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Abstract: Repetitive sequential patterns (RSP) mining plays very important roles and has been widely studied in DNA or 
genome, but there are only a few relevant approaches focusing on mining RSP from sequence database. Taking sequence 
<bcbcbcbca> for example, traditional sequential pattern mining algorithms only consider that <bc> appears at one time 
when calculating the support of <bc>, regardless of at least 4 times that <bc> appears within this same data sequence. Ac-
cordingly, to catch much more interesting sequential patterns, repetitive property needs to be involved during the mining 
process. However, currently the most relevant RSP methods focus on DNA analysis considering that they cannot be used 
for recognizing repetitive patterns on events sequences. Therefore, we propose an approach to determine the number of 
times a sequence repeatedly makes an appearance in a certain data sequence. The support value of a sequence could be 
more than 100% as this sequence might repeat in one data sequence, therefore we proposed a strategy to ensure the sup-
port range of repetitive sequence still within [0,100%]. Finally, we proposed an efficient algorithm, called RptGSP, to dis-
cover such repetitive sequential patterns based on improving GSP Algorithm. The experimental results reveal that 
RptGSP can efficiently discover the repetitive patterns. 
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1. INTRODUCTION 

Since sequential patterns (SP) mining was first proposed 
in 1995 [1], some classical SP mining methods, such as Pre-
fixSpan [4], FreeSpan [3], GSP [2], SPAM [6] and SPADE 
[5] have been utilized to improve SP mining efficiency. 
However, the above algorithms do not consider the repetitive 
sequential patterns (RSP) mining problem. RSP can capture 
repetitions of a pattern in different sequences as well as with-
in a sequence as the same item(s) can occur more than once 
in a data sequence. For example, suppose a dataset contains 
two sequences as below: {<bcbcbcbca>; <ca>} and a given 
minimum support threshold min_sup =2. Traditional SP min-
ing methods can only identify <ca> and ignore <bc> because 
the support of <ca> and <bc> is in the ratio of 2:1, although 
<bc> continuously occurs four times when the first data se-
quence is scanned. Then sequences with repetitive property, 
such as <bc>, are called repetitive sequential patterns (RSP). 
RSP mining approaches consider that a sequence/item might 
repeat many times in a data sequence, which can help ana-
lysts to capture more useful information. In fact, mining RSP 
is helpful for deeply understanding the relation of items in 
many applications, such as DNA periodic analysis, network 
attack detection, outlier pattern detection, and other applica-
tion fields [7-15]. 
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In order to mine RSP reasonably and efficiently, several 
problems need to be solved: (1) How to define the repetitive 
times that a sequence occurs in a data sequence. For exam-
ple, how many times that <bc> is repeated in a data sequence 
<ba(ac)bc>. (2) How to calculate the support of repetitive 
sequential candidates. (3) Generally, traditional SP mining 
methods use [0,100%] to express the range of a pattern’s 
support value. But if we take RSP into consideration, this 
support range would extend above 100% because a sequence 
may occur repeatedly in a data sequence. Thus, how to re-
strict a pattern’s repetitive support still in [0,100%] is a prob-
lem that needs to be solved. (4)The last challenge is how to 
design an efficient method to discover such repetitive pat-
terns. Most of the existing RSP algorithms focus on DNA 
analysis [8, 11] that cannot be used to identify repetitive pat-
terns due to typical data characteristic. Although a few algo-
rithms have been proposed for mining frequent episode or 
periodic patterns in a sequence dataset [7, 9, 10, 12-14, 16, 
17], there is not a unified definition of RSP. 

Hence, in order to address the above problems, we have 
designed some good solutions as follows. 

(1) We proposed an approach to determine the number of 
times one sequence repeatedly makes an appearance in a 
certain data sequence;  

(2) The support value of a sequence would be more than 
100% because this sequence might repeat in one data se-
quence. Then we proposed a strategy to ensure the support 
range of repetitive sequence still within [0,100%].  
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(3) We proposed an efficient algorithm, called RptGSP, 
to discover such repetitive patterns by improving a classic 
sequential pattern mining method GSP.  

The rest of this paper is organized as follows. The related 
work is discussed in Section 2. Section 3 describes the solu-
tions to these problems and our algorithm RptGSP, is fol-
lowed by experimental results in Section 4. Section 5 con-
cludes the paper and points out our future work. 

