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Abstract: Introduction: We examined whether spatial clusters of county-level diagnosed diabetes prevalence exist in the 

United States and whether socioeconomic and diabetes risk factors were associated with these clusters. 

Materials and Methods: We used estimated county-level age-adjusted data on diagnosed diabetes prevalence for adults in 

3109 counties in the United States (2007 data). We identified four types of diabetes clusters based on spatial 

autocorrelations: high-prevalence counties with high-prevalence neighbors (High-High), low-prevalence counties with 

low-prevalence neighbors (Low-Low), low-prevalence counties with high-prevalence neighbors (Low-High), and high-

prevalence counties with low-prevalence neighbors (High-Low). We then estimated relative risks for clusters being 

associated with several socioeconomic and diabetesrisk factors. 

Results: Diabetes prevalence in 1551 counties was spatially associated (p<0.05) with prevalence in neighboring counties. 

The rate of obesity, physical inactivity, poverty, and the proportion of non-Hispanic blacks were associated with a county 

being in a High-High cluster versus being a non-cluster county (7% to 36% greater risk) or in a Low-Low cluster (13% to 

67% greater risk). The percentage of non-Hispanic blacks was associated with a 7% greater risk for being in a Low-High 

cluster. The rate of physical inactivity and the percentage of Hispanics or non-Hispanic American Indians were associated 

with being in a High-Low cluster (5% to 21% greater risk). 

Discussion: Distinct spatial clusters of diabetes prevalence exist in the United States. Strong association between diabetes 

clusters and socioeconomic and other diabetes risk factors suggests that interventions might be tailored according to the 

prevalence of modifiable factors in specific counties. 
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INTRODUCTION 

 Diabetes contributes to blindness, renal disease, 
amputation, cardiovascular disease, and disability. Therefore, 
it poses substantial health impact and economic costs for the 
United States. In 2010, 8.3% (25.8 million) of the U.S. 
population had diabetes, diagnosed or not [1]. In 2008, 6.1 % 
of the non-institutionalized U.S. civilian population had 
diagnosed diabetes, more than twice the prevalence of 
diagnosed diabetes in 1980 [2]. Along with the increased 
prevalence of diabetes, the economic cost of diabetes in the 
United States has increased from $98.2 billion in 1997 to 
$174 billion in 2007 [3, 4]. 

 Diabetes incidence and prevalence in the United States is 
well understood at the state level [5, 6]. The prevalence of 
diabetes also varies at smaller geographical scales, such as 
the county (usually the smallest unit of local government in 
the United States) or census tract levels [7-9]. Accordingly, 
national- and state-level estimates of diabetes prevalence 
could conceal local pockets of high or low prevalence, and  
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therefore make it difficult for policymakers to efficiently and 
effectively plan diabetes prevention or control interventions 
[7, 10]. County-level estimates of the prevalence of 
diagnosed diabetes among adults exist, both raw and age-
adjusted to the 2000 standardized population [11]. These 
estimates provide the best available basis for understanding 
county-level spatial patterns of diabetes prevalence and 
inequalities in diabetes burden. 

 Recent advances in spatial analytical methods, such as 
exploratory spatial data analysis implemented in GeoDa 
Software [12, 13], provide the capability to uncover spatial 
clusters. These methods have been used for obesity, physical 
activity, cancer, the pattern for prescribing cardiovascular 
drugs, and sexually transmitted diseases [14-19]. However, 
few studies of diabetes spatial clustering have been 
published [8, 9, 20]. We are aware of no studies on spatial 
clustering of diabetes prevalence and its correlates using 
U.S. county-level data, except Barker et al. [21]. Barker et 
al. identified a U.S. diabetes belt—a regional pattern of 
counties with high prevalence (11.0% or more) of diagnosed 
diabetes. While that paper studied differences in risk factors 
between the diabetes belt and the rest of the United States, it 
examined neither negatively associated spatial clusters nor 
smaller groupings of high-prevalence counties outside the 
larger belt. 
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 In this study, we identified county-level diabetes spatial 
clusters based on spatial autocorrelations of county-level 
diabetes prevalence. We then estimated the extent to which 
identified diabetes spatial clusters were associated with 
selected socioeconomic and diabetes risk factors, aggregated 
at the county level. Identifying spatial patterns of diabetes 
prevalence clusters could help us further understand 
potential factors governing the spatial heterogeneity in the 
distribution of populations at high or low risk for diabetes 
[22]. Knowing this would aid in translating factors 
governing a low prevalence of diabetes from low-prevalence 
clusters to high-prevalence clusters. 

