
Send Orders for Reprints to reprints@benthamscience.ae
 The Open Cybernetics & Systemics Journal, 2015, 9, 473-477 473

 1874-110X/15 2015 Bentham Open

Open Access
Mining Non-overlapping Repetitive Sequential Patterns by Improving
GSP Algorithm

Yongshun Gong1, Xiangjun Dong *, 1, Xiqing Han 2 and Ruilian Hou1

1School of Information, Qilu University of Technology, Shandong, Jinan, 250353, P.R. China
2Administration Office, Shandong Institute of Commerce and Technology, Shandong, Jinan, 250103, P.R. China

Abstract: Repetitive sequential patterns (RSP) mining plays very important roles and has been widely studied in DNA or
genome, but there are only a few relevant approaches focusing on mining RSP from sequence database. Taking sequence
<bcbcbcbca> for example, traditional sequential pattern mining algorithms only consider that <bc> appears at one time
when calculating the support of <bc>, regardless of at least 4 times that <bc> appears within this same data sequence. Ac-
cordingly, to catch much more interesting sequential patterns, repetitive property needs to be involved during the mining
process. However, currently the most relevant RSP methods focus on DNA analysis considering that they cannot be used
for recognizing repetitive patterns on events sequences. Therefore, we propose an approach to determine the number of
times a sequence repeatedly makes an appearance in a certain data sequence. The support value of a sequence could be
more than 100% as this sequence might repeat in one data sequence, therefore we proposed a strategy to ensure the sup-
port range of repetitive sequence still within [0,100%]. Finally, we proposed an efficient algorithm, called RptGSP, to dis-
cover such repetitive sequential patterns based on improving GSP Algorithm. The experimental results reveal that
RptGSP can efficiently discover the repetitive patterns.

Keywords: GSP, Repetitive pattern, Sequence database.

1. INTRODUCTION

Since sequential patterns (SP) mining was first proposed
in 1995 [1], some classical SP mining methods, such as Pre-
fixSpan [4], FreeSpan [3], GSP [2], SPAM [6] and SPADE
[5] have been utilized to improve SP mining efficiency.
However, the above algorithms do not consider the repetitive
sequential patterns (RSP) mining problem. RSP can capture
repetitions of a pattern in different sequences as well as with-
in a sequence as the same item(s) can occur more than once
in a data sequence. For example, suppose a dataset contains
two sequences as below: {<bcbcbcbca>; <ca>} and a given
minimum support threshold min_sup =2. Traditional SP min-
ing methods can only identify <ca> and ignore <bc> because
the support of <ca> and <bc> is in the ratio of 2:1, although
<bc> continuously occurs four times when the first data se-
quence is scanned. Then sequences with repetitive property,
such as <bc>, are called repetitive sequential patterns (RSP).
RSP mining approaches consider that a sequence/item might
repeat many times in a data sequence, which can help ana-
lysts to capture more useful information. In fact, mining RSP
is helpful for deeply understanding the relation of items in
many applications, such as DNA periodic analysis, network
attack detection, outlier pattern detection, and other applica-
tion fields [7-15].

*Address correspondence to this author at the School of Information, Qilu
University of Technology, Shandong, Jinan, 250353, P.R China; Tel: +86-
531-89631251; E-mail: d-xj@163.com
A preliminary version of this article has been published in 2014
International Conference on Machine Tool Technology and Mechatronics
Engineering, 2097-2100

In order to mine RSP reasonably and efficiently, several
problems need to be solved: (1) How to define the repetitive
times that a sequence occurs in a data sequence. For exam-
ple, how many times that <bc> is repeated in a data sequence
<ba(ac)bc>. (2) How to calculate the support of repetitive
sequential candidates. (3) Generally, traditional SP mining
methods use [0,100%] to express the range of a pattern’s
support value. But if we take RSP into consideration, this
support range would extend above 100% because a sequence
may occur repeatedly in a data sequence. Thus, how to re-
strict a pattern’s repetitive support still in [0,100%] is a prob-
lem that needs to be solved. (4)The last challenge is how to
design an efficient method to discover such repetitive pat-
terns. Most of the existing RSP algorithms focus on DNA
analysis [8, 11] that cannot be used to identify repetitive pat-
terns due to typical data characteristic. Although a few algo-
rithms have been proposed for mining frequent episode or
periodic patterns in a sequence dataset [7, 9, 10, 12-14, 16,
17], there is not a unified definition of RSP.

Hence, in order to address the above problems, we have
designed some good solutions as follows.

