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Abstract: This paper integrated the genetic algorithm (GA) and grey forecasting (GM(1,1)) model into three 
GARCH-type models and proposed the GAGM-GARCH-type models. The GM (1,1) model was used to modify the 
error terms of the GARCH-type models to improve the volatility forecasting performance of the traditional GARCH-
type models. Meanwhile, as for the shortcomings in parameters estimation of GM (1,1) model, the GA was adopted 
to find the optimal grey parameters of GM(1,1) model. Using the stock data of China stock market, the paper com-
pared the performance of the GAGAM-GARCH-type models in out-of-sample volatility forecasting with those of the 
GM-GARCH-type, RGM-GARCH-type, and GARCH-type models. It is indicated by values of the evaluation criteria 
that the GAGM-GARCH-type models have better volatility forecasting performances relative to the other three types 
of GARCH-type models. 
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1. INTRODUCTION 

Volatility is one of the important variables in financial 
economy study. Investment portfolio, asset pricing, risk 
management and monetary policy formulating, all depend on 
volatility. Therefore, it is necessary and important to model 
and forecast volatility of the financial market. To date, there 
are various models to analyze and forecast financial volatili-
ty. Among them, GARCH-type models developed from 
ARCH model [1] are more popular than the other types of 
volatility models. Furthermore, the three GARCH-type mod-
els: GARCH [2], EGARCH [3], and GJR-GARCH models 
[4], are widely used by researchers in modeling and forecast-
ing volatility.  

Financial time series usually contains known and un-
known information due to the complexity of financial mar-
ket. So, it is difficult for the traditional GARCH-type models 
to describe the unknown information in error terms se-
quence. Grey forecasting (GM (1,1)) model proposed by 
Deng is mainly used for a system with the uncertain infor-
mation [5]. It shows advantages such as high short-term 
forecasting precision, less samples, and simple calculation 
[6]. Tseng used the forecasting property of GM (1,1) model 
to modify the error terms of GARCH model and proposed 
GM-GARCH model [7]. Later, Tseng and Wang provided 
GM-EGARCH [8] and GM-GJR-GARCH models [9], utiliz-
ing GM (1,1) model to modify the error terms of EGARCH 
and GJR-GARCH models. The results indicated that the in-
troduction of GM (1,1) model improved the short-term fore-
casting accuracy of the GARCH-type models to a certain 
degree. However, due to the theoretical shortcomings, GM 
(1,1) model  may  produce  larger  forecast  error  when  fore 
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casting the error sequences which are highly volatile. Genet-
ic algorithm (GA) suggested by Holland is a powerful opti-
mization algorithm and has been widely applied to various 
optimization problems. With the advantages of self-
organizing and self-adaption, GA can find the global-optimal 
solution without trapping in the local-optimal points. Based 
on these characteristics, it was indicated that GA can en-
hance the forecasting accuracy of GM (1,1) model [10, 11].  

This paper used GA to estimate the grey parameters of 
GM (1,1) model to increase the accuracy in error sequences 
forecasting, and then improved the forecasting performance 
of the GARCH-type models. The main structure of this paper 
is arranged as follows. Section 1 introduces the research 
background and objective of this paper. Section 2 summariz-
es the theory of GARCH-type and GM-GARCH-type mod-
els. Section 3 describes the theory of GA briefly and designs 
the procedure of GA-based parameter optimization for GM 
(1,1) model. The empirical research on two stocks in China 
stock market is presented in Section 4. Finally, the conclu-
sions and suggestions are provided in Section 5. 

2. GREY GARCH-TYPE MODELS 

2.1. GARCH-Type Models 

Generalized autoregressive conditional heteroskedasticity 
(GARCH) model introduced by Bollerslev is the extension 
of ARCH model, which assumes that the current conditional 
variance is associated with the past conditional variances and 
the past random error. GARCH (p, q) model with Gaussian 
disturbance can be expressed as: 
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Where, ω denotes the uncertainty of the conditional vari-
ance. And αi, βj denote the short-term and long-term influ-
ence on the conditional variances, respectively. These pa-
rameters should satisfy the restrictions:  
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The GARCH model has the ability of describing the phe-
nomenon of volatility clustering and the distribution of fat 
tail existing in the financial assets returns, but it cannot ex-
plain the asymmetric features of the returns.  