2. RELATED WORK 

Very limited publications focus on mining repetitive se-
quential patterns from sequence dataset. We discuss typical 
existing papers concerning RSP in this section. A study [7] 
proposed the concept of RSP that would allow items to be 
overlapped when calculating the repetitive supports. For ex-
ample, Let ds=<BDABDBAA> be a data sequence, <BDB> 
occurs twice in ds at positions <1, 2, 5> and <5, 6, 7> re-
spectively. [10, 12] The definition of RSP [10,12] is the 
same as that in given earlier [7]. Another study [10] pro-
posed an efficient algorithm CRGSgrow to solve the prob-
lem of how to compress repetitive gapped sequential pat-
terns. One of the studies [12] proposed a navigation pattern 
clustering approach based on closed repetitive gapped sub-
sequences. But the above RSP definition is different with 
that in this paper which does not allow the overlap property. 

The concept of gap weight in various subsequences was 
proposed [11], which introduces the gap definition in differ-
ent events. This paper designed an efficient algorithm EWM 
to find repetitive subsequences with gap weight. It used dif-
ferent definitions of RSP [7] in which it does not distinguish 
between non-overlapping subsequences and overlapping 
ones. Another study [8] introduced a repetitive expansion 
conception which is applied in DNA replication. Zhang et al. 
discussed DNA sequences also focusing on discovering pe-
riodic patterns with gap requirement [9].  

There are few approaches which focus on finding RSP 
just from a single data sequence [13, 16]. Mannila et al. pro-
posed an approach of mining episode to catch frequent epi-
sodes within a sequence [13]. An episode is defined as a se-
ries of events occurring relatively close to one another. If an 
episode is a sub-sequence of the series of events occurring in 
the window, then it is also supported by the window. In a 
study [16], a sequence was separated into windows without 
overlapping. If a sequence occurs in at least a certain number 
of windows, then it is recognized as a frequent pattern. A 
priori property can be utilized with this definition by seg-
menting a pattern into windows and calculating the number 
of these windows in which a pattern frequently appears. 
However, patterns that span multiple windows would not be 
caught, and in some cases, a reasonable window width is 
hard to make sure of. Yang et al. researched on how to find 
asynchronous periodic patterns from time series data [17]. In 
this model, shifts in the appearance of patterns are permitted 
to filter out random noises. This paper also took a range of 
periods into consideration that are not same as mentioned in 
the literature [16], although there is still a restriction on the 
maximum length of a period. 

A method was proposed [14] for identifying iterative pat-
terns, which capture occurrences in the semantics of Mes-

sage Sequence Chart/Live Sequence Chart, a standard in 
software modeling. Iterative pattern is known as a series of 
events which are repeated within and across sequences with 
different underlying target formalism and semantics. Differ-
ent search space pruning strategies and mining algorithms 
are used to efficiently mine recurrent rules. Another study 
[15] used the definition of iterative patterns similar to one 
mentioned earlier[14]. It introduced a strategy to find genera-
tors of iterative patterns and investigated catching of iterative 
generators from program execution traces. Generators are the 
minimal members of an equivalence class, while closed pat-
terns are the maximal members. An equivalence class in turn 
is a set of frequent patterns with the same support and corre-
sponding pattern instances. 

3. RPTGSP 

3.1. Basic Definition 

Let an items set be I= {i1, i2,…, in}, and an itemset is giv-
en as a subset of I. A sequence represents an ordered list of 
itemsets, which can be described as < s1, s2,…, sl >, where sj 
⊆I (1≤ j ≤ l). sj is also named an element of sequence, de-
scribed as (x1, x2,…, xm), where xk means one item, and xk ∈I 
(1≤ k ≤ m). For simplicity, if an element only contains one 
item, the bracket could be omitted, i.e., (x1) can be written as 
x1. An item of a sequence can appear at the most once in one 
element, but it can occur multiple times in various elements. 
Length(s) represents the length of sequence s, which is the 
total number of items in all elements in s. Size(s) is the size 
of s, which means the total number of elements in s. For ex-
ample, assume a sequence s=<a(bc)ae> is comprised of 4 
elements a, (bc), a and e; meanwhile, it is also comprised of 
5 items a, b, c a and e. Thus s is a 4-size and 5-length se-
quence.  

Sequence sα=<α1,α2,…,αn> is named a sub-sequence of 
sequence sβ=< β1, β2,…, βm > and sβ is a super-sequence of 
sα, described as sα ⊆ sβ, if there exists 1≤ j1 < j2<…< jn ≤m 
such as α1 ⊆ βj1, α2 ⊆ βj2,…, αn ⊆ βjn. It also means that sβ 
contains sα . For example, <c>, <ac> and < (ab) d> are sub-
sequence of < (ab) c d>. 