(1) We proposed an approach to determine the number of
times one sequence repeatedly makes an appearance in a
certain data sequence;

(2) The support value of a sequence would be more than
100% because this sequence might repeat in one data se-
quence. Then we proposed a strategy to ensure the support
range of repetitive sequence still within [0,100%].

474 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Gong et al.

(3) We proposed an efficient algorithm, called RptGSP,
to discover such repetitive patterns by improving a classic
sequential pattern mining method GSP.

The rest of this paper is organized as follows. The related
work is discussed in Section 2. Section 3 describes the solu-
tions to these problems and our algorithm RptGSP, is fol-
lowed by experimental results in Section 4. Section 5 con-
cludes the paper and points out our future work.

2. RELATED WORK

Very limited publications focus on mining repetitive se-
quential patterns from sequence dataset. We discuss typical
existing papers concerning RSP in this section. A study [7]
proposed the concept of RSP that would allow items to be
overlapped when calculating the repetitive supports. For ex-
ample, Let ds=<BDABDBAA> be a data sequence, <BDB>
occurs twice in ds at positions <1, 2, 5> and <5, 6, 7> re-
spectively. [10, 12] The definition of RSP [10,12] is the
same as that in given earlier [7]. Another study [10] pro-
posed an efficient algorithm CRGSgrow to solve the prob-
lem of how to compress repetitive gapped sequential pat-
terns. One of the studies [12] proposed a navigation pattern
clustering approach based on closed repetitive gapped sub-
sequences. But the above RSP definition is different with
that in this paper which does not allow the overlap property.

The concept of gap weight in various subsequences was
proposed [11], which introduces the gap definition in differ-
ent events. This paper designed an efficient algorithm EWM
to find repetitive subsequences with gap weight. It used dif-
ferent definitions of RSP [7] in which it does not distinguish
between non-overlapping subsequences and overlapping
ones. Another study [8] introduced a repetitive expansion
conception which is applied in DNA replication. Zhang et al.
discussed DNA sequences also focusing on discovering pe-
riodic patterns with gap requirement [9].

There are few approaches which focus on finding RSP
just from a single data sequence [13, 16]. Mannila et al. pro-
posed an approach of mining episode to catch frequent epi-
sodes within a sequence [13]. An episode is defined as a se-
ries of events occurring relatively close to one another. If an
episode is a sub-sequence of the series of events occurring in
the window, then it is also supported by the window. In a
study [16], a sequence was separated into windows without
overlapping. If a sequence occurs in at least a certain number
of windows, then it is recognized as a frequent pattern. A
priori property can be utilized with this definition by seg-
menting a pattern into windows and calculating the number
of these windows in which a pattern frequently appears.
However, patterns that span multiple windows would not be
caught, and in some cases, a reasonable window width is
hard to make sure of. Yang et al. researched on how to find
asynchronous periodic patterns from time series data [17]. In
this model, shifts in the appearance of patterns are permitted
to filter out random noises. This paper also took a range of
periods into consideration that are not same as mentioned in
the literature [16], although there is still a restriction on the
maximum length of a period.

A method was proposed [14] for identifying iterative pat-
terns, which capture occurrences in the semantics of Mes-

sage Sequence Chart/Live Sequence Chart, a standard in
software modeling. Iterative pattern is known as a series of
events which are repeated within and across sequences with
different underlying target formalism and semantics. Differ-
ent search space pruning strategies and mining algorithms
are used to efficiently mine recurrent rules. Another study
[15] used the definition of iterative patterns similar to one
mentioned earlier[14]. It introduced a strategy to find genera-
tors of iterative patterns and investigated catching of iterative
generators from program execution traces. Generators are the
minimal members of an equivalence class, while closed pat-
terns are the maximal members. An equivalence class in turn
is a set of frequent patterns with the same support and corre-
sponding pattern instances.

3. RPTGSP

3.1. Basic Definition

Let an items set be I= {i1, i2,…, in}, and an itemset is giv-
en as a subset of I. A sequence represents an ordered list of
itemsets, which can be described as < s1, s2,…, sl >, where sj
⊆I (1≤ j ≤ l). sj is also named an element of sequence, de-
scribed as (x1, x2,…, xm), where xk means one item, and xk ∈I
(1≤ k ≤ m). For simplicity, if an element only contains one
item, the bracket could be omitted, i.e., (x1) can be written as
x1. An item of a sequence can appear at the most once in one
element, but it can occur multiple times in various elements.
Length(s) represents the length of sequence s, which is the
total number of items in all elements in s. Size(s) is the size
of s, which means the total number of elements in s. For ex-
ample, assume a sequence s=<a(bc)ae> is comprised of 4
elements a, (bc), a and e; meanwhile, it is also comprised of
5 items a, b, c a and e. Thus s is a 4-size and 5-length se-
quence.