MATERIALS AND METHODS 

Data Source and Variables 

 The outcome variable was the diabetes spatial clusters we 
identified (described below) using 2007 data on age-adjusted 
prevalence of diagnosed diabetes among adults (aged 20 
years) from the 3109 counties in the 48 contiguous states and 
the District of Columbia [11]. The 2007 county-level 
estimates of diabetes prevalence among adults were derived 
by applying small area estimation techniques to self-reported 
Behavioral Risk Factor Surveillance System (BRFSS) data 
for 2006, 2007, and 2008, and U.S. Census data for 3141 
counties in the United States (this number includes 
noncontiguous U.S. counties). BRFSS determined persons 
with diagnosed diabetes by asking, "Has a doctor ever told 
you that you have diabetes?" Women with gestational 
diabetes were excluded. Data from the 2000 U.S. Census 
were used to age-adjust the results by population [10]. The 
prevalence estimates included diagnosed diabetes (type 1 or 
type 2), but do not distinguish diabetes by type. We did not 
include counties in Alaska and Hawaii because the 
significance level for these counties would not be computed 
correctly when using contiguity-based spatial weights 
[http://geodacenter.asu.edu/node/402#lisaisle, Accessed 
(August 2, 2011)]. 

 To assess the factors associated with diabetes spatial 
clusters, we considered the following county-level 
socioeconomic and risk factors: the estimated percentage of 
people of all ages living in poverty (2007 data) [23]; the 
percentage of residents of different races/ethnicities: non-
Hispanic white, non-Hispanic black, Hispanic, non-Hispanic 
American Indian, non-Hispanic Asian, and other 
races/ethnicities (2007 data) [24]; the age-adjusted estimates 
of the percentage of obese adults (i.e., with a body mass 
index [BMI] of >30 kg/m2 based on self-reported height and 
weight) (2007 data) [11]; the age-adjusted self-reported 
percentage of adults who engaged in no leisure time physical 
activity (2007 data) [11]; the percentage of county 
population (>20 years) that was female (2007 data) [25]; 
whether the county was in a metropolitan statistical area 
(MSA), based on 2003 MSA classification (hereafter 
referred to as the county’s “metropolitan status”) [26]; and 
percentage of adults (aged 18-64 years) in all income groups 
in the county who were uninsured (2007 data) [27]. 

ANALYSIS 

Exploratory Spatial Data Analysis 

 We mapped age-adjusted estimates of diabetes 
prevalence, then visually identified clusters, and computed 

global and local Moran I statistics, which allowed us to test 
for overall spatial autocorrelation in diabetes prevalence and 
identify statistically significant diabetes clusters and outliers 
on the U.S. county-level map. 

Estimating the Global Spatial Association 

 To evaluate overall spatial association in diabetes 
prevalence across the counties, we computed the univariate 
global Moran’s I statistic, as: 

I =
1

wijji

wij xi x( ) x j x( )ji

xi x( )
2
/ n

i

 

where xi is the age-adjusted diabetes prevalence of the i
th 

county; xj is the age-adjusted diabetes prevalence of the j
th 

county; x is the county-level mean diabetes prevalence; n is 

the number of counties; and wij is the first-order queen 

contiguity spatial weight matrix used to define the 

immediately spatially contiguous neighbors, in which county 

j is a neighbor of county i if counties i and j share a 

boundary. 

 We standardized the weights so that rows summed to 1 
[13]. Thus, the Moran’s I statistic takes values between -1 
and 1 and can be interpreted much like a Pearson’s 
correlation. To test the statistical significance of Moran’s I 
statistic, a p-value was calculated by comparing the observed 
statistic to a reference distribution generated by 999 
randomized permutations of the observed data. The null 
hypothesis was that age-adjusted county-level diabetes 
prevalence was spatially independent. Rejection of 
hypothesis suggests the existence of a spatial association 
between diabetes prevalence among neighboring counties, 
indicating the existence of spatial clusters. However, it does 
not indicate where clusters are located nor does it indicate 
the types of spatial clusters [12]. 

