting the average value as the new tolerance  constantly,
and decomposing the target polygon constantly until we 
meet user requirements.  

In this way, through the above two successive steps, we 
finally attain the best tolerance .  

In addition, for the same target polygon with or without 
holes, when we get the best tolerance   could be divided 
or multiplied by 2 repeatedly to achieve a polished hierar-
chical representation which produces a series of increasingly 
or decreasingly convex decompositions.  

4.5. Various Constrained Measures  

Then, we start to do formal partition for this uniform pol-

ygon P without holes. We define concavity (P) = concavity 

(X) = ( ){ }concavitymax
x P

x . If concavity (P) is less than 

tolerance , then P is the final result, not do partition; else, 

we need to find another point of P, and compose a cutting 

line with X to decompose polygon P, called Resolve (P, X).  

In [5], the process of Resolve (P, X) consists of the fol-

lowing steps: (1) Selecting all possible visible diagonals for 

the resolving notch X as candidates; (2) Picking the diagonal

XR with the highest score, by using the following function 

expression (6) to score the candidates; (3) Using diagonal

XR to decompose P. This method could decompose the tar-

get polygon P at the noticeable features and conform with 

human recognition because it consider the visible diagonal, 

large concavity and short diagonal as criterions, but it 

doesn’t emphasize the constraints on the shape, so the result-

ing components would be narrow, saw-toothed, nonlogical 

and the final partition would be lack of aesthetic sensibility.  

Hereby, to solve the above possible serious problem, we 

need to take various potent constrained measures. In this 

way, we decide to use the Resolve step of ACD strategy co-

operated with various potent constraints to do decomposi-

tion. Our principle is that we need to resolve all noticeable,  

 

salient notches, while remaining some inconspicuous notch-

es; on this basis, we try our best to assure that the resulting 

components have graceful shape and exquisite configuration.  

1 ( )
( , )

( , )

concavity r
f r X

dist r X

+
=  X: the resolving notch; 

0i
r P , =0.1, =1. (6)  

4.5.1. Various Constraints with Shape  

From the heuristic inspired by human perception, we put 
forward variety of constraints to make the resulting compo-
nents have polished appearance and get an improved version. 

Firstly, after selecting all possible visible diagonals, we 
should filtrate candidates by checking the indexes of the re-
solving notch X and one candidate r. i.e., if the interval of 
indexes of r and X is less than 4, then r would be deleted 
from candidates. This step is used to eliminate the sharp and 
narrow area of resulting components.  

Secondly, we further filtrate the remaining candidates.  

Setting some parameters in advance, please see Fig. (4).  

The resolving notch X and any one candidate r decom-

pose polygon P into 
1

P , 
2

P , here we consider 
1

P
 
as a small-

er sub-polygon.  

height: the maximum straight-line distance from vertices 

of 
1

P
 
to the diagonal Xr ;  

width: the length of the diagonal Xr ;  

area: height width; circle_area: the area of
1

P ;  

fill: circle_area / area; aspect: width / height; 

Through many experiments, we prescribe that if fill is 
more than 0.8 or aspect is less than 0.3, then r is remained, 
otherwise, r is deleted. This step is used to eliminate the 
saw-toothed region or the salient region of resulting compo-
nents. 

 Thirdly, after using the function (6) to pick up the final 

candidate R, we require to do a significant estimation to  

 

 

Fig. (4). Several parameters in this sketch map. 
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finally determine whether R is an appropriate candidate to 

compose a cutting line XR  to decompose polygon P.  

Setting some parameters in advance, please see Fig. (5).  

The resolving notch X and the final candidate R decom-
pose polygon P into 

1
P ,

2
P

 
, here we consider 

1
P

 
as a small-

er sub-polygon.  