Sequence sα=<α1,α2,…,αn> is named a sub-sequence of
sequence sβ=< β1, β2,…, βm > and sβ is a super-sequence of
sα, described as sα ⊆ sβ, if there exists 1≤ j1 < j2<…< jn ≤m
such as α1 ⊆ βj1, α2 ⊆ βj2,…, αn ⊆ βjn. It also means that sβ
contains sα . For example, <c>, <ac> and < (ab) d> are sub-
sequence of < (ab) c d>.

We use a set of tuples <sid,ds> to represent a sequence
dataset D, where ds is the data sequence and sid is the id of
ds. |D| is the number of tuples in D. The set of tuples con-
taining sequence s is described as {<s>}. s_count(α) is the
support count of α; it is the number of {<α>}, i.e.,
s_count(α)= |{<α>}|=|{<sid, ds>| <sid, ds> ∈D ∧ (α ⊆ ds)}|.
The support of α is the ratio of s_count(α) to total number of
tuples in D, i.e., s(α)=s_count(α)/|D|. If s(α)≥min_sup, then α
would be recognized as a frequent sequential pattern; if
s(α)≥min_sup, then we consider α as infrequent, where
min_sup is a minimum support threshold given by users or
experts. The task of sequential pattern mining is to discover
the set of all sequential patterns.

3.2. Repetitive Containment

As a data sequence (e.g., ds =<bcbcbcbca>) may contain a
sequence (e.g., s =<bc>) more than once without overlap be-
tween the repetitive sequences, the key problem we need to
know is the position of s from the left side of ds. Accordingly,
it is important to define the repetitive containment problem.

Mining Non-overlapping Repetitive Sequential Patterns by Improving GSP Algorithm The Open Cybernetics & Systemics Journal, 2015, Volume 9 475

(1) Definition 1�Left appearance end position
Assume a data sequence ds = <e1e2…en>, and s as a se-

quence, where ei is an element(1≤i≤n). If ∃i (1<i≤n), s.t.
s⊆<e1…ei>∧s⊄<e1…ei-1>, then e is named the left appear-
ance end position, described as LAE(s,ds)=i; if s⊆<e1> then
LAE(s,ds)=1; if s⊄ds, then LAE (s,ds) =0. In particular, if s is
a 1-size sequence, such as <e> and < (ab)>, s is not repeti-
tive; hence its support can be calculated per the traditional
way of valuing support.

To compute the times t that s occurs in ds=<e1e2…en>,
first we obtain the left appearance end position i of s in ds
by LAE(s, ds). If i >0 then t=t+1. Secondly, let ds=<d

i+1…dn>, repeat the above process until LAE(s, ds)=0. The
following algorithm follows this pattern.

Algorithm 1: RptTime(s,ds)

Input: a data sequence ds=<e1e2…en>; a sequence s
Output: repetitive times
(1) Set t=0;
(2) i= LAE(s, ds);
(3) while (i≠0) do {
(4) ds=<ei+1…en>;
(5) i= LAE(s,ds);
(6) t++;
(7) }
(8) return t;

Example 1. Given s=<ab>, ds1=<aa(ab)b>,
ds2<ababababc>. LAE(s, ds1)=3, LAE(s, ds2)=2, RptTimes
(s,ds1)=1, RptTimes (s, ds2)=4, RptTimes (<aba>,ds2)=2.

3.3. RSP Support Calculation

According to the definition of support in traditional se-
quential pattern mining, if a data sequence ds contains a se-
quence s, then 1 will be added to the support count of s no
matter how many times that s occurs in ds; as a result, the
range of s(s) would be [0,100%]. But now, if we still calcu-
late supports in the traditional way, the maximum of s(s)
would be higher than 100% when taking repetitive property
into consideration. This does not accord with the traditional
support-confidence framework and would make users con-
fused when setting the min_sup. Therefore, to ensure the
repetitive support of s, i.e. the range of s(s) is still within
[0,100%], we have designed a novel strategy to address this
problem.

(1) Definition 2�repetitive support count.
The repetitive support count of sequence s, denoted as

rps_c (s) describes the total number of times that one se-
quence s has made repeated appearances in a certain dataset
D.