Identifying Diabetes Spatial Clusters 

 Diabetes spatial clusters were identified based on a 
significant spatial autocorrelation between the diabetes 
prevalence of a county and its immediate neighboring 
counties. We computed the local spatial autocorrelation 
using local Moran’s I statistics, also referred to as Local 
Indicators of Spatial Association (LISA), using the formula 

Ii =
xi x( ) wij x j x( )j

xi x( )
2
/ n

i

 

in which Ii is the Moran’s I statistics of the i
th county and 

other variables in the equation are as defined previously. 
Statistical significance was tested using the same approach 
as used for global Moran’s I. Based on LISA, U.S. counties 
were grouped into four types of statistically significant 
diabetes spatial cluster counties and one group of statistically 
insignificant counties (i.e., non-cluster counties) [28]. The 
identified diabetes spatial cluster counties were: 1) High-
High spatial clusters: counties with a high diabetes 
prevalence (county-level mean of >8.6%) that were 
positively spatially correlated with high diabetes prevalence 
neighbors; 2) Low-Low spatial clusters: counties with low 
diabetes prevalence (county-level mean of <8.6%) that were 
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positively spatially correlated with low-prevalence 
neighbors; 3) Low-High spatial clusters: counties with low 
diabetes prevalence that were negatively spatially correlated 
with high-prevalence neighbors; and 4) High-Low spatial 
clusters: counties with high diabetes prevalence that were 
negatively spatially correlated with low-prevalence 
neighbors; and 5) Non-cluster counties, in which the diabetes 
prevalence of a countywas not statistically correlated with 
the diabetes prevalence of its neighbors. We used GeoDa 
0.95 software [13] to estimate global and local Moran’s I 
statistics and spatially dependent diabetes prevalence 
patterns. 

Associating Clusters with Correlates 

 Following the identification of diabetes spatial clusters, 
we described the characteristics of counties in clusters and 
non-cluster counties by computing the means and standard 
errors of variables (See Table 1). We compared means: 

i. Between High-High and Low-Low cluster counties to 
assess the extent to which the risk factor prevalence 
of these two types of clusters with concordant 
counties (i.e., in which neighboring counties all have 
the same level of diabetes prevalence) was different. 

ii. Between High-High and High-Low cluster counties 
and between Low-Low and Low-High cluster 
counties to assess whether the mean risk factor 
prevalence of counties differed from that of the same 
type of county when their neighbors had a different 

prevalence. 

iii. Between counties in High-High clusters and high-
prevalence non-cluster counties and between counties 
in Low-Low clusters and low-prevalence non-cluster 
counties to assess whether or not the risk factor 
prevalence of a county differed from that of the same 
type of county depending on whether or not that 
county’s diabetes prevalence was correlated with its 
neighboring counties. 

 We used a multinomial logistic regression model to 
examine the association between the four types of clusters 
identified and the socioeconomic and diabetes risk factors, 
adjusting for gender, health insurance coverage, and 
metropolitan status of the counties. We presented estimated 
results as the relative risk for a county being in a cluster 
versus being a non-cluster county. We also estimated the 
relative risk for a county being in a High-High cluster 
relative to being in a Low-Low cluster. This enabled us to 
compare results between these two concordant clusters, but 
represent substantially unequal diabetes prevalence. We used 
STATA v.11 for these analyses. 

RESULTS 

Diabetes Prevalence Map 

 The quintiles map of diabetes prevalence (Fig. 1) shows 
that counties in the top quintile (diabetes prevalence 10.5%) 
were concentrated in the South—most of the counties of 
Alabama, Georgia, Mississippi, and considerable proportions 

 

Fig. (1). Quintiles of age-adjusted county-level diagnosed diabetes prevalence (%), 2007. 
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of the counties in Louisiana, Kentucky, South Carolina, and 
West Virginia. Counties in the bottom quintile (diabetes 
prevalence <7.1%) were concentrated in Colorado, Iowa, 
Minnesota, Montana, New Mexico, North Dakota, South 
Dakota, Wisconsin, and Wyoming. 