Length_line: the length of the diagonal XR ;  

Box_diagonal: the length of diagonal of the encasing 
box which envelops polygon P;  

rate: Length_line / Box_diagonal;  

part_area: the area of
1

P ; all_area: the area of polygon 
P;  

ratio: part_area / all_area; 

By the way of many experiments, we perform the estima-

tion that if rate is more than 0.17 and ratio is less than 0.1, 

then the final candidate R is invalid, the process of decompo-

sition is halted, polygon P  is returned. Otherwise, R is val-

id, and polygon P is decomposed by the diagonal XR . This 

step is used to assure the decomposing components are mod-

erate, not too big or too small. More formally, the visually 

salient features are more related to the short cutting line, so if 

XR  is short enough, the decomposition by XR  is also per-

mitted.  

By carrying out the above three constraints together with 

the Resolve step of ACD strategy, we eventually obtain a 

proper cutting line XR  to decompose polygon P  into two 

resulting components, denoted as 
1

P ,
2

P .  

4.5.2. Subsequent Reparative Step  

It is worthwhile to point out that there are some failed 
cases where there is no valid candidate, then decomposition 
will be halted, our method might not succeed in the desired 
decomposition. So this is an issue which we need to solve. 

Actually, there are very few such failed cases in the ex-
perimental examples shown in the paper, since we specify  
 

the appropriate parameters in the constraints based on much 
decomposing experiments. If such failed cases occur, we 
remove all the constraints and only use Resolve step of ACD 
strategy to do decomposition forcibly until the concavity of 
all remaining components is less than  to maintain our goal. 
Although we could not guarantee the quality shape of every 
resulting piece, we could ensure the whole quality shape of 
resulting components effectively. 

Hence, by carrying out the above partition, our method is 
not only able to eliminate the problem of possibly producing 
the abnormal final components, which are sharp, narrow, 
saw-toothed, salient, oversize, too small, but also ensure that 
the resulting decomposition would have refined shape and 
exquisite configuration.  

4.6. Recursively Splitting the Target Polygon 

Finally, we need to decompose the resulting components

1
P , 

2
P

 
further and recursively until all remaining compo-

nents have concavity less than given tolerance . 

However, this recursion is more difficult due to the target 

polygon P may contain more holes or no holes, the decom-

posing components 
1

P , 
2

P
 
may contain more holes or no 

holes too, and manifest themselves as variety of complicated 

structures. Therefore, we should take several potent tech-

niques to do the recursion effectually.  

When target polygon P  is containing no holes, we only 

take the direct recursion for all new components, see in Fig.6  

But when target polygon P is containing more holes, spe-
cifically, the recursion itself is divided into two cases:  

(1) The resulting components (including 
1

P ,
2

P
 
and the 

new target polygon generated by splitting previous target 

polygon) are polygons without holes, we only take the direct 

recursion for all new components too, see in Fig. (6).  

(2) The resulting components (including 
1

P ,
2

P and the 

new target polygon generated by splitting previous target 

polygon) are also polygons containing holes, then the recur-

sion is more complicated, since this resulting components  

 

 

Fig. (5). Several parameters in this sketch map. 
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are composed of holes, connecting lines and external poly-

gon, not generic simple polygons. To account for this, we 

adopt a simple and useful scheme to control the recursive 

partition of all new components availably. In this scheme, 

we use two successive procedures recursively. 

Update all the useful information of target polygon: 

we need to update the vertices, the holes, the groups of holes, 

the extern boundary, the concavity of new target polygon 

(call 
1

P ,
2

P
 
as new target polygons), the structural mesh 

constructed by holes, extern boundary of the new target pol-

ygon, and all connecting lines of the new target polygon in 

turn. The vertices of new target polygon are naturally ob-

tained by using the cutting line. Then, since the structure of 

the groups of holes and the geometry information of each 

hole maybe changed, we recompute the vertices and the an-

tipodal pair of each hole, in addition, we adjust the compos-

ing of groups of holes, the structural mesh and all connecting 

lines. And it is noted that the new target polygon is com-

posed of the groups of holes and the extern boundary, so the 

vertices of the extern boundary are also naturally obtained. 

We use the measure of concavity (see Sec 4.3) to recompute 

the concavity of all vertices. Now, we acquire all necessary 

new information to do the formal partition. 