 ∑ ∈∀==)),,(()(_ DdsdssRptTimesttscrps (1)

(2) Definition 3�repetitive support.
Assuming a sequence has the maximum support count in

database D, then its support count will be denoted as
max_s_c; assuming a sequence owns the maximum repeti-

tive support count in D, its repetitive support count will be
denoted as max_rps_c; and the repetitive support of a se-
quence s, denoted as rps(s), is

crpsmax

csmax

D

scrps
srps

__

__
*

||

)(_
)(= (2)

We restrict the support range of repetitive sequence still
within [0,100%] by equation 2 that users or experts could
conveniently set up the repetitive support threshold in the
traditional method.

3.4. RptGSP Algorithm

We design an RSP mining algorithm by improving GSP,
called RptGSP. GSP only gets each item’s support count
during its first data scanning, RptGSP can also obtain each
item’s repetitive support count so as to obtain max_s_c and
max_rps_c. Subsequently, each item’s repetitive support
could be calculated by utilizing equation 2. For any sequence
candidate c, RptGSP uses equation 1 to get c’s repetitive
support count, rps_c (c), and then its repetitive support val-
ue, rps(c), would be obtained by equation 2. RptGSP mining
process is shown in the following pseudocode.

Algorithm 2 : RptGSP
Input: Dataset D, min_sup;
Output: RSP;
1 C1←First_scan(D); // store all items and their infor-

mation into C1, including s_count and rps_c.
2 Find max_s_c and max_rps_c in all items;
3 for each item s, calculate rps(s) by equation 2;
4 F1←{<{f}>|f∈ C1, rps(f)≥min_sup };
5 for (k=2; Fk-1≠∅; k++) do
6 Ck←generation (Fk-1);
7 for each candidate c∈ Ck
8 for each data sequence ds∈ D
9 if (ds contains c)
10 c.rps_c=+RptTimes (c,ds);
11 endfor
12 calculate rps(c) by equation 2;
14 endfor
15 Fk←{ c∈ Ck| rps(c)≥min_sup };
16 endfor
17 RSP=∪kFk;
18 return RSP;
Line 1 scans sequence database D at first pass and gets

s_count(s), rps_c (s) of every item s and stores them in C1.
Lines 2-3 get max_s_c, max_rps_c and calculate rps(s) by
using equation 2; Line 4 gets 1-length repetitive sequential
patterns. Note that the repetitive support threshold min_sup
here is a percentage within [0,100%]. Lines 7-14 are to cal-
culate the repetitive support of candidate c. The other lines
are almost the same as GSP. Because repetitive sequences
still meet Apriori properties, the candidate generation func-

476 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Gong et al.

tion generation(Fk-1) (Line 6) in GSP still works well here,
and it is the same as the original GSP and is omitted here.

4. EXPERIMENTS

We compared our algorithm with GSP from two aspects:
the number of patterns and their runtime. Four datasets gen-
erated by IBM data generator are as follows:

Dataset1(DS1) is C8_T4_S6_I6_DB10k_N100;
Dataset2(DS2) is C12_T4_S6_I6_DB10k_N100;
Dataset3(DS3) is C10_T8_S20_I10_DB10k_N200;
Dataset3(DS4) is C16_T4_S6_I6_DB10k_N100.
C, T, S, I, DB and N describe characteristics of sequence

data. C means the average number of elements in each se-
quence; T reveals the average number of items in each ele-
ment; I shows the average size of items per element in poten-
tially maximal large sequences; DB is the number of data
sequences; and N is the number of items.

The experimental results are shown in Figs. (1) and (2).
From Fig. (1), we can clearly find that RptGSP has the abil-
ity to mine more sequential patterns than GSP at the same
min_sup, because it caters for the repetitive property when
calculating the candidate support.

Fig. (1). The number of patterns on the four datasets.

The running time of RptGSP is also higher than GSP, es-
pecially with the min_sup decreasing, which is shown in Fig.
(2). The reason is that in order to calculate the repetitive
times that a subsequence s appears in a data sequence, the
rest of the data sequence needs to be scanned after scanning
the left appearance end position, whereas GSP does not need
to do this step.

Fig. (2). Runtime on the four datasets

5. CONCLUSION AND FUTURE WORK

Repetitive sequential patterns (RSP) are usually used to
understand those special behaviors of repetitive sequences
and thus have attracted increasing attention in the recent
years. In fact, mining RSP is helpful for deeply understand-
ing the relations of items in many applications, such as DNA
periodic analysis, network attack detection, and outlier pat-
tern detection. Accordingly, this paper has defined the repeti-
tive containment problem and proposed an approach to de-
termine the times one sequence makes repeated appearances
in a certain data sequence; secondly, we have also proposed
a strategy to restrict any pattern’s repetitive support still in
[0,100%]; finally, we have also proposed an efficient algo-
rithm, called RptGSP, to discover such RSP based on im-
proving GSP Algorithm. RptGSP has been compared with
GSP on four datasets, and experiments and comparisons
clearly demonstrated that RptGSP has the ability to efficient-
ly capture interesting RSP.