Diabetes Spatial Clusters 

 The formal test of global spatial associations showed that 
county-level age-adjusted diabetes prevalence was spatially 
correlated (Moran’s I=0.78, p<0.05). This provided evidence 
of the spatial clustering of like diabetes prevalence. Of the 
total 3109 counties, 717 (23.1%) were in High-High clusters; 
786 (25.3%) were in Low-Low clusters; 22 (0.7%) were in 
High-Low clusters and 26 (0.8%) were in Low-High clusters 
(Fig. 2). The remaining 1558 (50.1%) were non-cluster 
counties. 

 The cluster counties were summarized for this report by 
identifying the U.S. census regions (Northeast, Midwest, 
South, and West) in which they are located. High-High 
cluster counties were located mainly in the South and some 
in the Midwest (Fig. 2). Low-Low cluster counties were 
located mainly in the West, with some in the Midwest and 
the Northeast (Fig. 2). Low-High cluster counties were 
scattered throughout the South, the Northeast, and the West 
(Fig. 2). More than half (55%) of Low-High cluster counties 
were located in metropolitan statistical areas [26]. High-Low 
cluster counties were scattered around the West, the 
Midwest, and the South (Fig. 2). The majority of High-Low 
clusters included all or part of areas designated as American 
Indian reservations. 

Descriptive Results 

 The mean diabetes prevalence in non-cluster counties 
was lower than the average in all counties (p<0.05). 
However, this difference was very small (0.1%)  (Table 1). 
In the High-High cluster counties, the mean diabetes 
prevalence was significantly higher than in the Low-Low 
cluster counties. While the High-Low cluster counties had 
significantly lower mean diabetes prevalence than High-
High cluster counties the Low-High cluster counties had 
significantly higher mean diabetes prevalence than Low-Low 
cluster counties. The mean diabetes prevalence in a county in 
a High-High or Low-Low cluster and those in their 
corresponding cluster neighbors were similar. However, the 
mean diabetes prevalence rate in the Low-High cluster 
counties was lower than in their in neighboring counties and 
in the High-Low cluster counties, it was higher than in the 
neighbor counties. Low-High or High-Low cluster counties 
were classified based on rates of diabetes prevalence that 
were obviously significantly different from those of their 
neighbors, so we did not test for statistical significance. 

 The mean poverty rate was significantly greater for 
counties in High-High clusters than for those in Low-Low 
clusters  (Table 1). The percentage of non-Hispanic whites 
was significantly higher for counties in Low-Low clusters 
than for those in High-High clusters (Table 1). In contrast, 
the percentage of non-Hispanic blacks was significantly 
higher for counties in High-High clusters than for those in 
Low-Low clusters. The percentages of Hispanics, non-
Hispanic Asians, and non-Hispanic American Indians were 
significantly higher counties in Low-Low clusters than for 

 

Fig. (2). Spatial clusters of age-adjusted county-level diagnosed diabetes prevalence, 2007. Note: White colored counties were spatially not 

correlated with neighboring counties at a 5% level. 
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those in High-High clusters. A high percentage of Hispanics 
and non-Hispanic American Indians were in High-Low 
cluster counties; a low percentage of non-Hispanic Asians 
were in Low-High or High-Low cluster counties (Table 1). 

 Both the age-adjusted obesity prevalence and age-
adjusted mean percentage of the population that was 
physically inactive were significantly higher in High-High 
cluster counties than in Low-Low cluster counties (Table 1). 