Do the partition: we use ACD strategy cooperated with 
various constraints to decompose the new target polygon into 
two components. It is noted that we have updated mesh and 
all connecting lines in the previous procedure, so we utilize 
them to determine the visible of two vertices in the new tar-
get polygon in this procedure. 

We apply this two successive procedures recursively to 
new target polygon produced by splitting previous target 
polygon until all remaining components have concavity less 
than given tolerance . 

In fact, when target polygon P is containing more holes, 
the resulting components would be polygons without holes, 
or with holes, therefore the whole recursion is composed of 
the above two cases of recursion, one is mixed with the oth-
er, as shown in Fig. (7). 

In conclusion, for any target polygon containing holes or 
no holes, by taking the recursion which is a significant and 
last part of unified framework, we ultimately obtain all the 
beautiful final components. 

 

Fig. (6). Recursively splitting the target polygon without holes. 

 

 

Fig. (7). Recursively splitting the target polygon containing holes. 
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4.7. Algorithm Steps 

We summarize the steps of our approach as following: 

Input: A polygon P with or without holes. 

Output: A more visual natural, elegant partition of P,

{ }iC , such that i=1,2,3,..., concavity( )
i

C . 

Step 1. Estimate tolerance  from geometry information 
of polygon P.  

Step 2. If polygon P contains more holes, transform it in-
to a new polygon without holes using merging techniques. If 
polygon P contains no holes, don’t change it.  

Step 3. Measure concavity of every point on  P  using 

proposed concavity measures.  

Step 4. Choose a point X as a witness of the concavity of 

P, concavity (P) = concavity (X) = 
  
max

x P
i

concavity(x){ } , 

i=0, 1, 2…n. 

Step 5. If concavity (P)  , then polygon P is the final 

result; else, we do Resolve (P, X).  

Step 6. Add various constraints to Resolve (P, X) in 

ACD strategy to decompose polygon P into two resulting 

components 
1

P ,
2

P .  

Step 7. Analyze the features of the resulting components 
according to corresponding cutting line.  

Step 8. Update all the useful information of the resulting 
components.  

Step 9. Repeat Step 4 to Step 8 recursively until all the 
final components have concavity less than , then we get

{ }iC , concavity( )
i

C .  

4.8. Analysis and Discussion  

In our approach, we make the best of the advantage of 
ACD strategy which is that it only deal with salient feature 
notches and keep less significant feature notches, mean-
while, we add several more useful constraints to the process 
of resolving feature points, thus our resulting decomposition 
represents more visually meaningful components, more ele-
gant components well than that of ACD approach [5], espe-
cially than that of exact convex decomposition. 

Moreover, in our resulting decomposition, the number of 
pieces is greatly less than that of whatever exact convex de-
composition, regardless of emphasizing minimizing number, 
due to our method uses ACD strategy which provides a 
mechanism to focus on key features and ignore unimportant 
features. Compared with ACD approach [5], the number of 
pieces generated by our approach is also less, since we take 
extra helpful constraints to remove many problems produced 
by ACD approach itself.  

5. COMPLEXITY ANALYSIS 

Theorem: Let {
i

C }, i = 1,…, m, be a -approximate 

convex decomposition of a polygon P  with n vertices, r 

notches and k holes (k = 0,1,2…). Polygon P can be decom-

posed into {
i

C } in O (nr) time using our framework. 

Proof:  

(1) When k = 0, i.e., polygon P has no holes.  

For each iteration, we compute the convex hull of P and 

the concavity of P in linear time in the number vertices of P 

[21]. In order to compute the concavity of P, we need to pair 

up the bridges and pockets which demands O(n) time, com-

pute the distance from the pockets to the bridges and meas-

ure concavity(P) using H-Concavity, which takes O(n) time. 

Moreover, Resolve step splits P into 
1

C
 
and 

2
C

 
in O(n) 

time, and the several constraints take O(n) time, too. Hence, 

each iteration takes O(n) time in our framework. 