We use a set of tuples <sid,ds> to represent a sequence 
dataset D, where ds is the data sequence and sid is the id of 
ds. |D| is the number of tuples in D. The set of tuples con-
taining sequence s is described as {<s>}. s_count(α) is the 
support count of α; it is the number of {<α>}, i.e., 
s_count(α)= |{<α>}|=|{<sid, ds>| <sid, ds> ∈D ∧ (α ⊆ ds)}|. 
The support of α is the ratio of s_count(α) to total number of 
tuples in D, i.e., s(α)=s_count(α)/|D|. If s(α)≥min_sup, then α 
would be recognized as a frequent sequential pattern; if 
s(α)≥min_sup, then we consider α as infrequent, where 
min_sup is a minimum support threshold given by users or 
experts. The task of sequential pattern mining is to discover 
the set of all sequential patterns. 

3.2. Repetitive Containment 

As a data sequence (e.g., ds =<bcbcbcbca>) may contain a 
sequence (e.g., s =<bc>) more than once without overlap be-
tween the repetitive sequences, the key problem we need to 
know is the position of s from the left side of ds. Accordingly, 
it is important to define the repetitive containment problem. 



Mining Non-overlapping Repetitive Sequential Patterns by Improving GSP Algorithm The Open Cybernetics & Systemics Journal, 2015, Volume 9    475 

(1) Definition 1�Left appearance end position 
Assume a data sequence ds = <e1e2…en>, and s as a se-

quence, where ei is an element(1≤i≤n). If ∃i (1<i≤n), s.t. 
s⊆<e1…ei>∧s⊄<e1…ei-1>, then e is named the left appear-
ance end position, described as LAE(s,ds)=i; if s⊆<e1> then 
LAE(s,ds)=1; if s⊄ds, then LAE (s,ds) =0. In particular, if s is 
a 1-size sequence, such as <e> and < (ab)>, s is not repeti-
tive; hence its support can be calculated per the traditional 
way of valuing support. 

To compute the times t that s occurs in ds=<e1e2…en>, 
first we obtain the left appearance end position i of s in ds 
by LAE(s, ds). If i >0 then t=t+1. Secondly, let ds=<d 

i+1…dn>, repeat the above process until LAE(s, ds)=0. The 
following algorithm follows this pattern. 

Algorithm 1: RptTime(s,ds) 

Input: a data sequence ds=<e1e2…en>; a sequence s 
Output: repetitive times 
(1) Set t=0; 
(2) i= LAE(s, ds); 
(3) while (i≠0) do { 
(4) ds=<ei+1…en>; 
(5) i= LAE(s,ds); 
(6) t++; 
(7) } 
(8) return t; 

Example 1. Given s=<ab>, ds1=<aa(ab)b>, 
ds2<ababababc>. LAE(s, ds1)=3, LAE(s, ds2)=2, RptTimes 
(s,ds1)=1, RptTimes (s, ds2)=4, RptTimes (<aba>,ds2)=2. 

3.3. RSP Support Calculation 

According to the definition of support in traditional se-
quential pattern mining, if a data sequence ds contains a se-
quence s, then 1 will be added to the support count of s no 
matter how many times that s occurs in ds; as a result, the 
range of s(s) would be [0,100%]. But now, if we still calcu-
late supports in the traditional way, the maximum of s(s) 
would be higher than 100% when taking repetitive property 
into consideration. This does not accord with the traditional 
support-confidence framework and would make users con-
fused when setting the min_sup. Therefore, to ensure the 
repetitive support of s, i.e. the range of s(s) is still within 
[0,100%], we have designed a novel strategy to address this 
problem.  

(1) Definition 2�repetitive support count. 
The repetitive support count of sequence s, denoted as 

rps_c (s) describes the total number of times that one se-
quence s has made repeated appearances in a certain dataset 
D. 

 ∑ ∈∀== )),,(()(_ DdsdssRptTimesttscrps         (1) 

(2) Definition 3�repetitive support. 
Assuming a sequence has the maximum support count in 

database D, then its support count will be denoted as 
max_s_c; assuming a sequence owns the maximum repeti-

tive support count in D, its repetitive support count will be 
denoted as max_rps_c; and the repetitive support of a se-
quence s, denoted as rps(s), is 
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We restrict the support range of repetitive sequence still 
within [0,100%] by equation 2 that users or experts could 
conveniently set up the repetitive support threshold in the 
traditional method.  