 

Table 1. Characteristics of U.S. Counties: By Diabetes Spatial Clusters and Non-Cluster Type, and in Overall, 2007 

 

Variables Cluster Counties (n=1551) 
a
Non-Cluster Counties (n=1558) All 

 HH HL LH LL High Prev. Low Prev. All Counties 

 (n=717) (n=26) (n=22) (n=786) (n=636) (n=922) (n=1558) (n=3109) 

Age-adjusted diabetes (%) 11.16H 10.21H 8.02L 6.66L 9.65 7.86 8.59 8.71 

 (0.04) (0.37) (0.20) (0.03) (0.03) (0.21) (0.03) (0.03) 

Age-adjusted diabetes  11.11H 6.93H 8.68L 6.70L 9.16 8.27 8.63 8.70 

of neighbor (%) (0.03) (0.07) (0.90) (0.02) (0.03) (0.20) (0.02) (0.03) 

Age-adjusted obesity (%) 31.65H 30.12H 25.14 25.71 29.05 27.19 27.95 28.24 

 (0.11) (0.89) (0.72) (0.13) (0.84) (0.09) (0.07) (0.07) 

Age-adjusted physical  31.2H 27.52H 22.87 21.72 27.29 24.48 25.62 25.92 

inactivity (%) (0.14) (0.63) (0.83) (0.14) (0.12) (0.11) (0.09) (0.09) 

Poverty: All ages (%) 20.44 20.83 11.90 11.93 15.82 13.13 14.23 15.12 

 (0.24) (2.28) (1.04) (0.15) (0.23) (0.16) (0.14) (0.11) 

Race/Ethnicity (%): 

NH_White 73.17H 59.38H 82.92L 89.27L 77.30 85.98 82.43 81.83 

 (0.72) (5.21) (1.91) (0.46) (0.73) (0.51) (0.44) (0.32) 

NH_Black 22.27H 2.92H 10.13L 1.02L 10.01 3.19 5.97 8.48 

 (0.72) (1.32) (1.54) (0.07) (0.45) (0.15) (0.22) (0.24) 

Hispanic 2.35H 8.51H 4.20 6.65 8.66 7.96 8.24 6.45 

 (0.09) (2.18) (0.69) (0.40) (0.56) (0.45) (0.35) (0.21) 

NH_American Indian 0.94H 26.40H 0.49 1.25 2.15 0.78 1.34 1.43 

 (0.13) (5.66) (0.10) (0.10) (0.33) (0.05) (0.14) (0.10) 

NH_Asian/Pacific islander 0.53H 1.43H 1.45 1.02 0.97 1.27 1.14 0.98 

 (0.02) (0.58) (0.35) (0.07) (0.06) (0.08) (0.05) (0.03) 

Other races/ethnicity 0.74H 1.35H 0.80 0.79 0.91 0.83 0.87 0.82 

 (0.03) (0.13) (0.07) (0.02) (0.03) (0.02) (0.02) (0.01) 

 

Female (%) 51.52 50.38 51.47L 50.22L 50.74 50.97 50.88 50.85 

 (0.11) (0.68) (0.21) (0.08) (0.13) (0.06) (0.06) (0.05) 

Without health insurance (%) 21.07 19.72 20.93L 18.25L 21.85 19.89 20.69 20.16 

 (0.17) (1.09) (0.99) (0.21) (0.29) (0.22) (0.18) (0.11) 

Metro (yes=1) 0.34 0.27 0.55L 0.25L 0.42 0.39 0.40 0.35 

 (0.02) (0.09) (0.11) (0.02) (0.02) (0.02) (0.01) (0.01) 

Notes: 

HH= High-High cluster counties; HL=High-Low cluster counties; LH=Low-High cluster counties; LL=Low-Low cluster counties. 
aNon-cluster counties are those with non-significant spatial association with their neighbors. 

NH= Non-Hispanic. Other races/ethnicity=NH-Native American and Hawaiian and those with 2 ethnic backgrounds. 
Metro=located in metropolitan statistical area based on 2003 criteria. 

All the means between High-High and Low-Low clusters; between High-High cluster and high-prevalence non-cluster counties; and between Low-Low cluster and low-prevalence 
non-cluster counties are statistically different (p<0.05). 
H= means between High-High and High-Low clusters are statistically different (p<0.05). 
L= means between Low-Low and Low-High clusters are statistically different (p<0.05). 