If the resulting decomposition has m components, the to-

tal number of iterations is m-1; after we split P into 
1

C
 
and

2
C

 
each time, at most three new vertices are created. So the 

total time required for our framework decomposing polygon 

P without holes is O(n+(n+3)+…+(n+3 (m-2))) = O(n (m-

1) + 3  
( 1) ( 2)

2

m m
) = O(nm+

2
m ).  

(2) When k > 0, i.e., polygon P  has some holes.  

Firstly, we estimate the concavity of a hole locally using 

its principal axis (O(n) time) or its medial axis (Linear time) 

or shortest paths (Linear time), afterwards, we add a diagonal 

between the vertex with the maximum concavity and its 

closest vertex on P (O(n) time). At most three new vertices 

are created when each hole connects to
0

P . Hence, resolving 

k holes, which equals to join into a single entity without 

holes, takes O (nk+ 2
k ) time.  

In an analogous manner, for each iteration, the process 

take O(n) time, too. Hence, the time required for formal de-

composition is O(n+(n+3)+…+(n+3 (m-2))) = O(n (m-

1)+3
( 1) ( 2)

2

m m
) = O(nm+

2
m ). Therefore, the total 

time required for our framework decomposing polygon P 

containing holes is O(nm+
2

m )+ O (nk+ 2
k ) time.  

 Accordingly, we consider two cases (k =0; k>0) together 

to come to a conclusion: Polygon P with n vertices, r notches 

and k holes (k = 0,1,2…) can be decomposed into {
i

C } in 

O(nm+
2

m ) + O (nk+ 2
k ) time. Since m r+1 , k<r,  

O (nm+
2

m )+ O (nk+ 2
k ) = O (n(m+k) +

2
m + 2

k ) =  

O (nr+
2

r ), because r < n, O (nr+
2

r ) = O (nr). Hence, 

using our framework to do the partition of polygon P with 

holes or without holes takes O (nr) time. Q.E.D.  

Our framework has O (nr) time complexity as the same 

as that of ACD approach [5]. In contrast to other methods, 

such as Green’s approach [22] has O (
2 2

r n ) time complexi-

ty, Keil’s approach [18] has O(
2 2 logr n n ) time complexi-
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ty, our approach could be more efficient to generate more 

naturally visual partitions than other decomposing methods.  

6. EXPERIMENTAL RESULTS AND APPLICATIONS  

We will show some examples illustrating the superiority, 
flexibility and applicability of our approach. All the exam-
ples presented in this paper were made on a 2.67 GHz Penti-
um IV computer with 2GB memory. 

6.1. Decomposing a Polygon Without Holes  

Compared with ACD approach [5], our approach makes 
many significant improvements, so as to can generate more 
naturally visual decomposition, more graceful and beautiful 
final components.  

Fig. (8a) shows the decomposition of this fish polygon 
by using the ACD approach, the partition using our approach  
 

is shown in Fig. (8b). As we can see, the result using our 
approach in Fig. (8b) has better visual quality than that in 
Fig. (8a), e.g., some of the final components shown in Fig. 
(8a) are long, narrow, or serrate, not harmonious, while the 
components shown in Fig. (8b) are elegant and beautiful. 

We present another comparison to demonstrate the supe-
riority and effectiveness of our method for decomposing a 
polygon without holes, see Fig. (9).  

6.2. Decomposing a Polygon Containing Holes 

The most important property of our framework is that it 
can partition a polygon with holes into “approximately con-
vex” components availably and quickly. Our approach is 
suitable for decomposing rich variety of polygons with arbi-
trary many holes, regardless of the complexity of the input.  

The result of Fig. (10a) shows that our approach can be 
used to decompose whatever complex polygon with arbitrary  

  

 

(a) 

 

 

(b) 

Fig. (8). Comparison of decomposing results: (a) The decomposing result using the ACD approach; (b) The decomposing result using our 

approach.  
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(a) 

 

(b) 

Fig. (9). Comparison of decomposing results: (a) The decomposing result using the ACD approach; (b) The decomposing result using our 

approach. 