Nelson proposed exponential GARCH (EGARCH) mod-
el to capture the leverage effects of the assets price varying 
on conditional variance by adding an asymmetric term into 
the GARCH model. Different from GARCH model, 
EGARCH model defines the conditional variance as the log-
arithm form, which has no restrictions on the parameters 
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Where, the parameter γi reflects the asymmetry of the re-
turns. γi >0 represents that the positive return has a bigger 
impact on the volatility, γi<0 represents the negative return 
having bigger impact on the volatility and that there is no 
asymmetry when γi=0.  

Glosten et al. added another asymmetric term into the 
GARCH model for account of the asymmetry of the return 
behavior. They called the proposed model as GJR-GARCH 
model. The conditional variance equation of GJR-GARCH 
(p, q) is represented as: 
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Where, S- is a dummy variable. S-=1 when   !t"i < 0 , and S-=0 

when   !t"i # 0 . γi=0 indicates no asymmetric effect, while 
γi! 0 indicates the presence of asymmetric effect. Addition-
ally, the parameters of EGARCH model should meet the 
following restrictions: 
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2.2. GM-GARCH-Type Models  

According to the GARCH-type models, the current con-
ditional variance   ! t

2  essentially depends on the past error 
terms !" ( ! < t ), but this is not consistent with the actual 
situation. In the actual financial market, with the exclusion 

of the past price, the error terms are also affected by the un-
certain factors, such as the economic, political, environmen-
tal and other complex factors. These factors cause the chang-
ing of errors all the time. Thus, the current error may have an 
impact on the current conditional variance   ! t

2 , while the 
traditional GARCH-type models may just neglect this point. 

Grey forecasting model is the core model of the grey sys-
tem theory. Using the accumulated generating operation 
(AGO) to preprocess the original data, grey forecasting 
model finds and grasps the development law of the system, 
and then forecasts the future state of the system quantitative-
ly. GM (1,1) model is the commonly used grey forecasting 
model. 

To strengthen the impact of the current error on the cur-
rent conditional variance, GM (1,1) model was used to con-
tinuously modify the squared error term sequences of the 
GARCH-type models (GM-GARCH-type models). That is, 
the one-step-ahead forecasted error values obtained from 
GM (1,1) model were put into the conditional variance equa-
tions for enhancing the forecasting ability of the GARCH-
type models, as shown in the literature [7-9]. The conditional 
variance equations of the GM-GARCH-type models are 
written as: 
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Where,   !̂t  represents the random error forecasts obtained by 
using the GM (1,1) model.  

3. GM-GARCH-TYPE MODELS WITH GA  

3.1. Genetic Algorithm 

Genetic algorithm (GA) is a global optimization algo-
rithm, following the mechanics of biological evolution. It 
mimics the phenomena of reproduction, mating and mutation 
which occur in the process of natural selection and natural 
inheritance. Based on the natural law of survival of the fit-
test, GA produces the preferred individual generation by 
generation and finds the optimal individual by using the ge-
netic operators such as selection, crossover and mutation. 
The details on the genetic operators can be found in the liter-
ature [12].  

GA has its own characteristics apart from all the features 
of evolutionary computation: (1) GA directly deals with the 
code set of the decision variables rather than the actual value 
itself. During the search process, GA neither places any con-
straints on the continuity of the optimized function nor re-
quires existence of the derivative of the optimized function. 
(2) GA looks for optimal solution by using multi-point 
search or group search, which shows high implicit parallel-
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ism. (3) GA is an adaptive search technique. The selection, 
crossover and mutation are operated in a probabilistic man-
ner, increasing the flexibility of the search process. At the 
same time, GA can converge to the optimal solution with a 
large probability. Accordingly, GA shows good ability in the 
global search and optimization. (4) GA has better general 
adaptability and extensibility since GA takes the objective 
function value as the search information without requirement 
regarding the behavior of the function. Meanwhile, GA im-
proves the search efficiency by allowing users to concentrate 
on the higher fitness degree from the search range to the 
search space.  