Values in parentheses are standard errors. 
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Multivariate Results 

 Table 2 presents the multinomial logistic regression-
based relative risks for the diabetes spatial clusters 
associated with socioeconomic and diabetes risk factors. 
Both the age-adjusted obesity and age-adjusted physical 
inactivity rates were associated with increased risk (22% to 
36%) of the county being a High-High cluster versus being a 
non-cluster county, or versus being in a Low-Low cluster 
(45% to 67% higher). In contrast, these factors were 
associated with decreased risk (15% to 18%) of a county 
being in a Low-Low cluster compared with being a non-
cluster county. While the age-adjusted obesity rate was 
associated with 29% lower risk of a county being in a Low-

High cluster, the age-adjusted physical inactivity rate was 
associated with a 21% higher risk of being in a High-Low 
cluster compared with being a non-cluster county. 

 The county-level poverty rate was associated with an 
average 9% higher relative risk for a county being in a High-
High cluster versus being a non-cluster county or a 13% 
higher relative risk when compared with being in a Low-
Low cluster. The relative risk was 4% lower for a county 
being in a Low-Low cluster versus being a non-cluster 
county. 

 Compared with non-Hispanic whites, the percentage of 
non-Hispanic blacks in a county was associated with a 7% 
higher risk of that county being in a High-High cluster 

Table 2. Relative Risks for Counties Being Located in a Specific Type of Diabetes Spatial Clusters Relative to Being a “Non-

Cluster” County and Being Located in High-High Versus Low-Low Cluster 

 

Variables Diabetes Cluster versus 
a
Non-Cluster Counties 

c
HH versus LL 

 
b
HH 

b
HL 

b
LH 

b
LL  

1 2 3 4 5 6 

Age-adjusted obesity (%) 1.22*** 0.96 0.71*** 0.85*** 1.45*** 

 (1.12 1.33) (0.78 1.18) (0.58 0.86) (0.80 0.89) (1.31 1.59) 

Age-adjusted physically  1.36*** 1.21* 0.96 0.82*** 1.67*** 

inactivity (%) (1.29 1.43) (1.03 1.43) (0.80 1.15) (0.78 0.85) (1.56 1.78) 

Poverty: All ages (%) 1.09*** 0.86* 0.94 0.96* 1.13*** 

 (1.05 1.12) (0.77 0.97) (0.82 1.07) (0.93 0.99) (1.08 1.19) 

Race/Ethnicity (%): 

NH_Black 1.07*** 0.94 1.07** 0.67*** 1.59*** 

 (1.05 1.08) (0.84 1.06) (1.02 1.12) (0.62 0.72) (1.48 1.71) 

Hispanic 0.82*** 1.05* 0.86* 1.01 0.82*** 

 (0.78 0.86) (1.01 1.10) (0.76 0.98) (0.99 1.02) (0.78 0.86) 

NH_American Indian 0.94*** 1.14*** 0.82 1.03 0.91*** 

 (0.91 0.97) (1.09 1.19) (0.42 1.61) (1.00 1.06) (0.87 0.95) 

NH_Asian/Pacific Islander 1.02 1.13 0.88 1.05 0.97 

 (0.84 1.23) (0.96 1.32) (0.63 1.22) (0.97 1.14) (0.78 1.19) 

Other races/ethnicity 0.91 1.07 1.33 0.67*** 1.36* 

 (0.76 1.08) (0.76 1.51) (0.33 5.46) (0.52 0.85) (1.01 1.83) 

 

Female (%) 1.07* 0.83* 1.12 0.76*** 1.40*** 

 (1.01 1.12) (0.71 0.98) (0.85 1.46) (0.72 0.82) (1.29 1.52) 

Without health insurance (%) 1.09*** 0.92 1.09 0.93*** 1.17*** 

 (1.06 1.13) (0.84 1.01) (0.99 1.19) (0.91 0.96) (1.13 1.22) 

Metro (yes=1) 2.21*** 0.98 1.00 0.45*** 4.94*** 

 (1.59 3.06) (0.29 3.32) (0.34 2.91) (0.33 0.60) (3.19 7.63) 

LR Chi^2 1827***    1827*** 

Notes: 

HH= High-High cluster counties; HL=High-Low cluster counties; LH=Low-High cluster counties; LL=Low-Low cluster counties. 
aNon-cluster counties are those with non-significant spatial association with their neighbors. 
NH= Non-Hispanic. Other races/ethnicities=NH-Native American and Hawaiian and that with 2 ethnic background. Metro=metropolitan statistical area based on 2003 criteria. 
bEstimates are risk ratios relative to “non-cluster” counties. 
cRisk ratios for High-High cluster counties relative to Low-Low cluster counties. 