 

 

(a) 

Fig. (10). Contd… 
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(b) 

Fig. (10). Decomposing a polygon with holes using our approach: (a) A polygon denoted by red lines containing 16 holes denoted by brown 

lines is decomposed; (b) A polygon denoted by red lines containing five holes denoted by brown lines is decomposed. 

 

 

(a) 

 

(b) 

Fig. (11). Decomposing a polygon with holes using our approach: (a) A polygon denoted by red lines containing one hole denoted by brown 

lines is decomposed; (b) A polygon denoted by red lines containing three holes denoted by brown lines is decomposed. 
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(a) 

 

 

(b) 

 

 

(c) 

 

Fig. (12). Contd… 
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(d) 

Fig. (12). The hierarchical representation for decomposing a polygon with five holes, tolerance  decreases from (a) to (d): (a) = 0.1; (b) = 

0.08; (c) = 0.05; (d) = 0.02. 

 

Table 1. Lists the summary information for the decomposing models shown in this paper. As we can see, our approach achieves a 

good combination of speed, decomposed quality, and desirable robustness. 

 
 

number of holes. Fig. (10b) shows another decomposing 
example using our approach, we could observe that the result 
reflects visually important features, such as some small ser-
rations in the peripheral boundary marked by red lines are 
remained, not decomposed, while several sharp concave fea-
tures are decomposed.  

Figs. (11a, b) demonstrate the applicability and superiori-
ty of our approach for decomposing a polygon with many 
holes. Note that a and b are two armor plate models contain-
ing one hole, three holes respectively, the decomposing re-
sults show that our approach could generate the elegant, vis-
ual meaningful, harmonious partitions.  

 Table 1. Summary information for models studied in the 
paper. The front four rows show the comparison between the 
decomposing results using ACD approach [5] and the de-
composing results using our approach; the behind four rows 
show the partitions of polygon with holes using our method. 

6.3. Hierarchical Representations 

Our framework sets a set of tolerances  to attain an ele-
gant hierarchical representation and high visual quality de-
compositions, as shown in Fig. (12).  

6.4. Decomposing 2D Graphs 

Besides, our framework could be used to decompose 
2D graphs. Fig. (13) shows three examples of decomposing 
2D graphs, the results using our framework are visual mean-
ingful, beautiful, and reflecting the concave features natural-
ly. 

6.5. Decomposing Surfaces  

 Here, we try to apply our framework to decomposing 3D 
surfaces. The results shown in Fig. (14) demonstrate the ap-
plicability of our framework.  

CONCLUSION 

A unified framework for decomposing any simple poly-
gon, with or without holes is presented in this paper. The 
target polygon containing holes is transformed into a poly-
gon without holes by combining the external polygon and 
isolated holes into a single entity, and then we only need to 
handle the decomposition of polygon without holes. Our 
approach is inspired by ACD strategy; while variety of con-
straints is integrated into our approach to assure produce  
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(a) 

 

(b) 

 

(c) 

Fig. (13). Decomposing 2D graphs: (a) Decomposing a 2D horse graph using our framework; (b) and (c) Decomposing a 2D graph using our 

framework. Observe the decomposition in details in the area of branches and the sharp concave features. 
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(a) 

 

 

(b) 

Fig. (14). Decomposing surfaces: (a), (b) Two vascular surfaces are decomposed using our framework.  

 

more visually meaningful partitions, and more beautiful final 
components.  

Our algorithm has only O (nr) time complexity, so it is 
fast and effective. In addition, an important feature of our 
approach is that we could estimate proper tolerance  from 
target polygonal geometry information to generate a natural-
ly visual decomposition, farther more, to attain the polished 
hierarchical representation. Many experimental results have 
been presented to show the applicability and flexibility of 
our approach. 

Decomposition plays fundamental and critical roles in 
many fields. Certainly, there is still a lot of work remaining 
to be done. We hope to find some effective decomposing 
methods which are related to the physical properties of geo-
metric models.  
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