Mining Non-overlapping Repetitive Sequential Patterns by Improving GSP Algorithm The Open Cybernetics & Systemics Journal, 2015, Volume 9 477

At present, there is no work to consider the repetitive
property during the negative sequential patterns mining pro-
cess. So we are further working on mining repetitive nega-
tive sequential patterns.

ACKNOWLEDGEMENTS

This work was supported partly by National Natural Sci-
ence Foundation of China (71271125), Natural Science
Foundation of Shandong Province, China (ZR2011FM028)
and Scientific Research Development Plan Project of Shan-
dong Provincial Education Department (J12LN10).

REFERENCES
[1] R. Agrawal and R. Srikant. “Mining sequential patterns,” In

ICDE’95, 1995, pp.3-14.
[2] R. Srikant and R. Agrawal. “Mining sequential patterns: Generaliza-

tions and performance improvements,” In EDBT ’96: Proc. of the 5th
International Conference on Extending Database Technology, Lon-
don, UK, 1996, pp. 3–17.

[3] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu.
“Freespan: frequent pattern-projected sequential pattern mining,” In
KDD ’00: Proc. Of the 6th ACM SIGKDD international conference
on Knowledge discovery and data mining. New York, NY, USA.
2000, pp.355–359.

[4] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M.-C. Hsu. “Prefixspan: Mining sequential patterns efficiently by
prefix-projected pattern growth,” In ICDE ’01: Proc. of the 17th In-
ternational Conference on Data Engineering, Washington, DC, USA,
2001. pp.215-226.

[5] M. J. Zaki. “Spade: An efficient algorithm for mining frequent se-
quences,”Machine Learning, 2001, 42(1-2), pp.31–60.

[6] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. “Sequential pattern
mining using a bitmap representation,” In KDD’02: Proc. of the 8th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, New York, NY, USA, 2002. ACM. pp. 429–435.

[7] B. Ding, D. Lo and J. Han. Efficient Mining of Closed Repetitive
Gapped Subsequences from a Sequence Database. IEEE Computer
Society. ICDE '09: Proceedings of the 2009 IEEE International Con-
ference on Data Engineering, 2009, pp. 1024-1035.

[8] L .Brooke. Heidenfelder, D.Michael . Topal. Effects of sequence on
repeat expansion during DNA replication. Nucleic Acids Research,
Vol. 31, NO. 24, 2003, pp. 7159-7164.

[9] M. Zhang, B. Kao, D. Cheung and K. Yip. “Mining periodic patterns
with gap requirement from sequences,” SIGMOD, 2005.

[10] Y. Tong, L. Zhao, D. Yu and et al. “Mining Compressed Repetitive
Gapped Sequential Patterns Efficiently,” ADMA 2009, pp. 652–660.

[11] E. Lee, W. Kim, J. Ryu and U. Kim. “Efficient Weighted Mining of
Repetitive Subsequences,” SWS '09, Web Society 2009, pp. 66 –70.

[12] C. Ma and W. Shen. “Clustering Navigation Patterns using Closed
Repetitive Gapped Subsequence.,” Logistics Systems and Intelligent
Management, 2010, pp. 1660 – 1663.

[13] H. Mannila, H. Toivonen, and A.I. Verkamo. “Discovery of frequent
episodes in event sequences,” DMKD, 1997, pp.259-289.

[14] D. Lo, S.-C. Khoo, and C. Liu. “Efficient mining of iterative patterns
for software specification discovery,” in KDD, 2007.

[15] D.Lo, Jinyan.Li, Limsoon.Wong, S.-C.Khoo. “Mining Iterative Gen-
erators and Representative Rules for Software Specification Discov-
ery,” In IEEE 2011, pp. 282-296

[16] Jiawei Han, Guozhu Dong, and YiWen Yin. “Efficient mining of
partial periodic patterns in time series database,” In Proc. of 15th In-
ternational Conference on Data Engineering, ICDE 99, pp. 106-115.

[17] Jiong Yang, Wei Wang, and Philip S. Yu. “Mining asynchronous
periodic patterns in time series data,” In Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery
and data mining, Boston, MA USA, 2000. pp.275-279.

Received: May 26, 2015 Revised: July 14, 2015 Accepted: August 10, 2015

© Gong et al.; Licensee Bentham Open.

This is an open access articles licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC
4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium,
provided that the work is properly cited.