Values in parentheses are 95% confidence intervals. 
*=p<0.05, **=p<0.01, ***=p<0.001. 
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versus being a non-cluster county or versus 59% higher risk 
of being in a Low-Low cluster. However, it was associated 
with a 33% lower risk of being in a Low-Low cluster, and a 
7% higher risk of being in a Low-High cluster, compared 
with being a non-cluster county. Both the percentage of 
Hispanics or non-Hispanic American Indians in a county was 
associated with a lower risk (6% to 18%) for the county 
being in a High-High cluster versus being a non-cluster 
county versus being in a Low-Low cluster (9% to 18%). 
While both of these were associated with increased risk of 
being in a High-Low cluster, the percentage of Hispanics 
was associated with a 14% lower risk of being in a Low-
High cluster and the percentage of non-Hispanic American 
Indians was associated with a 14% higher risk of being a 
High-Low cluster county. Other factors such as a county’s 
percentage of females, the percentage of uninsured adults 
(aged 18-64 years), and metropolitan status were positively 
associated with a greater risk of a county being in a High-
High cluster versus being in a Low-Low cluster or being a 
non-cluster county. 

DISCUSSION 

 We found that, based on 2007 data, age-adjusted county-
level diabetes prevalence in the United States was spatially 
associated and that significant diabetes clusters existed, a 
finding consistent with those in previous studies in Canada 
[9, 20]. Counties in which diabetes prevalence was higher 
and had similar neighboring counties were concentrated in 
the South, to a large extent corresponding with the location 
of the diabetes belt [21]; counties in which diabetes 
prevalence was lower and had similar neighboring counties 
were concentrated in the West, Midwest, and Northeast. 
About half of all counties in the study were not significantly 
spatially clustered by diabetes prevalence (non-cluster 
counties). The average diabetes prevalence in those counties 
relative to all counties was different, but the difference was 
negligible in magnitude. 

 Counties in spatial clusters typically stood out in diabetes 
prevalence relative to the average for all counties or for non-
cluster counties. For instance, counties in High-High clusters 
were characterized by a higher prevalence of diabetes and 
most associated factors (e.g., poverty level) than in high-
prevalence non-cluster counties. Counties in Low-Low 
clusters were characterized by lower prevalence of diabetes 
and associated factors than in low-prevalence non-cluster 
counties. This highlights the importance of identifying 
clusters as typical of groups of counties that may need 
strategies quite different from those for non-cluster counties 
to address their diabetes burden. 

 Our results showed that diabetes spatial clusters and 
inequality in diabetes burden were associated with 
socioeconomic correlates (poverty and race/ethnicity) and 
type 2 diabetes risk factors (obesity and physical inactivity), 
even after accounting for gender proportions, insurance 
coverage status, and metropolitan status of counties. The 
positive association between the rate of poverty in a county 
and the type of diabetes cluster in which it is located (Low-
Low versus High-High) was consistent with previous 
findings based on individual data [20, 29-31]. The 
association between poverty and diabetes might be causal. 
Poverty may worsen health outcomes [32] because of limited 

access to healthy food, recreational facilities, and other 
elements contributing to a healthier lifestyle [29]. Poorer 
health outcomes for populations in socioeconomically 
deprived areas could also be driven by the limited access to 
health care, lack of social support, and social disorder [31, 
33]. 

 The associated risk for a county being in a cluster was 
likely confounded by the racial/ethnic disparity between the 
South and the other regions. We tried to control for census 
regions, but because the High-High cluster counties were 
mainly concentrated in the South, the High-High cluster was 
collinear with that region. A small-area study of diabetes 
prevalence demonstrated that spatial variation in diabetes 
exists even after adjusting for the proportion of females and 
ethnicity [34]. The racial/ethnic differences in diabetes 
prevalence in a cluster may, in part, be attributable to 
differences in modifiable socioeconomic and environmental 
health risk conditions of the places in which they live. One 
study found no difference in the prevalence of diabetes 
between African Americans and whites who lived in places 
with similar socioeconomic and environmental factors [35]. 
The high rates of obesity, physical inactivity, or both of 
counties in High-High clusters, compared with those in Low-
Low clusters, could also be associated with lower 
socioeconomic status and relatively limited environmental 
resources for physical activity, both of which contribute to 
both diabetes and obesity [16, 31, 36]. 