3.4. RptGSP Algorithm 

We design an RSP mining algorithm by improving GSP, 
called RptGSP. GSP only gets each item’s support count 
during its first data scanning, RptGSP can also obtain each 
item’s repetitive support count so as to obtain max_s_c and 
max_rps_c. Subsequently, each item’s repetitive support 
could be calculated by utilizing equation 2. For any sequence 
candidate c, RptGSP uses equation 1 to get c’s repetitive 
support count, rps_c (c), and then its repetitive support val-
ue, rps(c), would be obtained by equation 2. RptGSP mining 
process is shown in the following pseudocode. 

Algorithm 2 : RptGSP 
Input: Dataset D, min_sup;  
Output: RSP; 
1 C1←First_scan(D); // store all items and their infor-

mation into C1, including s_count and rps_c. 
2 Find max_s_c and max_rps_c in all items; 
3 for each item s, calculate rps(s) by equation 2;  
4 F1←{<{f}>|f∈ C1, rps(f)≥min_sup }; 
5 for (k=2; Fk-1≠∅; k++) do 
6 Ck←generation (Fk-1); 
7 for each candidate c∈ Ck  
8 for each data sequence ds∈ D 
9 if (ds contains c) 
10 c.rps_c=+RptTimes (c,ds); 
11 endfor 
12 calculate rps(c) by equation 2; 
14 endfor 
15 Fk←{ c∈ Ck| rps(c)≥min_sup }; 
16 endfor 
17 RSP=∪kFk; 
18 return RSP; 
Line 1 scans sequence database D at first pass and gets 

s_count(s), rps_c (s) of every item s and stores them in C1. 
Lines 2-3 get max_s_c, max_rps_c and calculate rps(s) by 
using equation 2; Line 4 gets 1-length repetitive sequential 
patterns. Note that the repetitive support threshold min_sup 
here is a percentage within [0,100%]. Lines 7-14 are to cal-
culate the repetitive support of candidate c. The other lines 
are almost the same as GSP. Because repetitive sequences 
still meet Apriori properties, the candidate generation func-
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tion generation(Fk-1) (Line 6) in GSP still works well here, 
and it is the same as the original GSP and is omitted here.  

4. EXPERIMENTS 

We compared our algorithm with GSP from two aspects: 
the number of patterns and their runtime. Four datasets gen-
erated by IBM data generator are as follows: 

Dataset1(DS1) is C8_T4_S6_I6_DB10k_N100;  
Dataset2(DS2) is C12_T4_S6_I6_DB10k_N100; 
Dataset3(DS3) is C10_T8_S20_I10_DB10k_N200; 
Dataset3(DS4) is C16_T4_S6_I6_DB10k_N100. 
C, T, S, I, DB and N describe characteristics of sequence 

data. C means the average number of elements in each se-
quence; T reveals the average number of items in each ele-
ment; I shows the average size of items per element in poten-
tially maximal large sequences; DB is the number of data 
sequences; and N is the number of items. 

The experimental results are shown in Figs. (1) and (2). 
From Fig. (1), we can clearly find that RptGSP has the abil-
ity to mine more sequential patterns than GSP at the same 
min_sup, because it caters for the repetitive property when 
calculating the candidate support.  

 

 

 

 
Fig. (1). The number of patterns on the four datasets. 

The running time of RptGSP is also higher than GSP, es-
pecially with the min_sup decreasing, which is shown in Fig. 
(2). The reason is that in order to calculate the repetitive 
times that a subsequence s appears in a data sequence, the 
rest of the data sequence needs to be scanned after scanning 
the left appearance end position, whereas GSP does not need 
to do this step. 

 

 

 

 
Fig. (2). Runtime on the four datasets 

5. CONCLUSION AND FUTURE WORK 

Repetitive sequential patterns (RSP) are usually used to 
understand those special behaviors of repetitive sequences 
and thus have attracted increasing attention in the recent 
years. In fact, mining RSP is helpful for deeply understand-
ing the relations of items in many applications, such as DNA 
periodic analysis, network attack detection, and outlier pat-
tern detection. Accordingly, this paper has defined the repeti-
tive containment problem and proposed an approach to de-
termine the times one sequence makes repeated appearances 
in a certain data sequence; secondly, we have also proposed 
a strategy to restrict any pattern’s repetitive support still in 
[0,100%]; finally, we have also proposed an efficient algo-
rithm, called RptGSP, to discover such RSP based on im-
proving GSP Algorithm. RptGSP has been compared with 
GSP on four datasets, and experiments and comparisons 
clearly demonstrated that RptGSP has the ability to efficient-
ly capture interesting RSP.  
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At present, there is no work to consider the repetitive 
property during the negative sequential patterns mining pro-
cess. So we are further working on mining repetitive nega-
tive sequential patterns.  
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