3.2. The Optimal Grey Parameters by GA 

Grey parameters a and b are important for the GM (1,1) 
model. The forecasting performance of the GM (1,1) model  
depends on the accuracy of the parameters solution to a and 
b. In GM (1,1) model, the estimators of a and b are obtained 
by the least squares method under the assumption that the 
random error sequences are normally distributed. However, 
due to being affected by various complex factors, the error 
sequences do not follow the normality distribution. As a re-
sult, the parameter estimators by the least squares method 
may be biased and non-consistent. Moreover, when estimat-
ing the two parameters, the least squares method should sat-
isfy the restriction of   x̂

(1) (1) = x(1) (1) = x(0) (1) , which may 
cause larger system error and  impact on the forecasting ac-
curacy of GM (1,1) model. To improve the forecasting abil-
ity of GM (1,1) model in error terms sequence forecasting, 
GA is applied to search for the optimal grey parameters of 
GM (1,1) model. The general procedure of GA-based pa-
rameter optimization to GM (1,1) model for forecasting the 
error sequences can be summarized as follows: 

Step 1: Preprocessing the data. Transform the original 
error terms sequence ε(0)=( ε(0)(1), ε(0)(2),…, ε(0)(n)) with 

  !
(0) (t) " R , t=1,2,…,n into the non-negative sequence 

   
u(0) = u(0) (1),u(0) (2),!,u(0) (n)}{ , where 

  u
(0) (t) = ! (0) (t)+min(! (0) (t)) , t=1,2,…,n.          (12) 

Step 2: Initialization population. Initialize the parame-
ters of GA, consisting of the population size, the number of 
evolutionary generation, the crossover rate and mutation rate. 

Step 3: Definition objective function. The objective 
function is defined based on the criterion of minimizing the 
mean squares error:  
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Where    ût
(0)  and   ut

(0)  are the forecasted and actual error val-
ues, respectively.  

Step 4: Evolution operation. Calculate the objective 
value of each individual in the population and search for the 
optimal solution by the steps of selection, crossover, muta-
tion and evolution.  

Step 5: Evolution stops. Repeat Step 3 to Step 4 until 
the number of evolutionary generation is met, when the op-
timal grey parameters a* and b* are obtained.  

Step 6: Model construction and forecasting. Using the 
obtained parameters a* and b*, the GA-based GM (1,1) 
model (called GAGM (1,1)) is constructed as:  
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Then, the error values forecasted by GAGM (1,1) model 
are transformed into the original error forecasts: 
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Finally,   !̂
(0) (t)  is added in the conditional variance equa-

tions of the GARCH-type models. 

4. EMPIRICAL RESEARCH 

4.1. Data Description 

Two stock indices of China stock market were examined: 
HuShen 300 Index (HS300) and HangSeng Index (HSI). The 
daily trading prices of the two stock indices were extracted 
from Sina website during July 4, 2011 to July 10, 2014,  in-
cluding 1338 observations. The continuously compounded 
logarithmic returns were calculated by using the daily clos-
ing prices:   rt = ln Pt ! ln Pt!1 , Where Pt,, Pt -1 are the daily 
closing prices for day t and t-1, respectively. The descriptive 
statistics of the daily return series of HS300 and SZCI can be 
found in Table 1.  

It is clear from Table 1 that for the two indices, the 
means of the return series are close to zero, significantly 
smaller than the corresponding standard deviation within the 
considered period. Thus, the conditional mean of the return 
series can be assigned as zero. The J-B test of the return se-

Table 1. Descriptive statistics of daily return series of HS300 and SZCI. 

Indices Mean Max. Min. Std. Dev. Skewness Kurtosis J-B test LB(20) LB2(20) LM(20) 

HS300 0.0001 0.0646 -0.0737 0.0151 -0.2803 5.0937 261.7087ab 17.2411 233.6812ab 120.1993ab 

SZCI 0.0005 0.0599 -0.0741 0.0162 -0.5474 4.4599 185.5093ab 31.6339a 250.2407ab 127.4946ab 