 Information on risk and socioeconomic factors associated 
with diabetes prevalence clusters from this study can help 
policymakers when considering where to implement 
prevention programs and develop community and clinical 
services. The study also provided information about risk 
factors and the socioeconomic status of potential target 
audiences. For example, High-High spatial clusters identified 
swaths of the country in which diabetes was common. 
Interventions to prevent complications from diabetes might 
be needed in these areas. High-Low clusters serve to remind 
policymakers that a county may be in need of intervention 
even when its neighbors' needs are less severe. Low-High 
clusters identify pockets within regions in which efforts to 
prevent diabetes have perhaps been successful or have 
lowered risk factors for diabetes. Low-Low clusters identify 
broad areas of the country where diabetes is less common; 
perhaps there are lessons from these areas that can be applied 
elsewhere such as in counties in High-High or High-Low 
clusters. All of this knowledge, along with information on 
the influence of modifiable factors, moves us toward better 
preventing diabetes and its complications. 

 Our study has several limitations. First, the county-level 
diabetes prevalence estimates were modeled from survey 
data, and we did not account for the survey sampling 
uncertainty or the biases and limitations of the survey. 
Second, we did not consider changes over time and therefore 
do not know how rapidly the diabetes prevalence in our 
spatial clusters could change. Third, we did not account for 
the movement of people between counties in our estimates of 
county-level prevalence of diabetes. It is not known what 
percentage of the residents developed diabetes while residing 
in another county. Fourth, we could only account for 
diagnosed diabetes. It is not known if and how the rates of 
undiagnosed diabetes spatially vary. Further, because the 
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county-level diabetes prevalence data were not available by 
diabetes type but only collectively as “diagnosed diabetes” 
we could not separately assess the results between type1 and 
type 2 diabetes. However, as type 2 diabetes accounts for 
about 95% of diabetes cases [37], the location of clusters and 
their association with socioeconomic variables and risk 
factors probably reflects data mostly from people with type 2 
diabetes. These locations and associations may be quite 
different for people with type 1 diabetes. A study of youth 
aged 10-19 years showed the existence of spatial clustering 
of type 1 and type 2 diabetes prevalence at the census tract 
level but provided no evidence of joint clustering of type 1 
and type 2 diabetes prevalence [8]. Fifth, risk estimates from 
the negatively associated clusters (High-Low or Low-High) 
may be subject to lower statistical power because of the 
relatively smaller number of counties that fall into those 
clusters. This should be taken into consideration when 
interpreting the results of these clusters. Sixth, physical 
inactivity measures were only for leisure time inactivity; 
non-leisure time physical activity was not accounted for. The 
prevalence of non-leisure time physical activity should differ 
geographically (e.g., would likely be much greater in 
farming or mining areas). Sixth, our analysis was subject to 
the limitations of any ecological analysis: county- or cluster-
level relationships do not necessarily apply to all individuals 
[38]. Lastly, we did not carry out census region-specific 
analyses, which mighthave provided better insight into the 
relationship between spatial patterns and the factors that 
underlie them at the regional level. Also, analyses at smaller 
geographical scales, such as census tracts might have 
provided better insight into the prevalence of diabetes and its 
risk factors. 

 We found distinct spatial clusters of diabetes prevalence 
in the United States that were associated with socioeconomic 
correlates (poverty and race/ethnicity) and diabetes risk 
factors (obesity and physical inactivity). These findings 
highlight the critical role that these nonclinical factors play 
in reducing diabetes burden and suggest that interventions 
aimed at reducing diabetes burden could be tailored to the 
modifiable socioeconomic and risk factors of specific 
counties. The methods applied here may be used for both 
discovering and tracking spatial clusters of diabetes burden 
across space and time as additional years of county-level 
data become available. Further, although our study used data 
only from the United States, the same methods could be 
applied in other countries to identify unique spatial patterns 
of diabetes prevalence. 
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