Note: JB test is the Jarque-Bera normality test for the distribution of the return series. LB(20), LB2(20) are the Ljung-Box test for the 20th order serial correlation of the return and 
squared return series, respectively. LM (20) is the Engle’s (1982) LM test for heteroscedasticity of the return series. a, b denote significance at the 5% and 1% levels, respectively.  
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ries rejects the null hypothesis of normality at  1% and 5% 
levels, respectively. Besides, negative Skewness and high 
Kurtosis being found in the return series, it is shown that the 
distribution of the return series is negatively biased and fat-
tailed. LB(20) statistic for serial correlation suggests that the 
return series of SZCI has serial correlation at the 5% signifi-
cance level, while the return series of HS300 has no signifi-
cant serial correlation. LB2(20) and ARCH (20) tests support 
the rejection of the null hypothesis of heteroskedasticity at  
1% and 5% levels, indicating that the strongly ARCH effect 
exists in the two return series. It is reasonable to construct 
the GARCH-type models. 

4.2. Empirical Results 

The daily returns of HS300 and SZCI, normalized in the 
range from 0 to 1, are classified into two sections: the first 
1000 daily returns are used for model training, and the re-
maining 337 ones for model evaluation. The rolling forecast-
ing method is used to forecast the stochastic error of the 
GARCH-type models. When estimating the grey parameters 
of GM (1,1) model, the control parameters of GA are set as: 
population size=30; crossover rate=0.95; mutation rate=0.08, 
number of evolutionary generation=50. For HS300 and 
SZCI, GAGM (1,1) model forecasts the next error value of 
the GARCH-type models using the eighteen most recent 
errors. The forecasted error values were added into the vari-
ance equation of the GARCH-type models and the parame-
ters of the GARCH-type models were estimated by using the 
maximum likelihood estimation (QMLE) method. Then, the 
constructed GAGM-GARCH-type models were employed to 
one-step-ahead forecast volatility. To compare the forecast-
ing results of the proposed models, three types of GARCH 
models were applied for forecasting volatility of HS300 and 
SZCI with the same data samples. They are GM-GARCH-
type, RGM-GARCH-type, and GARCH-type models. Final-
ly, the volatility forecasts were transformed into the original 
volatility forecasts. 

The out-of-sample forecasting performances of each type 
of models were evaluated by four statistical indices: the root 
mean squared error (RMSE), the mean absolute error 
(MAE), the logarithmic error statistic (LL), and the Linear 
Exponential index (LINEX). These indices are defined by: 
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Where, T is the number of volatility forecasts. ˆt!  is the 
square root of the volatility forecasts. Rt is the proxy of the 
actual daily volatility. In this study, the range-based ex post 
volatility Rt is taken as a proxy of the actual daily volatility, 
expressed as: 

  
Rt = k (log(Pt ,h ) ! log(Pt ,l ))"100        (20) 

Where, Pt,h and Pt,l are the intraday high and intraday low 
prices, respectively. k is the calibration parameter between 
the range-based unconditional variance and the return-based 
unconditional variance. The four statistical indices measured 
the forecasting errors of the evaluated models. The model 
with smaller ones showed better volatility forecasting ability.  

Table 2 lists the comparison of the results of the four 
types of models in forecasting volatility of HS300 and SZCI. 
It can be seen from Table 2: Firstly, for HS300 and SZCI, 
GAGM-GARCH-type models generate smaller RMSE, 
MAE, LL, and LINEX compared to the other types of mod-
els, which show a better performance than the other types of 
models in forecasting volatility. Among the three GAGM-
GARCH-type models, compared with GAGM-GJR-GARCH 
model, GAGM-GARCH model generates smaller RMSE and 
LINEX but larger MAE and LL, indicating that the forecast-
ing ability of GAGM-GARCH model is somewhat mixed 
compared with that of the GAGM-GJR-GARCH model. 
GAGM-EGARCH model shows the worst volatility forecast-
ing performance according to the four evaluation criteria. 
Secondly, with the exception of LINEX of RGM-GARCH-
type models, GM-GARCH-type models produce smaller 
RMSE, MAE, and LL than RGM-GARCH-type and 
GARCH-type models, suggesting that on the whole, GM-
GARCH-type models outperform the RGM-GARCH-type 
and GARCH-type models in volatility forecasting. Thirdly, 
for HS300, RGM-GARCH-type models provide better vola-
tility forecasting results in terms of RMSE, LL, and LINEX. 
While for SZCI, GARCH-type models seem to provide bet-
ter volatility forecasting results in terms of RMSE, MAE, 
and LL. Hence, it is difficult to determine that which one of 
these two types of models is better in volatility forecasting 
performance. 

The volatility forecasting results of the GAGM-GARCH-
type models for HS300 and SZCI are shown in Figs. (1) and 
(2). As  shown in the two figures, the three GAGM-
GARCH-type models can forecast the main volatility vary-
ing trend of the two stock indices, where GAGM-GARCH 
model provides superior volatility forecasts in the smaller 
fluctuation stage and GAGM-GJR-GARCH model provides 
superior volatility forecasts in the larger fluctuation stage.  

CONCLUSION 

To enhance the forecasting performance of the GARCH-
type models, i.e., GARCH, EGARCH, and GJR-GARCH 
models, in this paper, GAGM-GARCH-type models were 
proposed, which combined genetic algorithm (GA) and 
GM(1,1) model with three GARCH-type models. GM(1,1) 
model optimized by GA was used to modify the error terms 
of the GARCH-type models. The results of the empirical 
study on HS300 and SZCI indices of China stock market 
show that the proposed models have superior performances 
in out-of-sample volatility forecasting than the GM-
GARCH-type, RGM-GARCH-type, and GARCH-type mod-
els. The GAGM-GARCH and GAGM-GJR-GARCH models 
perform better than the GAGM-EGARCH model, but the 
forecasting  performance of  the  GAGM-GARCH  model  is  
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Table 2. RMSE, MAE, LL, and LINEX of four types of volatility models for HS300 and SZCI. 

Indices Models RMSE MAE LL LINEX 

HS300 

GAGM-GARCH 1.1042 0.7989 0.1599 0.0123 

GAGM-EGARCH 1.1174 0.8054 0.1612 0.0163 

GAGM-GJR-GARCH 1.1043 0.7968 0.1588 0.0127 

GM-GARCH 1.2571 0.8164 0.1829 0.1167 

GM-EGARCH 1.2710 0.8136 0.1829 0.1103 

GM-GJR-GARCH 1.2650 0.8119 0.1811 0.0805 

RGM-GARCH 1.5748 1.1962 0.3107 0.0555 

RGM-EGARCH 1.4588 1.1316 0.2887 0.0593 

RGM-GJR-GARCH 1.5534 1.1833 0.306 0.0347 

GARCH 1.5868 1.0991 0.3776 0.9946 

EGARCH 1.5926 1.1083 0.3847 0.9830 

GJR-GARCH 1.5719 1.0879 0.368 0.6466 

SZC 

GAGM-GARCH 1.1219 0.8088 0.1545 0.1049 

GAGM-EGARCH 1.1554 0.8247 0.1592 0.1256 

GAGM-GJR-GARCH 1.1259 0.8079 0.1544 0.1150 

GM-GARCH 1.3083 0.8534 0.1742 1.8603 

GM-EGARCH 1.2958 0.8384 0.1678 1.7071 

GM-GJR-GARCH 1.2798 0.8408 0.1677 0.9225 

RGM-GARCH 1.7921 1.4416 0.3921 0.8802 

RGM-EGARCH 1.3388 0.9899 0.3611 0.5100 

RGM-GJR-GARCH 1.7536 1.4095 0.3803 0.6578 

GARCH 1.632 1.1177 0.348 14.9011 

EGARCH 1.6081 1.1012 0.3307 13.4074 

GJR-GARCH 1.5914 1.0979 0.3267 6.789 

 

 
Fig. (1). HS300 volatility forecasts by GAGM-GARCH-type models. 

 
Fig. (2). SZCI volatility forecasts by GAGM-GARCH-type models. 
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somewhat mixed compared to the GAGM-GJR-GARCH 
model. In addition, the GM-GARCH-type models, as a 
whole, produce superior volatility forecasts compared to the 
RGM-GARCH-type and GARCH-type models. While, the 
RGM-GARCH-type and GARCH-type models show differ-
ent volatility forecasting abilities according to different eval-
uation criteria, which need to be further studied. 
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